
HAL Id: hal-01162011
https://hal.sorbonne-universite.fr/hal-01162011

Submitted on 9 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improve defect tolerance in a cluster of a SRAM-based
Mesh of Cluster FPGA using hardware redundancy

Adrien Blanchardon, Roselyne Chotin-Avot, Habib Mehrez, Emna Amouri

To cite this version:
Adrien Blanchardon, Roselyne Chotin-Avot, Habib Mehrez, Emna Amouri. Improve defect tolerance
in a cluster of a SRAM-based Mesh of Cluster FPGA using hardware redundancy. FPL 2014 - 24th
International Conference on Field Programmable Logic and Applications, Sep 2014, Munich, Germany.
pp.1-4, �10.1109/FPL.2014.6927389�. �hal-01162011�

https://hal.sorbonne-universite.fr/hal-01162011
https://hal.archives-ouvertes.fr

Improve defect tolerance in a cluster of a
SRAM-based Mesh of Cluster FPGA using hardware

redundancy

Adrien Blanchardon1,2, Roselyne Chotin-Avot1,2, Habib Mehrez1,2 , Emna Amouri1,2,3
1- Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

2- CNRS, UMR 7606, LIP6, F-75005, Paris, France
3- Institut TELECOM, TELECOM ParisTech, Paris, France

Email: adrien.blanchardon@lip6.fr

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/FPL.2014.6927389

Abstract—The technological evolution involves a higher num-
ber of physical defects in circuits after manufacturing. One of the
future challenge is to find a way to use a maximum of defected
manufactured circuits. In this paper, multiple techniques are
proposed to avoid defects in the cluster local interconnect of a
SRAM-based Mesh of Clusters FPGA. Using defect tolerance,
area and timing metrics, two previous hardware redundancy
strategies are evaluated on the Mesh of Clusters architecture
: Fine Grain Redundancy (FGR) and Improved Fine Grain
Redundancy (IFGR). We show that using these techniques on
a cluster of a Mesh of Clusters architecture permits to tolerate
8 times more defects than on an industrial Mesh FPGA with a
low area overhead (-6% for FGR and 22% for IFGR) and a low
increase of Critical Path Delay (CPD)(6% for FGR and 2% for
IFGR). We also proposed three new redundancy strategies using
spare resources : Distributed Feedbacks (DF) for crossbar down,
Adapted Fine Grain Redundancy (AFGR) to avoid defective
multiplexers and Upward Redundant Multiplexer (URM) for
the crossbar up. Compared to the Mesh of Clusters architecture
without defect tolerance techniques, the best trade off between
defect tolerance (36.4%), area overhead (11.56%) and CPD
(+7.46%) is obtained using AFGR. Using the other methods
permits to considerably limit the area overhead (10.4% with
URM) with a lesser number of defective elements bypassed (18%
max).

I. INTRODUCTION

According to the Moore’s law, the transistor density inte-
gration doubles every 18 months. However, this technological
evolution involves a higher number of physical defects after
manufacturing circuit. Thereby, circuits based on nanotechnol-
ogy may have a defect rates of 20% [1] [2]. As manufacturing
yield decreases, one of the future challenges is to find solutions
to use defect manufactured circuits [3] [4]. Compared to
ASICs, FPGAs become the perfect target architecture due
to their ability to integrate more complex applications, their
flexibility and good performance. Propose techniques to bypass
these defects in FPGAs is necessary. These techniques can be
classified in 2 categories :

• Software-based techniques : these techniques use con-
figuration tools to avoid defective resources [5] [6]
[7] [8]. However, their efficiency rely on their ability
to bypass the defects and on the number of unused
resources.

• Hardware-based techniques : extra hardware resources
are added in the architecture. Correcting a defect
consists in bypassing the defective element by the
added one [9] [10] [11]. These techniques can easily
be implemented in FPGA but increase the area.

A Fine Grain Redundancy technique (FGR) was introduced
in [12] and suggests to add two levels of multiplexers in a
Mesh FPGA interconnect. Output multiplexers (OMUX) are
used for defect avoidance and input (IMUX) multiplexer for
signal restoration. IMUX and OMUX allow signals to route
around defective resources (Fig.1). This approach can tolerate
defects in the switch boxes and in the wiring.

