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Abstract—As device sizes shrink, circuits are increasingly
prone to manufacturing defects. One of the future challenges
is to find a way to use a maximum of defected manufactured
circuits. One possible approach to this growing problem is to
add redundancy to propose defect-tolerant architectures. But,
hardware redundancy increases area. In this paper, we propose
a method to determine the most critical elements in a SRAM-
based Mesh of Clusters FPGA and different strategies to locally
insert hardware redundancy. Depending on the criticality, using
defect tolerance, area and timing metrics, five different strategies
are evaluated on the Mesh of Clusters architecture. We show
that using these techniques on a Mesh of Clusters architecture
permits to tolerate 4 times more defects than classic hardware
redundancy techniques applied on industrial mesh FPGA. With
local strategies, we obtain a best trade off between the number
of defects bypassed (37.95%), the FPGA area overhead (21.84%)
and the critical path delay increase (9.65%).

I. INTRODUCTION

The increase of integration density according to Moore’s
law is being slowed due to economic and physical limits. As
manufacturing yield decreases, one of the future challenges
is to find a way to use a maximum of manufactured circuits
tolerating physical defects all over the chip [1] [2]. Compared
to ASICs, FPGAs have attained a central focus due to their
ability to integrate more complex applications, their flexibility
and good performance. Considering that FPGAs based on
nanotechnology may have a defect rate of 20% [3] [4],
propose techniques to avoid these defects is necessary. Several
studies examined the effect of redundancy techniques on the
performance of FPGAs. These techniques can be classified
into software-based and hardware-based techniques. Software-
based techniques avoid defective resources using configuration
tools [5] [6] [7] [8]. However, their efficiency relies on the
ability of the tools to take into account the defects and the
number of unused resources. Hardware-based techniques use
spared resources in the architecture. Correct a defect is to
bypass the defective element by the added one [9] [10] [11].
Hardware-based techniques can be implemented in FPGAs to
increase their reliability. The studies in [12] and [13] showed
that using hardware redundancy on the top level of the FPGA
requires more area to tolerate the same number of defects
than a hardware redundancy applied inside local interconnect.
As theses techniques increase significantly the FPGA area, it
is therefore necessary to apply a local redundancy inside the
FPGA depending on the criticality of each block. The focus of

this paper is to present a method to determine the criticality of
each block and to apply different local hardware-based tech-
niques to prevent defects without much decrease performance.
The remainder of the paper is organized as follows. Section II
describes the architecture of the FPGA under study. Section III
presents different defect-tolerant schemes applied at different
levels in the FPGA. Section IV details the proposed method
to determine the criticality of each block. Simulation results
are presented in section V. Finally, section VI concludes this
paper.

II. FPGA ARCHITECTURE

In FPGAs, the interconnect takes up 90% of the total area
and is responsible of a large part of the circuit delay [14] [15].
To reduce these costs, we propose in [14] a Mesh of Clusters
architecture (Fig.1). With this kind of architecture based on
clustering, the total area can be reduced by 42% compared to
the VPR Style clustered Mesh.
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Fig. 1: Mesh of Cluster architecture

This architecture contains clusters placed into a regular 2-
dimensional grid. Each cluster (Fig.2) contains Configurable
Logic Blocks(CLBs) and Mini Switch Box (MSB) to connect
them. Each Downward Mini Switch Box (DMSB) is used
to connect all cluster’s inputs to the CLB’s inputs while the
Upward Mini Switch Box (UMSB) connects all CLB’s outputs
to the cluster’s outputs. All UMSBs outputs are also connected
to the DMSBs as feedbacks to reuse CLB’s outputs and

<http://dx.doi.org>


connect CLBs together. This cluster architecture is generic, the
number of inputs/outputs of a cluster is chosen in agreement
with the Rent parameter [16].
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Fig. 2: Initial cluster

