
HAL Id: hal-01160904
https://hal.sorbonne-universite.fr/hal-01160904v1

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Method for Parallel AES-GCM Cores Using
FPGAs

Karim Moussa Ali Abdellatif, Roselyne Chotin-Avot, Habib Mehrez

To cite this version:
Karim Moussa Ali Abdellatif, Roselyne Chotin-Avot, Habib Mehrez. Improved Method for Paral-
lel AES-GCM Cores Using FPGAs. ReConFig 2013 - International Conference on Reconfigurable
Computing and FPGAs, Dec 2013, Cancun, Mexico. pp.1-4, �10.1109/ReConFig.2013.6732299�. �hal-
01160904�

https://hal.sorbonne-universite.fr/hal-01160904v1
https://hal.archives-ouvertes.fr

Improved Method for Parallel AES-GCM Cores Using FPGAs

Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez
LIP6-SoC Laboratory, University of Paris VI, France

{karim.abdellatif, roselyne.chotin-avot, habib.mehrez}@lip6.fr

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ReConFig.2013.6732299

Abstract—This paper proposes an efficient method for imple-
menting parallel AES-GCM cores using FPGAs. The proposed
method improves the performance of the parallel architecture
(Throughput/Slice). Presented architectures can be used for
applications which require encryption and authentication with
slow changing keys like Virtual Private Networks (VPNs). Our
architectures were evaluated using Virtex5 FPGAs. It is shown
that the performance of the presented parallel AES-GCM
architecture outperforms the previously reported ones.

Keywords-Parallel AES-GCM, FPGAs

I. INTRODUCTION

AES-GCM [1] simultaneously provides confidentiality,
integrity and authenticity assurances on the data. It supports
not only high speed authenticated encryption but also pro-
tection against bit-flipping attacks. It can be implemented
in hardware to achieve high speeds with low cost and low
latency. Software implementations can achieve excellent per-
formance by using table-driven field operations. GCM was
designed to meet the need for an authenticated encryption
mode that can efficiently achieve speeds of 10 Gbps and
higher in hardware. It contains an AES engine in CTR mode
and a Galois Hash (GHASH) module.

It is well-suited for wireless, optical, and magnetic record-
ing systems due to its multi-Gbps authenticated encryption
speed, outstanding performance, minimal computational la-
tency as well as high intrinsic degree of pipelining and par-
allelism. New communication standards like IEEE 802.1ae
[2] and NIST 800-38D have considered employing GCM to
enhance their performance.

Although in ASIC technologies, several architectures of
the AES-GCM reaching the 100 Gbps throughput have been
demonstrated by [3], to the best of our knowledge no real
designs for field-programmable gate array (FPGA) devices
reaching the same performances have been so far presented.
Therefore, we present efficient method for implementing
parallel AES-GCM architectures by taking the advantage of
slow changing key applications.

Section II presents a background of AES-GCM. After
that, our proposed parallel AES-GCM is presented in Sec-
tion III. Then, we report our implementation results in
Section IV. Finally, Section V concludes our work.

II. RELATED WORK OF AES-GCM
As shown in Fig. 1, the GHASH function (authentication

part) is composed of chained GF(2128) multipliers and bit-

GF (2)
128

GF (2)
128

+

GF (2)
128

GF (2)
128

++HC[1] H H

C[2]

MAC

C[i]C[3]

H

Figure 1. GHASH operation

wise exclusive-OR (XOR) operations. Serial implementation
of GF(2128) multiplier performs the multiplication process
in 128 clock cycles. Parallel method can be implemented
like [4] and it takes only one clock cycle.

Karatsuba Ofman Algorithm (KOA) was used by [5] to
reduce the complexity (consumed area) of the GF(2128) mul-
tiplier. In order to reduce the data path of KOA multiplier,
pipelining concept was accomplished by [6]. Although the
use of pipelining concept for KOA decreases the data path
and increases the operating frequency, the number of clock
cycles to process a number of 128-bits is increased. This
is because the output is fed back and XORed to the next
input and there is a latency resulting from pipelining. An
example of this problem is shown in [6], their GF multiplier
achieves the multiplication of 8 frames of 128-bits in 19
clock cycles because of using the pipelining concept. Hence,
their throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128× (8/19) (1)

If H is fixed, the multiplier is called fixed operand GF(2128)
multiplier [7] which can be used efficiently (smaller area)
on FPGAs as the circuit is specialized for H and a new
reconfiguration is uploaded into the FPGA with the new
specialization in case of changing the key.

