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Abstract

A numerical method is presented to study cavity and bubble dynamics. The liquid phase is assumed to be inviscid and incom-

pressible and separated from the gas or vacuum phase by a free surface. On the free surface the stress tensor reduces to a spatially

constant pressure. The flow in the bulk of the liquid is computed using a second-order-in-time projection method. The interface is

advected and reconstructed using a Volume-of-Fluid (VOF) method. Setting the pressure on the free surface to the prescribed value

involves a modified stencil on nodes close to the interface. This modifed stencil contains interpolated pressures on branches that

are cut by the interface. Capillary effects are taken into account by adding the Laplace law pressure increment to these prescribed

pressures. The curvature that appears in the Laplace law is computed using the height-function method. The VOF advection and

momentum advection schemes both require an extension of the velocity in a two-layer wide ghost cell region on the grid across

the free surface. This ghost layer is computed in two stages. In the preliminary stage a first-order velocity extrapolation of the

liquid velocity field to the ghost layers is performed. In the second stage the ghost layer velocities are projected on the space of

divergence free velocities using an auxiliary projection step. The whole procedure is implemented in a free code developed with

the help of Gretar Tryggvason and Yue (Stanley) Ling and is available at http://parissimulator.sf.net.

Tests are perfomed on radial flows with spherical symmetry except for boundary conditions far from the bubble in a cubic box.

In such a geometry the flow is predicted by solutions of the Rayleigh-Plesset equation. Good comparison to the Rayleigh-Plesset

solution for a single bubble with low and moderate amplitude oscillations is shown. Perspectives for parallel simulations involving

very large numbers of bubbles are given.
c© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of Indian Institute of Technology, Hyderabad.
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1. Introduction

Numerical simulation of two-phase flows has a large scientific interest with many industrial applications. Various

interface tracking methods using the so-called “one-fluid” approach and an incompressible fluid model have been
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developed to study these flows. Furthermore, two-fluid flow problems often can be reduced to free-surface flows

which require accurate boundary conditions on the interface. The study of free-surface flows was pioneered by

Harlow and Welch1 with the development of the Marker-and-Cell (MAC) method. It has also been implemented in

the volume-of-fluid (VOF) framework2,3 to simulate flows with interfaces where one phase is a light gas. Since then it

has been used to study natural flows, such as water waves4,5, and industrial devices, such as inkjet printing6,7. Bubble

dynamics and cavitation are also active research areas that can be attacked with the VOF method. Other approaches

include the front tracking method, as in the study by Popinet8 of the the effect of viscosity in near-wall bubble, and

the level set method, as in the study by Can and Prosperetti 9 of vapor bubble dynamics. A review of these methods

have been published by Scardovelli and Zaleski10 and later with the addition of Tryggvason11.

This paper will describe a VOF method that is used to simulate bubble dynamics with a free-surface approach.

VOF methods have been improved significantly since their introduction by Hirt and Nichols2. Important contribu-

tions include the reconstruction of the interface using piece-wise linear elements (PLIC)12, momentum-conserving

schemes13 and height functions14,15,16,17,18 to calculate local geometrical quantities such as interface normal and cur-

vature. Interface advection to conserve mass to machine accuracy has also been achieved by Weymouth and Yue19.

2. Problem formulation

The problem considers two fluid phases separated by an arbitrary, moving interface. In the present study we assume

an adiabatic flow with no mass transfer across the interface. The focus is on a low Mach number flow, that allows us

to use an incompressible formulation of the momentum equation. The gas phase is a few orders of magnitude lighter

than the liquid, therefore we can assume a free-surface flow with appropriate boundary conditions on the interface.