Fig. 1: FGR in mesh FPGA interconnect [12]

In this paper, we present different hardware-based tech-
niques to prevent defects in FPGAs and we discuss their
performance. The remainder of the paper is organized as
follows. Section II presents the cluster architecture of a Mesh
of Clusters FPGA. Section III describes all hardware-based
techniques adapted and proposed on the cluster and their im-
plications on the architecture. Simulation results for routability,
defect tolerance, area and timing are presented in section IV.
Finally, section V concludes this paper.

II. CLUSTER ARCHITECTURE

The interconnection architecture is one of the major re-
search topics in FPGA design since it occupies up to 90% of
the total area and is responsible of large part of the circuit
delay [13] [14]. To reduce these costs, the authors proposed in

<http://dx.doi.org>

[13] a Mesh of Clusters architecture to reduce the total area by
42% compared to the VPR Style Clustered Mesh. The cluster
architecture considered in this paper is presented by Fig.2.

L
o
ca

l
In

te
rc

o
n
n
ec

t

CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB

N N N N

NN inout

clb clb clb clb

downdown

crossbar crossbar

down

crossbar

down

crossbar

crossbar

up

Fig. 2: Initial cluster

III. HARDENING THE CLUSTER

The next paragraphs review different hardware-based tech-
niques and their implications on the cluster’s architecture to
increase defect tolerance. Each technique is based on hardware
redundancy by adding multiplexers in the local interconnect.
To bypass a defect, its location inside the cluster is needed
to configure the application. This is done with a map of all
defected multiplexers after test and diagnostic [11].

A. Fine Grain Redundancy in a Mesh of Clusters architecture

In the initial cluster architecture, if a signal is routed by
a defective multiplexer in a crossbar, the connection between
this signal and its corresponding target is not possible. The
presented techniques permit to solve this problem.

1) Classic Fine Grain Redundancy (FGR): this technique
introduced in [12] was proposed to avoid defects in connection
box of an industrial mesh architecture. Applying this technique
to the cluster’s local interconnects in a Mesh of Clusters
architecture consists in adding four levels of mux2 in each
crossbar: two levels of IMUX are added to avoid the defect by
shifting the signal to the nearest multiplexer, and two levels of
OMUX are used to restore the signal. Fig.3 presents a crossbar
architecture hardened with the FGR technique.

2) Improved Fine Grain Redundancy (IFGR): FGR tech-
nique is useless if the nearest multiplexer is already use by
another inputs. The IFGR was proposed in [15] to avoid this
kind of conflicts. This solution doubles the number of outputs
per Mux (Fig.3) that allows to use the second output in case
of defect on the other one.

B. Proposed techniques

1) Adapted Fine Grain Redundancy (AFGR): Adding 2
levels of IMUX and OMUX on each crossbar has a significant
impact on the area of the cluster. To reduce this impact, we
propose a new technique called AFGR. With FGR technique,
hardware redundancy is applied inside each crossbar(Fig.3).
A defective multiplexer can be replaced by another inside the
same crossbar down using the IMUX level. With AFGR, the

mux2 mux2 mux2 mux2 mux2 mux2 mux2 mux2 mux2

mux2 mux2 mux2 mux2 mux2 mux2 mux2 mux2 mux2

mux2

mux2

O4 O5 O6 O7 O8 O9O3O2O1O0

Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux

mux2 mux2 mux2 mux2 mux2 mux2 mux2

mux2 mux2 mux2 mux2 mux2 mux2 mux2

mux2

mux2

mux2

mux2

C
ro

s
s
b
a
r

w
it

h
 F

G
R

IO I1 I2 I3 I4 I5 I6 I7 I8

IM
U

X
C

ro
s
s
b
a
r

O
M

U
X

Fig. 3: crossbar with FGR

IMUX level is common to all crossbars down (illustrated in
Fig.4), thus a defective multiplexer can be bypassed inside
the same crossbar or inside its neighbor. Therefore extra
connections between each crossbar are available, that also
increases the possibilities to route the same signal. To reduce
the area overhead, the OMUX level is removed. In this case,
as with FGR technique, a defective output cannot be restored
if the nearest multiplexer is already use by another input. But
with Mesh of Clusters architecture, as all crossbar down are
connected to all CLBs, then a crossbar’s output can be lost
without performance degradation.