Two methods of pipelined AES (composite field and
BRAMs) were accomplished with KOA multiplier by [5]
using virtex4 FPGA. Zhou et al. [6] used three methods for
pipelined AES implementation (composite field, BRAMs,
and LUT) with pipelined KOA to increase the operating
frequency of the overall architecture. Henzen et al. [8]
proposed 4-parallel AES-GCM using pipelined KOA. Their
design achieved the authentication of 18 frames of 128-bits
in 11 clock cycles because of the latency resulting from the
pipelined KOA. As a result, their throughput is calculated

<http://dx.doi.org>

SubBytes

ShiftRows

MixColumns

Add Round Key

Round 1

Round 2

Round 10

Add Round Key
Precomputed K0

Precomputed K1

Precomputed K2

Precomputed K10

Ciphertext(C)

Plaintext

Synthesized Key

 AES

Plaintext

Ciphertext(C)

Figure 2. key-synthesized based AES

as follows:

Throughput(Mbps) = Fmax(MHz) × 128× (18/11) (2)

III. EFFICIENT PARALLEL AES-GCM FOR SLOW
CHANGING KEY APPLICATIONS USING FPGAS

Virtual Private Networks (VPNs) are widely employed
to connect private local area networks to remote locations.
VPNs use AES-GCM for encryption and authentication. In
this kind of networks, the secret key used for encryption and
authentication is changed weekly, monthly or yearly. Current
commercial security appliances of VPNs allow a throughput
from 40 to 60 Gbit/s [9],[10]. Another example of slow
changing keys application is embedded system memory
protection [11] which requires infrequent key changes over
weeks or months.

The previous applications are considered slow key chang-
ing applications. Therefore, implementing the key expansion
is particularly expensive in terms of hardware cost. The GF
multiplier used for authentication is a challenge because its
data path is longer than AES and pipelining method does
not solve this problem as described before.

AES has a key expansion or key schedule operation,
which takes the main key and derives from it subkeys
Kr (10, 12, and 14 for AES-128, AES-192, and AES-
256, respectively), where r denotes the corresponding round
number. For our case, we concentrate on AES-128.

In our hardware implementation, constant key special-
ization on the FPGA is used. The precomputed keys are
generated using a C code. After, these keys are synthesized
into the architecture of AES. As a result, the key expansion
scheme is reduced from the architecture of AES. As we
look for high speed architectures, subpipelining is used to
obtain high throughput. Fig. 2 shows synthesized key AES,
where all keys are precomputed and synthesized into the
architecture. As a result of using key-synthesized AES, the

+
H

C[i]

X[i] (MAC)

 GHASH

Figure 3. GHASH operation

operand H of the GHASH function is also fixed because it
is generated by applying the block cipher to the zero block.
Therefore, the proposed multiplier by [7] is suitable because
it is based on fixed operand multiplier.

In order to implement parallel architectures of AES-
GCM using key-synthesized method, parallel GHASHs must
be constructed to meet the requirement of key-synthesized
method (i.e, one of the two operands of every GHASH must
be fixed).

Previous parallel schemes of GHASH [3], [12], [7] are
not suitable because the two operands of every GHASH are
varied during the running time operation. As a result, their
architectures are not suitable for key-synthesized approach.
Therefore, constructing parallel GHASHs which have a fixed
operand for every GHASH multiplier is very important for
high speed applications.

Fig. 3 shows the GF(2128) multiplication between an H
value and a 128-bit input value C. GHASHH function for
block i is defined in Eq. 3.

Xi = (Ci ⊕Xi−1)×H (3)

In order to accomplish parallel architectures for higher
throughput, Eq. 3 is rewritten to fit the parallel scheme
as shown in Eq. 4. For every multiplier, there is a fixed
operand as shown in Fig. 4. For example, Multiplieri
has H as an operand, Multiplieri−1 has H2,, and
Multiplier1 has Hi .