Furthermore, we neglect viscous effects as the liquid flow is characterized by very high Reynolds numbers. This leads

to a fluid system governed by the incompressible Euler equations:

ρ

(
∂u
∂t
+ u · ∇ u

)
= − ∇P ,

∇ · u = 0 ,

(1)

where u = (u, v,w) is the fluid velocity, ρ = ρl its density, and P the pressure. With the free surface interface condition,

the pressure on the interface is given by

PI = P0 − σ κ , (2)

where σ is the surface tension coefficient, κ the local interface curvature and P0 the gas or cavity pressure which is

assumed to be constant in space. PI is the interface pressure, on the liquid side of the interface. Note that since we

assume zero viscosity, we do not have to enforce a shear-free condition on the interface. The interface is tracked using

a volume-of-fluid2 approach, that considers a colour function, C, that obeys a standard advection equation:

∂C
∂t
+ ∇ · (C u) = 0 . (3)

The function C represents the volume fraction of a reference phase present in the spatial domain. Here we choose the

gas as the reference phase, therefore for an arbitrary volume V the value of C is given by

C = 1 − 1

ρl V

∫
V
ρ (x, y, z) dV , (4)

where ρl is the constant liquid density. We recall that in the free surface approach the gas density ρg is equal to zero.

3. Numerical formulation for bubble dynamics problem

To solve this problem numerically, we consider a projection method originally developed in21 and also used in8,16.

The method has been implemented in the numerical code PARIS, which is an acronym for PArallel Robust Interface

Simulator, and it is freely available under the GPL license agreement. The projection method solves the system of
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equations in (1) by first calculating a provisional velocity field u∗. This field is obtained by integrating all momentum

contributions with the exception of the pressure P:

u∗ − un

Δt
= −un · ∇h un , (5)

where ∇h is the discrete gradient operator. The superscript n refers to the nth time step of length Δt. The velocity at

the next time n + 1 is then obtained by adding the pressure contribution to the provisional velocity u∗

un+1 − u∗

Δt
= − 1

ρ∗
∇h P∗ , (6)

where ρ∗ is the interpolated density across the staggered grid. The sum of equations (5) and (6) gives the discrete form

of the momentum equation, (1). To ensure mass conservation, we must have

∇h · un+1 = 0 . (7)

By taking the divergence of (6) we obtain a Poisson equation for the pressure

∇h ·
(
Δt
ρ∗
∇h P∗

)
= ∇h · u∗ . (8)

The projection method is used in combination with a second-order Runge-Kutta time integration to solve system (1).

The method becomes second-order in time by averaging two explicit, first-order steps. The sequence of integration

steps is the following:

1. a provisional velocity field u∗ is obtained by solving (5)

u∗ − un

Δt
= −un · ∇h un ,

2. the pressure field P is obtained by solving (8)

∇h ·
(
Δt
ρ∗
∇h P∗

)
= ∇h · u∗ ,

3. an intermediate velocity field u′ is then obtained by correcting u∗ as given by (6)

u′ − u∗

Δt
= − 1

ρ∗
∇h P∗ ,

4. steps 1-3 are repeated with another explicit time step, starting from the previously calculated values at the inter-

mediate level

u∗∗ − u′

Δt
= −u′ · ∇h u′

∇h ·
(
Δt
ρ∗∗
∇h P∗∗

)
= ∇h · u∗∗

u′′ − u∗∗

Δt
= − 1

ρ∗∗
∇h P∗∗

We then obtain a second-order approximation to the velocity field at time step n + 1 by averaging

un+1 =
1

2

(
u′′ + un) (9)
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3.1. Pressure treatment at the free surface

For the pressure we need to solve the Poisson equation, (8), with Dirichlet’s boundary conditions that on the in-

terface are derived from (2). In the computational domain there are three different types of cells: cells with only the

reference gas phase, where the colour function C = 1, cells with only the liquid phase, and C = 0, and cells cut by the

interface, with 0 ≤ C ≤ 1. In the cut cells the interface is reconstructed with a Piecewise Linear Interface Calculation

(PLIC), from the idea of DeBar12. This means that the interface is reconstructed by using a portion of a plane in every

cut cell.