N

CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB

N N N

idcN

oucN

odc odc odc odc

mux2 mux2 mux2 mux2 mux2 mux2 mux2 mux2

mux2mux2mux2mux2mux2mux2mux2mux2A
F
G
R

URM

D
F

crossbar

up

crossbar

down

crossbar

down

crossbar

down

crossbar

down

Fig. 4: Cluster with AFGR, DF and URM

2) Distributed Feedbacks (DF) [11]: In the initial cluster
architecture, all crossbars up outputs are connected as feedback
to crossbars down. Each feedback is connected to only one
crossbar down. If a feedback signal is routed by a defective
multiplexer in a crossbar down, the connection is not possible
and the cluster is useless. To avoid defective multiplexers,
we propose a new technique (DF). Each feedback is now
connected to all crossbar down (as shown in Fig.4 with
bold red lines). The defective connection can be bypassed by
another one in another crossbar down.

3) Upward Redundant Multiplexer (URM): In the initial
cluster architecture, crossbar up connects CLBs outputs to

Hardware
redundancy technique

number of defective multiplexer
bypassed in the cluster

Number of mux2 increase in FPGA (% of
mux2 added Max) Critical Path Delay

Min Max UMSB DMSB UMSB+DMSB Min Avg Max

FGR 41 (7%) 214 (36.4%) +4% +14% +18% +14.9% +29.7% +44.6%

IFGR / 428 (72%) +12% +48% +60% +14.9% +29.7% +44.6%

AFGR 41 (7%) 214 (36.4%) +2% +4.5% +6.5% -11% +7.46% +40%

DF 24 (4%) 312 (50%) / +35% +35% -13% -10% +12%

URM 9 (1.5%) 108 (18%) +10.4% / +10.4% +0.28% +1% +3.6%

TABLE I: FGR, IFGR, Adapted FGR, DF and URM performance

cluster outputs and to crossbars down with the feedbacks. If
the crossbar up is defective, all cluster outputs are lost. So
we propose a new technique (URM) to increase the defect
tolerance of the crossbar up. A multiplexer is added in parallel
to the crossbar up (illustrated in Fig.4). Each black dots on
cluster’s outputs in Fig.4 represents an additional mux2 and
allows to choose between the crossbar up or the URM output.
This technique require as many extra URM as Mux we want
to bypass in the crossbar up. Its main advantage is that we
can add as many URM as number of tolerated defect desired.
That permits a good trade-off between tolerated defect and
area overhead.

IV. EXPERIMENTAL EVALUATIONS

In this section, our objective consists in evaluating the im-
pact of the aforementioned techniques on the defect tolerance,
area and timing of the cluster.

A. Methodology

For each 20 MCNC benchmark [16], we determine the
smallest architecture in terms of logic blocks number, to place
and route all applications on Mesh of Clusters architecture.
Then, defects are randomly injected on multiplexers in cluster
local interconnects to make the application not routable. A
defect is modeled by undefined value (stuck-open) at the
multiplexer output that makes the multiplexer unusable. This
number of defective multiplexers corresponds to the defect
tolerance of each technique. The number of mux2 added
with each technique is compared to initial architecture to
measure the area increase. Finally, the Critical Path Delay
(CPD) of the application is determined for each technique
and compared to the initial architecture. Simulations are done
for an FPGA with a channel width of 36, a cluster with
10 CLBs, 4 inputs per CLB, 4 crossbars down, 24 inputs
(6 per crossbar down), 12 outputs and three feedbacks per
crossbar down (12 feedbacks in all). This cluster architecture
correspond to the minimal architecture to place and route each
benchmark with 10 CLBs per cluster. Each crossbar down
is composed by ten 9:1 multiplexers and the crossbar up is
composed by twelve 10:1 multiplexers. For all simulations,
we considered that all extra multiplexers and the cluster inputs
are fault-free. Configuration memory is protected against the
defect by using error detection/correction codes [17] [18]. The
design under study are the cluster architecture enriched with
all the aforementioned techniques : FGR, IFGR, AFGR, DF
and URM. Each technique is applied first only on the crossbars
down, then only on the crossbar up and finally on all crossbars.