Xi = (Ci ⊕Xi−1)×H
= (Ci ×H)⊕ (Xi−1 ×H)
= (Ci ×H)⊕ [(Ci−1 ⊕Xi−2)×H2]
= (Ci ×H)⊕ (Ci−1 ×H2)⊕ [(Ci−2 ⊕Xi−3)×H3]
= (Ci ×H)⊕ (Ci−1 ×H2)⊕ (Ci−2 ×H3)
⊕[(Ci−3 ⊕Xi−4)×H4]
= ((Ci ×H)︸ ︷︷ ︸⊕ (Ci−1 ×H2)︸ ︷︷ ︸⊕ (Ci−2 ×H3)︸ ︷︷ ︸
⊕ (Ci−3 ×H4)︸ ︷︷ ︸⊕ (C2 ×Hi−1)︸ ︷︷ ︸⊕ (C1 ×Hi)︸ ︷︷ ︸

(4)

Table I
HARDWARE COMPARISON

FPGA type Design Key SubBytes Slices BRAM Max-Freq Thr. Thr./Slice
MHz Gbit/s Mbps/Slice

This work Virtex5 AES-GCM ◦ LUT 3211 0 216.3 27.7 8.62
This work Virtex5 4-parallel AES-GCM ◦ LUT 12152 0 200 102.4 8.42

[6] Virtex5 AES-GCM • LUT 4628 41 324 17.5 3.77
[8] Virtex5 4-parallel AES-GCM • LUT 14799 0 233 48.8 3.29

+

+

C
1

H H H HH C C CC
i i−1 i−2 2

2 3 i−1 i

MAC

 GHASH GHASH GHASH GHASH GHASH

Figure 4. Proposed parallel GHASH with fixed operand during running
time operation

+

Key Synthesized

 AES

CounterCounter

2

 GHASH

 H synthesized H synthesized

 GHASH

3
 H synthesized

 GHASH

 H synthesized

 GHASH

4

+

Key Synthesized

 AES

Plaintext
+

Key Synthesized

 AES

Plaintext
+

Key Synthesized

 AES

Plaintext

+

+

 +1CounterCounter +2+3 +4

MAC

 4
 3 2 Plaintext 1

Ciphertext 4(C) Ciphertext 3(C) Ciphertext 2(C) Ciphertext 1(C)

Figure 5. Presented 4-parallel AES-GCM using key-synthesized method

Unlike previous work, this method makes the parallel
architecture of GHASH suitable for key-synthesized method
as the values Hi, Hi−1, H get synthesized into the
architecture of the parallel GHASH.

After solving the problem of parallel GHASHs using key-
synthesized method, these parallel multipliers are combined
with parallel AES cores to perform parallel AES-GCM. Fig.
5 shows an example of 4-parallel AES-GCM architecture
using key-synthesized method. For parallel pipelined AES,

the round keys are precomputed and synthesized into the
architecture. In terms of parallel GHASH, the used operands
(H, H2, H3, H4) are also precomputed and synthesized into
the architecture.

VPNs infrastructure [9] can benefit from our key-
synthesized parallel AES-GCM due to the nature of slow
changing key operation.

IV. HARDWARE COMPARISON

We coded two architectures (AES-GCM and 4-
parallel AES-GCM) in VHDL and targeted to Virtex5
(XC5VLX220). ModelSim 6.5c was used for simulation.
Xilinx Synthesize Technology (XST) is used to perform the
synthesize and ISE9.2 was adopted to run the Place And
Route (PAR).

Table I shows the hardware comparison between our
results and previous work. Note the filled dots in the
”Key” column. Key is synthesized into the architecture when
denoted by ◦, otherwise, the key schedule is implemented
when denoted by •.

The LUT approach for SubBytes is especially interesting
on Virtex5 devices because 6-input Look-Up-Tables (LUT)
combined with multiplexors allow an efficient implementa-
tion of the AES SubBytes stage. Therefore, we implemented
the SubBytes of AES using LUT approach because the final
target is Virtex5. On Virtex5 platform, our key-synthesized
based AES-GCM core reaches the throughput of 27.7 Gbps
with the area consumption of 3211 slices. By comparing our
results of AES-GCM to the previous work, the comparison
shows that our performance (Thr. /Slice) is better than [6].
The operating frequency presented by [6] is better than ours
because they used pipelined KOA but the overall throughput
is lower than ours because their GHASH achieves the
multiplication of 8 frames of 128-bits in 19 clock cycles.
Therefore, their throughput is calculated as described in Eq.
1.