A Switch Box (Sbox)(Fig.3) is composed of UMSBs
and DMSBs placed on 2 hierarchical levels (DMSB1 and
DMSB2). Each DMSB2 is used to connect Sboxs together and
to connect all Sbox’s inputs on DMSB1. Furthermore, DMSB1
has outputs connected to the adjacent clusters (Fig.1). Finally,
UMSB connects adjacent cluster outputs to the DMSB1 and
DMSB2. Thus, each cluster is connected to adjacent cluster
and to adjacent Sbox. This Sbox architecture is generic,
each MSB is composed of multiplexers N :1 (Mux) and each
multiplexer is composed of multiplexers 2:1 (mux2). There are
as many multiplexers (Mux) as MSB’s outputs.
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III. HARDENING THE FPGA

The next paragraphs review how to adapt for the Sbox the
different hardware-based techniques introduced in [17] which
are based on hardware redundancy on MSB. To bypass a
defect, its location is needed to configure the application. This
is done with a map of all defected multiplexers after test and
diagnosis [11].

A. Hardware redundancy in Mesh of Clusters architecture

In a Mesh of Clusters architecture, if a signal is routed
by a defective multiplexer in a MSB, the connection between
this signal and its corresponding target is not possible. The
presented techniques permit to solve this problem. To adapt
the Fine Grain Redundancy technique (FGR) [12] for the Sbox
of a Mesh of Clusters architecture, four levels of multiplexers
(Mux) are added around all the MSB of the Sbox. As the
FGR technique is useless if the nearest multiplexer is already

used by another input, the Improved Fine Grain Redundancy
(IFGR) was proposed in [18] to avoid this kind of conflicts.
This solution doubles the number of outputs per multiplexer
that allows to use the second output in case of defect on the
other one. Then, several techniques were proposed in [17] to
improve defect tolerance of the cluster : Adapted Fine Grain
redundancy (AFGR), Distributed Feedbacks (DF) [11] and
Upward Redundant Multiplexer (URM). These techniques can
also be applied on the Sbox (Fig.4).
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Fig. 4: Sbox with AFGR, DF and URM [17]

The technique called AFGR was proposed to reduce the
impact of FGR and IFGR techniques on the FPGA area. This
technique consists in removing one of the output multiplexer
level to reduce the area overhead and makes the input multi-
plexer level common to all DMSBs (Fig.4 shows AFGR on
DMSB1). With the technique called Distributed Feedbacks
(DF), one or more feedbacks are connected to all DMSBs
(as shown in Fig.4 with red bold lines). The technique called
Upward Redundant Multiplexers (URM) permits to increase
the defect tolerance of UMSBs by adding a multiplexer in
parallel to the UMSB (illustrated in Fig.4).

IV. CRITICALITY

Our aim is to measure the impact of each aforementioned
technique on the criticality of the different blocks inside the
FPGA.

A. Definition

The FPGA can be modeled using a graph G = (N,A) such
that :

1) all multiplexers inside the clusters and Sboxs represent
the set of nodes N of the graph G.

2) all signals connecting multiplexers represent the set of
arcs A such as (x, y) ∈ A.

Each cluster and Sbox can be modeled using sub-graphs
for DMSBs and UMSBs (illustrated Fig.5 for the cluster). The
representation is the same for the Sbox. The criticality C of
each node inside the cluster depends on the number of CLBs
connected to this node compared to the number of existing
paths to through it.
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Fig. 5: Cluster’s nodes

We denote C ⊂ N the set of multiplexers inside the cluster
and Dc ⊂ C (resp Uc ⊂ C) the set of multiplexers inside
DMSB (resp. UMSB). Then we have :

∀x ∈ Dc, C(x) = 1

d+(x) ∗ d−(x)
(1)

