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Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated
with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular
and molecular mechanisms involved in this process are not completely understood. A hallmark of cel-
lular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a
decreased quality of the cellular proteome that could directly impact on normal cellular functions. Al-
though increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein
targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better
understand the mechanisms by which these damaged proteins build up and potentially affect muscle
function, proteins targeted by these modifications have been identified in human rectus abdominis
muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based
proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein
spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young coun-
terparts. These proteins are involved in key cellular functions such as cellular morphology and transport,
muscle contraction and energy metabolism. Importantly, impairment of these pathways has been de-
scribed in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxi-
dation may therefore impact directly on the above-mentioned pathways, hence contributing to the
generation of the sarcopenic phenotype.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Skeletal muscles require dynamic changes in energy supply and
oxygen flux for contraction, making it prone to reactive oxygen
species (ROS)-mediated damage as a result of an increase in
electron flux and leakage from the mitochondrial respiratory
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chain. Although physiological concentrations of ROS can function
as signaling molecules that regulate proliferation, growth, differ-
entiation, and apoptosis [1], when ROS levels overcome the ca-
pacity of cellular antioxidant systems, they become toxic, in-
troducing oxidative modifications on cellular macromolecules
such as nucleic acids, lipids and, in particular, proteins, inflicting
alterations to normal cellular functions. In skeletal muscle, oxi-
dative stress state has negative consequences on action-potential
conduction, excitation–contraction coupling, satellite cell differ-
entiation, muscle contraction and mitochondrial respiration [2].

Skeletal muscle ageing is associated with the gradual degen-
erative loss of skeletal muscle mass, quality, and strength, a con-
dition known as sarcopenia. Oxidative stress contribute at least in
part to muscle atrophy [3–6], and previous studies have addressed
the extent of protein oxidative damage in the development of
sarcopenia in mammalian models [7–10]. Although it is believed
that oxidative stress contributes to skeletal muscle dysfunction
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Characteristics of the samples biopsies.

Sample no Donor age
(years)

Wet weight (mg) Protein recovery ratio (w/w in %)a

1 0 24.00 7.0
2 1 20.80 4.3
3 5 20.00 7.6
4 9 17.00 9.3
5 6.5 15.00 7.1
6 10.75 21.90 7.6
7 12 22.00 9.1
8 7.1 22.00 9.7
9 76 20.30 9.5
10 70 18.00 8.3
11 74 19.10 7.8
12 66 19.60 8.0
13 74 19.20 8.4
14 65 18.66 5.2
15 65 18.78 6.6
16 71 24.00 10.8
17 12 20.00 15.6
18 3 20.50 3.6
19 9 20.38 11.0
20 56 20.47 7.4
21 61 20.53 17.1
22 52 20.13 27.2

a Protein recovery ratio corresponds to the protein amount in mass / biopsy
mass.
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through macromolecular damage, the molecular mechanisms re-
main elusive. Protein post-translational modifications induced by
ROS are important features of oxidative stress [11]. Among them,
protein carbonyl content is by far the most commonly used marker
of protein oxidation [12,13]. In fact, protein carbonylation occurs
when proteins directly react with ROS, leading to the formation
carbonyl groups (aldehydes and ketones) for instance on such
amino acids side chains as arginine, lysine, threonine and proline.
Introduction of carbonyl groups on proteins can also occur through
the reaction of aldehydic products of lipid peroxidation and of
dicarbonyl compounds upon glycation and glycoxidation. Since it
often leads to a loss of protein function and an increased ther-
mosensitivity or hydrophobicity of the targeted protein [14,15],
protein carbonylation has been considered as an indicator of
protein damage.

In human skeletal muscle, preliminary studies on vastus later-
alis and external intercostal muscles have shown increased accu-
mulation of protein carbonyls during ageing [16–19]. However, in
most cases, the protein targets of these oxidative damages and
their functional consequences have not been identified. Indeed,
this is an essential step to get a complete view of protein oxidative
modifications and to understand the mechanisms by which these
oxidized proteins potentially contribute to muscle weakness and
dysfunction during ageing.

Therefore, proteomic studies, including the analysis of protein
abundance as well as protein carbonylation are expected to pro-
vide valuable information to unravel the key molecular pathways
implicated. In fact, proteomics and in particular bi-dimensional
(2D) gels represent appropriate tools for the detection and iden-
tification of specific carbonylated proteins in a complex mixture
[2,13,20]. The identification of such oxidatively modified proteins
(i.e. the oxi-proteome components), can give some insights into
the mechanisms by which these damaged proteins accumulate
and potentially affect cellular and/or tissular function during
ageing or in disease conditions [21]. In this paper, the occurrence
and characterization of carbonylated proteins was studied in hu-
man rectus abdominis muscle obtained from young and old healthy
donors. Although no significant differences in global protein car-
bonylation was observed at the proteome level, we have used 2D
gel electrophoresis based proteomic approaches to improve the
resolution of individual proteins for the quantitative analysis of
their carbonylation status and further identification of these major
skeletal muscle proteins that are targeted by oxidative damage
during human rectus abdominis skeletal muscle ageing.
Material and methods

Human biopsies

Human rectus abdominis muscle biopsies were obtained during
surgery. Each biopsy used has the written consent of the volunteer
donor. A total of 22 human muscle biopsies were used: 11 from
healthy men individuals between 0 to 12 years old (named young
samples) and 11 from healthy men individuals between 52 and
76 years old (named old samples) (Table 1). All muscle biopsies
had an initial wet weight between 15 and 24 mg (Table 1). The
study was approved by the Ethical Committee at the Uppsala
University Hospital.