B. Defect tolerance, area and timing results

The table I presents the performance of the different
techniques in term of tolerance, area and timing. The best
solutions to bypass a high number of mux2 is for IFGR and
DF techniques (respectively 72% and 50%). But using these
methods, a lot of the multiplexers are added and that increases
the FPGA area (respectively +60% and +35%). On the contrary
with FGR, AFGR and URM, the impact on the area is reduced
(respectively +18%, +6.5% and +10.4%) but the number
of defective elements bypassed is also reduced (respectively
36.4%, 36.4% and 18%). In conclusion, each technique has an
advantage in term of area or defect tolerance. With Mesh of
Clusters architecture, it’s possible to fix a trade-off in term of
area and defect tolerance and apply one technique only on a
crossbar (down or up) to limit the area increase or combine
several techniques to avoid maximum defects. For the Critical
Path Delay, each proposed methods (AFGR, URM, DF) reduce
the CPD compared to FGR and IFGR because the hardware
redundancy is not applied on the total cluster architecture. DF
is the best solution (-13%) because new paths are added to the
cluster that replace defective elements to limit the impact on
the Critical Path Delay.

C. Mesh vs Mesh of Clusters architecture

In this paragraph, we compared the FPGA yield to the
number of defect (Fig.5) and timing (Fig.6) for industrial mesh
FPGA [12] [19] and all presented techniques on a 36x36
Mesh of Clusters architecture. This correspond to the smallest
architecture to place and route all MCNC benchmarks. The
yield represents the FPGA functionality after manufacturing.
We can note that for all presented techniques applied on a
Mesh of Clusters architecture the FPGA functionality can be
maintained (yield = 1) with more than 100 defect compared
to FGR, IFGR and CGR applied on a mesh-based industrial
FGPA interconnect [9] [12] [19]. We can also compare all tech-
niques applied on Mesh of Clusters architecture. Best results
are obtained using IFGR and DF because the yield is perfect
until 428 defects. Finally, the yield decreases with respectively
a number of defect tolerated of 214 for FGR and AFGR and
108 for URM. Fig.6, shows the impact of each method on
the Critical Path Delay when hardware redundancy is applied.
Each method applied on Mesh of Clusters architecture has a
lesser impact on the CPD compared to industrial mesh. DF is
the best solution (-10%) because new paths are added to the
cluster that replace defective elements to limit the impact on
the Critical Path Delay.

0

0,2

0,4

0,6

0,8

1

1 10 100 1000

Y
ie

ld

Number of defects (log scale)

Apex
redundancy(CGR)
(32x32)
Apex redundancy
(CGR)(256x256)

FGR mesh(32x32)

FGR
mesh(256x256)

FGR Mesh of
Clusters(36x36)

IFGR Mesh of
Clusters(36x36)

AFGR Mesh of
Clusters(36x36)

DF Mesh of
Clusters(36x36)

URM Mesh of
Clusters(36x36)

Fig. 5: Impact on FPGA yield

-15

-10

-5

0

5

10

15

20

25

30

A
p

ex R
ed

u
n

d
an

cy (C
G

R
)

FG
R

 m
esh

IFG
R

 M
esh

FG
R

 M
esh

 o
f C

lu
sters

IFG
R

 M
esh

 o
f C

lu
sters

A
FG

R

D
F

U
R

M
 A

vg
 F

P
G

A
 d

e
la

y
in

cr
e

as
e

 (
%

)

Fig. 6: Impact on Critical Path Delay

V. CONCLUSION AND FUTURE WORK

In this paper, we adapted two hardware redundancy tech-
niques used for industrial mesh-based FPGA (FGR and IFGR)
to the Mesh of Clusters topology. These techniques permit to
tolerate more defects than in a mesh architecture. After new
defect tolerant techniques are applied in the cluster of a Mesh
of Clusters FPGA. Each method uses hardware redundancy
in the cluster local interconnect. However our investigation
indicates that the choice of defect tolerant technique has a
significant impact on area and Critical Path Delay. With AFGR,
we obtain the best trade off between the number of defects
bypassed (36.4%), the FPGA area overhead (6.5%) and Critical
Path Delay (7.46%). For future works, it will be interesting to
mix all these techniques to obtain the best trade off between
defect tolerance, area and timing. Then these techniques will be
applied to the other element of the Mesh of Cluster FPGA, the
Switch-Box to confirm their good performance to the complete
FPGA.

ACKNOWLEDGMENT

This work is a part of the project Robust FPGA ANR 11
INS-02, funded by The French National Research Agency, The
Pole Systematic and The Pole Minalogic.

REFERENCES

[1] H. Naeimi and A. DeHon. ”a greedy algorithm for tolerating defective
crosspoints in nanopla design”. In FPT, 2004.

[2] N.Campregher, P.Y.K Cheung, and M.Vasilko. ”analysis of yield loss
due to random photolithographic defects in the interconnect structure
of fpgas”. In FPGA, pages 138-148, February 2005.