∀x ∈ Uc, C(x) = Nclb

d+(x) ∗ d−(x)
(2)

where Nclb represents the number of CLBs per cluster, d+ the
number of outputs of this node and d− the number of inputs.
In a cluster of a Mesh of Clusters FPGA, we have :
∀x ∈ Dc and ∀ y ∈ Uc, d−(x) > d−(y), Nin > Nclb, then
C(x) < C(y).
Similarly, the criticality of each node inside the Sbox depends
on the number of inputs/outputs per Sbox compared to the
number of existing paths to through it. We denote S ⊂ N
the set of multiplexers inside the Sbox and D1s ⊂ S (resp.
D2s ⊂ S and Us ⊂ S) the set of multiplexers inside the MSBs
(resp. DMSB1, DMSB2 and UMSB2). Then we have :

∀x ∈ D2s, C(x) = Nout/CWin

d+(x) ∗ d−(x)
(3)

∀x ∈ D1s, C(x) = Nout/Nin

d+(x) ∗ d−(x)
(4)

∀x ∈ Us, C(x) = Nin −Nout

d+(x) ∗ d−(x)
(5)

where Nin and Nout represents the number of in-
puts/outputs per cluster and CWin the channel width. In a
Sbox of a Mesh of Clusters FPGA, we have :
∀x ∈ Ds and ∀ y ∈ Us, Nin − Nout > Nout/Nin,
Nin−Nout > Nout/NCWin, d+(x)∗d−(x) > d+(y)∗d−(y),
then C(x) < C(y).
We can conclude that multiplexers in UMSB are more critical
than in DMSB.

B. Impact of redundancy on criticality

1) Classic Fine Grain Redundancy (FGR): With FGR
(Fig.6a), the number of outputs per nodes inside DMSB and
UMSB increases. In fact, each node can connect all inputs to
3 times more outputs. Then we have :

∀x ∈ N, CFGR(x) =
C(x)
3

(6)
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Fig. 6: MSB with FGR and IFGR

2) Improved Fine Grain Redundancy (IFGR): To adapt
this technique to the Sbox and cluster architecture, the mul-
tiplexer’s outputs inside each MSB are doubled (illustrated in
Fig.6b). If the number of outputs per node inside MSBs is
doubled, the criticality of each node is divided by 2 compared
to FGR.

∀x ∈ N, CIFGR(x) =
CFGR(x)

2
=
C(x)
6

(7)

3) Adapted Fine Grain Redundancy (AFGR): With AFGR,
the number of inputs per node inside MSBs increases (Fig.7).
In fact, each node can use 2 extra inputs from its neighbor.
The criticality of each node with AFGR becomes :

∀x ∈ N, CAFGR(x) =
C(x)

(d−(x) + 2)/d−(x)
(8)
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Hardware redundancy
technique Sbox criticality Cluster criticality

Mu Md1 Md2 Mu Md

Without redundancy 1(ref) 0.086(ref) 0.033(ref) 1(ref) 0.1(ref)

FGR 0.33(-67%) 0.028(-67%) 0.011(-67%) 0.33(-67%) 0.033(-67%)

IFGR 0.16(-84%) 0.014(-84%) 0.0053(-84%) 0.16(-84%) 0.016(-84%)

AFGR 0.83 (-17%) 0.071(-17%) 0.027(-17%) 0.83 (-17%) 0.083(-17%)

DF 1 (-0%) 0.046(-47%) 0.017 (-47%) 1 (-0%) 0.053 (-47%)

URM 0.01 (-90%) 0.086(-0%) 0.033(-0%) 0.01 (-90%) 0.1 (-0%)

TABLE I: Impact on criticality

4) Distributed Feedbacks (DF): With this technique, the
number of inputs per DMSB and per node inside DMSBs
increases (Fig.8). The criticality of each node depends on the
number of Distributed Feedbacks added (Ndf ).