In the Marker-and-Cell (MAC) method the discrete pressure is located at the center of the grid cell. It is then straight-

forward to show that all pressure nodes inside a cell with a value of the colour function greater than 0.5 will be located

inside the gas phase. These cells are not considered in the solution of the Poisson’s equation and only the appropriate

pressure boundary condition is applied on the interface. The pressure value PI on the liquid side of the interface is

then given by (2)

PI = P0 − σ κ (10)

This condition is applied on the interface by using a modified finite difference pressure gradient operator, as suggested

by Chan and Street4, while solving (8) for the pressure in the projection step. To explain the modification, consider

the finite difference pressure in the x-direction, as shown in Fig. 1. The component of the pressure gradient along the

Fig. 1. On the left a 1D schematic image illustrates the modification of the pressure discretisation for the free surface approach. Surface tension

is included by adding the Laplace pressure jump at the interface. On the right the image shows the pressure field inside and around a single 2D

bubble to illustrate the discontinuous change in the pressure value across the interface.

x-direction with centered finite differences is given by the standard expression

∇hPi+1/2 =
Pi+1 − Pi

δx
, (11)

where δx is the distance between two consecutive pressure nodes along the x-direction. This operator needs to be

modified across the interface in order to apply the Dirichlet’s boundary condition on the pressure at the interface

∇hPi+1/2 =
PI − Pi

δxI
(12)

where δxI is the distance between the pressure node under consideration and the interface along the x-direction, as

shown in figure 1, while PI is the pressure on the interface given by (10). In order to apply this modification both the

interface location and the local curvature κ are needed.

The curvature value is computed in all cut cells through the evaluation of the height function15, in a way similar

to that used in other codes, such as Gerris17. To determine the interface location and more specifically to calculate

the modified distance δxI , however, we have developed a new, original approach. In particular, we need to determine
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all liquid nodes for which the finite difference approximation of the pressure gradient needs to be modified. To this

aim we consider a topological approach, where all pressure nodes are labelled either as liquid or as gas. We then

consider any cell of the computational domain which is a liquid node. If one of the six neighbouring cells, sharing

a face with the given cell, is a gas node, we compute the modified distance along the coordinate direction to the gas

node. This distance is found by considering a VOF reconstruction in a staggered cell between the two pressure nodes

with a different label. On the left of figure 1 the 2D staggered cell is that comprised between the liquid node Pi and

the gas node Pi+1.

For the interface reconstruction it is necessary to compute the interface normal vector m and the planar interface is

then given by the expression11,22

m · x = mxx + myy + mzz = α (13)

where the plane constant α is directly related to the value of the colour function C. The VOF fraction in a staggered cell

is calculated from the existing reconstructions in the two consecutive liquid and gas cells, by adding the VOF fraction

of the two neighbouring half cells. The interface normal in the staggered cell is used by calculating a weighted average

of the normals in the liquid and gas cells in between which the modified distance, δxI is required.

m′ = ml
Cl

Cl +Cg
+ mg

Cg

Cl +Cg
, (14)

where m′, ml and mg are the respective interface normals in the staggered, liquid and gas cells. Cl and Cg are the

respective VOF fractions in the liquid and gas cells. Figure 2 illustrates the VOF reconstruction in a staggered cell in

Fig. 2. The modified finite difference lenghts are found by using a VOF reconstruction in staggered cells.

between the liquid-gas pressure node pair. In this example a liquid node has gas neighbours to the right and below.

3.2. Velocity extrapolation

In this section we discuss the treatment of the velocity at the interface. Since we are assuming a liquid phase

with no viscosity, the interface will always be shear free. However, in the numerical discretization of the advection

term in the momentum equation, u · ∇ u, we require up to two neighbouring velocity values to correctly calculate the

momentum contribution of the liquid velocity at the interface boundary. These additional points can be viewed as

ghost values which are required to implement the boundary condition. However, the momentum equation is neglected

inside the gas phase, therefore it is necessary to find these ghost velocities by extrapolating the velocity field computed

inside the liquid phase.

In the Marker-and-Cell (MAC) grid the velocity components are located on the cell faces, each component located

on the face with the normal parallel to the corresponding coordinate direction. Each velocity component is also

positioned between two consecutive pressure nodes. The same topological approach that was used for the pressure
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nodes is used for the velocity components, in particular to determine if that component is computed by the solution

of the momentum equation or found by an extrapolation. In this case, if a velocity component is on a cell face of

a liquid node, then it will be computed directly by solving the Euler equations. This is also true for the velocity

components lying between a liquid and a gas node, since in the projection method the modified pressure gradient of

equation (12) will be used in (6) to correct the provisional velocity. However, the velocity components in between

two gas pressure nodes are not directly computed and their value needs to be extrapolated from the neighbouring

resolved components. Figure 3 shows an image of a numerical grid with the position of the scalar variables and vector

components. The extrapolation is performed after the correction of the provisional velocity field, independently for