A 4-parallel AES-GCM module operates at 200 MHz on
Virtex-5. In total, it consumes 12152 Slices. This imple-
mentation achieves throughput that reaches to 102.4 Gbps.
Henzen et al. [8] proposed 4-parallel AES-GCM using
pipelined KOA. Their design achieves the authentication of
18 frames of 128-bits in 11 clock cycles because of the
latency resulting from the pipelined KOA. As a result, their
throughput is calculated as described in Eq. 2.

It is clear that our work outperforms the previously
reported ones. Therefore, proposed architectures can be used

efficiently for slow changing key applications like VPNs and
embedded memory protection.

V. CONCLUSION

In this paper, we presented the performance improvement
for implementing parallel AES-GCM cores using FPGAs.
We integrated this solution by solving the complexity of
the GHASH calculation (Eq. 4). With our proposed parallel
AES-GCM, every multiplier has a fixed operand. There-
fore, our parallel AES-GCM is suitable for key-synthesized
method. Our comparison to previous work reveals that our
architectures are more performance-efficient (Thr./Slice).

ACKNOWLEDGMENT

This work is a part of the project Robust FPGA ANR 11
INS-02, funded by The French National Research Agency,
The Pole Systematic and The Pole Minalogic.

REFERENCES

[1] D. McGrew and J. Viega, “The Security and Performance of the
Galois/Counter Mode (GCM) of Operation,” Progress in Cryptology-
INDOCRYPT 2004, pp. 377–413, 2005.

[2] “IEEE Standard for Local and metropolitan area networks–Media Ac-
cess Control (MAC) Security Amendment 1: Galois Counter Mode–
Advanced Encryption Standard– 256 (GCM-AES-256) Cipher Suite,”
IEEE.

[3] A. Satoh, T. Sugawara, and T. Aoki, “High-Speed Pipelined Hardware
Architecture for Galois Counter Mode,” Information Security, pp.
118–129, 2007.

[4] A. Satoh, “High-Speed Hardware Architectures for Authenticated
Encryption Mode GCM,” Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on, pp. 4–pp, 2006.

[5] G. Zhou, H. Michalik, and L. Hinsenkamp, “Efficient and High-
Throughput Implementations of AES-GCM on FPGAs,” International
Conference on Field-Programmable Technology (FPT), pp. 185–192,
2007.

[6] G. Zhou and H. Michalik, “Improving Throughput of AES-GCM
with Pipelined Karatsuba Multipliers on FPGAs,” Reconfigurable
Computing: Architectures, Tools and Applications, pp. 193–203, 2009.

[7] J. Crenne, P. Cotret, G. Gogniat, R. Tessier, and J. Diguet, “Efficient
Key-Dependent Message Authentication in Reconfigurable Hard-
ware,” International Conference on Field-Programmable Technology
(FPT), pp. 1–6, 2011.

[8] L. Henzen and W. Fichtner, “FPGA Parallel-Pipelined AES-GCM
Core for 100G Ethernet Applications,” Proceedings of the ESSCIRC,
pp. 202–205, 2010.

[9] C. Corporation, “Cisco ASA 5500 Series Adap-
tive Security Appliances,” 2011. [Online]. Avail-
able: http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/
\ps6094/ps6120/prod-brochure0900aecd80285492.pdf

[10] Stonesoft, “Security Engine Firewall/VPN,” 2011. [On-
line]. Available: http://www.stonesoft.com/export/download/pdf/
datasheet-stonesoft-3206.pdf

[11] R. Vaslin, G. Gogniat, J. Diguet, R. Tessier, D. Unnikrishnan, and
K. Gaj, “Memory Security Management for Reconfigurable Embed-
ded Systems,” International Conference on ICECE Technology, pp.
153–160, 2008.

[12] J. Wang, G. Shou, Y. Hu, and Z. Guo, “High-Speed Architectures
for GHASH Based on Efficient Bit-parallel Multipliers,” IEEE Inter-
national Conference on Wireless Communications, Networking and
Information Security (WCNIS), pp. 582–586, 2010.

http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/\ps6094/ps6120/prod-brochure0900aecd80285492.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/\ps6094/ps6120/prod-brochure0900aecd80285492.pdf
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf

	Introduction
	Related Work of AES-GCM
	Efficient Parallel AES-GCM for Slow Changing Key Applications Using FPGAs
	Hardware comparison
	Conclusion
	References