∀x ∈ Dc ∪D1s ∪D2s, CDF (x) =
C(x)

(d−(x) +Ndf )/d−(x)
(9)
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Fig. 8: Cluster with DF

5) Upward Redundant Multiplexer (URM): URM tech-
nique is applied only on the UMSB and has an impact on the
criticality of each node inside UMSB (Fig.9). The criticality
of each node depends on the number of URM (Nurm) added
to the UMSB architecture.

∀x ∈ Uc ∪ Us, CURM (x) =
C(x)

1 +NURM
(10)

C. Conclusion

In this section, the impact of each technique on the
criticality is calculated for a FPGA with a channel width
CWin = CWout = 36, a cluster with Nclb = 10, Nin = 24,
Nout = 12 and 4 inputs per CLB. Table I presents the
criticality value using all aforementioned equation depending
on the considering node and redundancy technique. In this
table, a 1 represents a highly critical block and a 0 a not
critical block. Table I shows that without redundancy the
most critical blocks are the multiplexers inside UMSBs, then
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Fig. 9: Cluster with URM

the multiplexers inside the cluster’s DMSBs. Finally, IFGR
technique has the best impact on the DMSB multiplexer
criticality (-84%) and URM on the UMSB multiplexer (-90%).

V. EXPERIMENTAL EVALUATIONS

In this section, our objective consists in evaluating the
impact of different Local Redundancy Strategy (LRS) on the
defect tolerance, area and timing of the FPGA depending on
the criticality of the elements of the FPGA. Table I shows that
multiplexers inside cluster’s DMSB and multiplexers inside
UMSBs are the most critical elements inside a Mesh of
Clusters FPGA. IFGR has the best impact on the criticality
but the area highly increases [17]. To reduce the area overhead
others techniques (FGR, DF and AFGR) with a lowest impact
on criticality are used on DMSB. Table II shows 5 different
strategies studied in the experiments.

Local
Redundancy

Strategies
FGR IFGR AFGR DF URM

LRS1 X X

LRS2 X X

LRS3 X X

LRS4 X X

LRS5 X X

TABLE II: Local Redundancy Strategies



Hardware
redundancy
technique

Number of defective multiplexer bypassed in the
FPGA

FPGA area
overhead

Avg Critical Path
Delay overhead

Min Max

FGR 44(4.24%) 502(48.36%) +64.6% +29.7%

IFGR / 878(84.58%) +150% +29.7%

AFGR 41(7%) 502(48.36%) +30% +7.46%

DF 24(4%) 600(57.8%) +112% -10%

URM 9(1.5%) 180(17.34%) +17.34% +1%

LRS1 12(1.15%) 492(47.39%) +52.34% -7.81%

LRS2 12(1.15%) 394(37.95%) +21.84% +9.65%

LRS3 180(17.34%) 394(37.95%) +20.9% +22.36%

LRS4 180(17.34%) 492(47.39%) +51.4% +6.16%

LRS5 12(1.15%) 394(37.95%) +31.34% +17.09%

TABLE III: Local redundancy techniques performance

A. Methodology
For each 20 MCNC benchmark [19], we determine the

smallest architecture in terms of logic blocks number, to
place and route all applications. For all simulations, this
architecture correspond to a 36x36 FPGA with a channel width
of 36, a cluster with 10 CLBs, 24 inputs (6 per crossbar
down), 12 outputs. This cluster architecture correspond to the
minimal architecture to place and route each benchmark with
10 CLBs per cluster. Then, defects are randomly injected on
multiplexers in the FPGA interconnect to make the application
not routable. A defect is modeled by undefined value (stuck-
open) at the multiplexer output that makes the multiplexer
unusable. This number of defective multiplexers corresponds
to the defect tolerance of each technique. The number of mux2
added with each technique is compared to initial architecture
to evaluate the area increase. Finally, the Critical Path Delay
(CPD) of the application is determined for each technique
and compared to the initial architecture. For all simulations,
we considered that all clusters and Sbox inputs are fault-
free. Configuration memory is protected against the defect by
using error detection/correction codes [20] [21]. The design
under study are the FPGA architecture enriched with all
aforementioned strategies : LRS1, LRS2, LRS3, LRS4 and
LRS5.