Fig. 3. The image shows the numerical grid in a 2D section of a bubble. The green line is the actual interface, calculated values of the pressure and

velocity components are represented by full markers, and extrapolated values by empty markers.

each scalar component. The extrapolation is first-order accurate and it is given by the average value of all closest

liquid neighbours. The procedure can be easily extended to second-order by using a least-square fit of neighbouring

velocities8.

Ensuring volume conservation

After the two layers of velocity components inside the gas phase have been computed by extrapolation, an ad-

ditional step is required to ensure that the extrapolated velocities are discretely divergence-free. This further step

is necessary,because the extrapolated velocities inside the gas phase near the interface are used to advect the inter-

face, as implied by 3. If these discrete velocities are not divergence-free, volume conservation will not be enforced.

The divergence-free condition is enforced by considering a second projection step, where only the first two layers of

cells inside the gas phase are involved, and all other cells remains unchanged. As in the projection step previously

illustrated, a “phantom” pressure is obtained in these two layers

∇h ·
(
∇hP̂

)
= ∇h · ũ , (15)

where P̂ is the phantom pressure and ũ the extrapolated velocity in the two layers inside the gas phase. This auxiliary

pressure field is only calculated to correct the divergence of the extrapolated velocity field. The extrapolated velocity

field is then corrected by the pressure gradient

ũn+1 = ũ − ∇hP̂ (16)
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4. Numerical tests

A classical test is to compare a simulation of a single gas bubble with a fixed liquid pressure at infinity to the

solution of the Rayleigh-Plesset equation23. This equation describes the evolution of a bubble of radius R in an

incompressible liquid, assuming spherical symmetry with a fixed pressure at infinity. Without viscosity, we have:

R̈R +
3

2
Ṙ2 =

PR − P∞
ρl

=
Pc − 2σ

R − P∞
ρl

(17)

with R the bubble radius, PR the pressure on the liquid side of the interface and P∞ the pressure at infinity. σ is the

surface tension and ρl the liquid density. A bubble of initial radius 0.10 is placed in a liquid with density 1.0 and a

surface tension of 0.10. The bubble’s reference pressure is 1.0 with an equilibrium radius of 0.09. We set the pressure

at infinity at 0.5. The bubble pressure, Pc is obtained from a polytropic gas law.

Pc = Peq

(
Req

R

)3γ

(18)

with Peq and Req the respective equilibrium pressure and radius of the bubble. γ is the isentropic gas coefficient. The

domain used for the simulation is a cube of size 1.0, with the bubble placed exactly at its center. In order to apply a

Dirichlet boundary condition for the pressure, we solve the Rayleigh-Plesset equation (17) numerically at every time

step in PARIS using a 5th order Runge-Kutta integration method. The result of this equation is used to determine the

pressure at a finite radius, r, which is used to set the pressure at the boundary.

P(r, t) = PR − ρl

⎛⎜⎜⎜⎜⎝ Ṙ2R4

2r4
− R̈R2 + 2RṘ2

r
+ R̈R +

3

2
Ṙ2

⎞⎟⎟⎟⎟⎠ (19)

Figure 4 shows a comparison between the results in PARIS and a numerical solution of the Rayleigh-Plesset equation.

A slight overestimation of the bubble growth is perceived, which is compounded over consecutive cycles. The general

Fig. 4. Comparison of results of a single oscillating gas bubble simulated by PARIS and the Rayleigh-Plesset equation.

comparison is good and encouraging for further bubble dynamics studies.
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5. Conclusion

A numerical method to study cavity and bubble dynamics has been presented. The pressure on the free surface is

set using a modified stencil with a sharp implementation for surface tension. The topological approach used makes

the code well-suited for large scale simulations of bubble clusters to obtain statistical representative results of bubble

interactions. Further investigation into different momentum advection schemes is ongoing. The effect of using a

second instead of first order velocity extrapolation will also be considered.
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