[3] A. Mukherjee R. Jain and K.Paul. ”defect-aware design paradigm for
reconfigurable architecture”. In Emergecing VLSI Technologies and
architecures, 2006, IEEE, Computer Society Annual Symposium on vol.
00, 2006, pp. 6pp.-.

[4] H. Goel and D. Dance. ”yield enhancement challenges for 90 nm and
beyond”. In Advanced Semiconductor Manufacturing Conference and
Workshop, 2003 IEEEI/SEMI, 2003, pp. 262-265.

[5] Vijay Lakamraju and Russell Tessier. ”tolerating operational faults in
cluster-based fpgas”. In Int l Symp. on FPGAs, 2000, pp. 187-194.

[6] Satoshi Kaneko, Abderrahim Doumar, and Hideo Ito. ”defect and fault
tolerance fpgas by shifting the configuration data”. In Int l Symp.
on Defect and Fault-Tolerance, 1999. IEEE Computer Society, 1999,
pp.377-385.

[7] San Jose CA Xilinx. ”easypath solutions”. In http://www.xilinx.com/
products/easypath/, 2005.

[8] R. Rubin and A.Dehon. ”choose-your-own-adventure routing:
Lightweight load-time defect avoidance”. In presented at TRETS, 2011,
pp.33-33.

[9] Altera Corporation. ”apex redundancy”. In
http://www.altera.com/products /devices/apex/features/apx-redundancy,
2005.

[10] John D. Corbett Xilinx. ”the xilinx isola-
tion design flow for fault-tolerant systems”. In
http://www.xilinx.com/support/documentation/white papers
/wp412 IDF for Fault Tolerant, 2012.

[11] A. Ben Dhia, S. Ur Rehman, A. Blanchardon, L. Naviner, M. Benab-
denbi, R. Chotin-Avot, H. Mehrez, E. Amouri, and Z. Marrakchi. ”a
defect-tolerant cluster in a mesh sram-based fpga”. In in FPT, Kyoto,
Japan, pp. 434-437 (2013).

[12] Anthony J. Yu and Guy G.F. Lemieux. ”fpga defect tolerance: Impact
of granularity”. In the International Conference on Field Programmable
Technology, 2005.

[13] E. Amouri, A. Blanchardon, R. Chotin-Avot, H. Mehrez, and Z. Mar-
rakchi. ”efficient multilevel interconnect topology for cluster-based
mesh fpga architecture”. In International Conference on ReConFig-
urable Computing and FPGAs, 2013.

[14] Z. Marrakchi, H. Mrabet, and H. Mehrez. ”optimized local interconnect
for cluster-based mesh fpga architecture”. In in Microelectronics, 2008.
ICM 2008. International Conference on, dec. 2008, pp. 15 18.

[15] Anthony J. Yu and Guy G.F. Lemieux. ”defect tolerant fpga switch
block and connection block with fine grain redundancy for yield
enhancement”. In the International Conference on Field Programmable
Logic and Application, 2005.

[16] Lgsynth93 benchmark set: Version 4.0. In Technical report, Collabo-
rative Benchmarking Laboratory, 1993.

[17] C. Slayman. ”cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations”. In Device
and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, sept.
2005.

[18] F. Monteiro, S. Piestrak, H. Jaber, and A. Dandache. ”fault-secure
interface between fault-tolerant ram and transmission channel using sys-
tematic cyclic codes”. In On-Line Testing Symposium, 2007. IOLTS07.
13th IEEE International, July 2007, pp. 199-200.

[19] Anthony J. Yu and Guy G.F. Lemieux. ”defect tolerant fpga switch
block and connection block with fine-grain redundancy for yield en-
hancement”. In the International Conference on Field Programmable
Logic, 2005.

	Introduction
	Cluster architecture
	Hardening the cluster
	Fine Grain Redundancy in a Mesh of Clusters architecture
	Classic Fine Grain Redundancy (FGR)
	Improved Fine Grain Redundancy (IFGR)

	Proposed techniques
	Adapted Fine Grain Redundancy (AFGR)
	Distributed Feedbacks (DF)ref17
	Upward Redundant Multiplexer (URM)

	Experimental evaluations
	Methodology
	Defect tolerance, area and timing results
	Mesh vs Mesh of Clusters architecture

	Conclusion and future work
	References