B. Defect tolerance, area and timing results
Table III presents the performance of the different tech-

niques in term of tolerance, area and timing. DF, FGR, IFGR,
AFGR and URM techniques add extra multiplexers inside all
MSBs of the FPGA compared to Local Redundant Strategy
(LRS). In fact, with LRS the redundancy is only applied on
the most critical elements of the Sbox and cluster. Compared
to hardware redundancy techniques, LRS reduces the defect
tolerance (-18.65% avg) but the area and the CPD are also
reduced (resp -52.58% and -18% avg). We can show that
LRS1 and LRS4 techniques permits to bypass a high number
of mux2 (47.39%) with a FPGA area overhead of about +52%.

On the contrary with LRS2, LRS3 and LRS5, the impact
on the area overhead is reduced (resp. +21.84%, +20.9%
and +31.34%) with a less number of multiplexers bypassed
(37.95%). In conclusion, using local hardware redundancy on
the most critical blocks inside the FPGA permits to tolerate
lot of defects with an area overhead reduced compared to an
hardware redundancy applied on all the FPGA. For the Critical
Path Delay, LRS1 is the best solution (-7.81%) because new
paths are added to the cluster that replace defective elements
to limit the impact on the Critical Path Delay. Finally, the best
trade off is for LRS2 with 37.95% of multiplexers bypassed,
an area overhead of +21.84% and an increase of Critical Path
Delay of +9.65%.

C. Mesh vs Mesh of Clusters Architecture
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Fig. 10: Impact on FPGA yield

In this paragraph, we compared the FPGA yield to the
number of defects (Fig.10) and timing (Fig.11) for industrial
mesh FPGA [12] [13] with different redundancy techniques
(FGR, IFGR) and all presented techniques on our Mesh of
Clusters architecture using local redundancy strategies (LRS1,
LRS2, LRS3, LRS4 and LRS5). The yield represents the



FPGA functionality after manufacturing. It shows that all tech-
niques using local redundancy applied on a Mesh of Clusters
architecture permits to tolerate around 4 times more defects
than FGR,IFGR, CGR applied on a mesh-based industrial
FGPA interconnect [12] [13] [9]. We can also compare all
techniques using local redundancy applied on Mesh of Clusters
architecture. Best results are obtained using LRS1 and LRS4
with around 492 defects tolerated. Finally, LRS2, LRS3 and
LRS5 have the same impact with 394 defects tolerated. Fig.11,
shows the impact of each method on the average Critical
Path Delay overhead when local hardware redundancy is
applied. Each proposed methods (LRS1, LRS2, LRS3, LRS4
and LRS5) reduce the CPD overhead compared to FGR and
IFGR because, the hardware redundancy is not applied on
the total FPGA architecture to limit the area overhead. As
mentioned before LRS1 is the best solution (-7.81%). Finally,
LRS permits the designer to fix a trade off between area, defect
tolerance or delay.
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Fig. 11: Impact on Critical Path Delay

VI. CONCLUSION AND FUTURE WORK

In this paper, we determined the most critical blocks inside
the FPGA to applied different local hardware redundancy
strategies to the Mesh of Clusters topology. It permits to
tolerate 4 times more defects than a classic hardware re-
dundancy applied in a mesh architecture. Each method uses
hardware redundancy in the FPGA local interconnect. How-
ever our investigation indicates that the choice of defect
tolerant techniques has a significant impact on area and critical
path delay. With these strategies, we obtain the best trade
off between the number of defects bypassed (37.95%), the
FPGA area overhead (21.84%) and critical path delay (9.65%).
Furthermore, with our techniques the designer can choose his
trade off between area, defect tolerance or delay. For future
works, it will be interesting to study the impact of Coarse
Grain Redundancy techniques.
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