Protein extraction for proteomics analyses

Proteins extracts from skeletal muscle biopsies were obtained
by physical disruption of the sample biopsies using a ULTRA-
TURRAXs T25 (IKAs) at 4 °C in a lysis buffer containing 10 mM
Tris–HCl (pH 7.4), 8 M urea, 2 M thiourea, 4% CHAPS and 20 mM
DTT. After incubation on ice for 20 min, soluble proteins were
recovered after clarification by centrifugation for 40 min at
21,000 g. Proteins were further precipitated using the 2D clean-up
kit (GE Healthcare) and the resulting pellet was re-suspended into
the same lysis buffer. Protein concentrations were determined by
the Bradford Method [22] using the Bio-Rad Protein Kit Assay (Bio-
Rad).

Protein carbonyl immunodetection after derivatization with DNPH

Carbonylated proteins were derivatized with 2,4-dini-
trophenylhydrazine (DNPH) to form 2–4-dinitrophenylhydrazone
(DNP) proteins adducts [23]. For total carbonyl quantification,
equal quantities of proteins were loaded and separated by SDS-
PAGE 12% (v/v). Chemicals for SDS-PAGE were purchased from Bio-
Rad. All other chemicals were of analytical grade and obtained
from Sigma-Aldrich. For the detection of carbonylated proteins,
gels were electrotransferred onto Hybond-C nitrocellulose mem-
branes (GE Healthcare) and incubated with anti-DNP antibodies
(1:5000, Sigma-Aldrich). Carbonylated proteins were revealed by a
fluorescent anti-rabbit IgG 800CW (1:15,000) polyclonal antibody
(LI-COR). Densitometry analyses were performed using NIH ImageJ
software and the data are expressed as % volume in pixels.

For 2D gel electrophoresis, derivatization of proteins carbonyls
was achieved on IPG strips after isoelectric focusing (IEF), with a
10 mM DNPH, 2 M HCl solution at room temperature (RT) as de-
scribed previously [24]. 500 mg of protein were diluted on a re-
hydratation buffer (7 M urea, 2 M thiourea, 1% Amberlite, 4%
CHAPS, 1.2% Destreak (GE Healthcare), 0.5% Pharmalyte pH 3–10
(GE Healthcare)) and loaded into 13 cm IPG strips pH 3–10 NL (GE
Healthcare). Gel rehydration of the IPG strips was done overnight
at RT in an Immobiline DryStrip rewelling tray. IEF was performed
using an Ettan™ IPGphor™ 3 Isoelectric Focusing System (GE
Healthcare) at 20 °C using the following electrical profile: step,
150 V for 11 h; grad, 1000 V for 3 h; grad, 8000 V for 2 h; step,
8000 V for 1 h. Neutralization step after derivatization with DNPH
was performed with 2 M Trizma-Base containing 30% of glycerol
(GE Healthcare). Before SDS-PAGE, all IPG strips were equilibrated
with a 6 M urea, 10% SDS and 30% Glycerol (GE Healthcare), 0.5 M
Tris–HCl (pH 8.8) solution for 2 steps of 15 min: the first one with
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equilibration solution containing 1% DTT and the second with
equilibration solution containing 3% iodoacetamide. SDS-PAGE
was carried out using the Protean II system (Bio-Rad). For each
sample, two 12% (v/v) polyacrylamide gels were performed in
parallel: one for total protein stains with Coomassie Brilliant Blue
G-250 (Bio-Rad) for further mass spectrometry analysis; and the
other with derivatized protein residues for electrotransfer onto
nitrocellulose membranes, where total amount of proteins were
stained by a Fast Green solution (Sigma-Aldrich) prior to anti-
bodies incubation for loading control. Membranes were then
blocked with Odyssey blocking buffer (LI-COR) overnight at 4 °C.
Primary anti-DNP antibodies (1:5000, Sigma-Aldrich) were in-
cubated for 1 h at RT. Revelation was done by a fluorescent anti-
rabbit IgG 800CW (1:15,000) polyclonal antibody (LI-COR).
Washing steps were done with a PBS/0.1% Tween solution. Car-
bonylated proteins were revealed by the Odyssey Infrared Imaging
System (LI-COR).
Fig. 1. Analysis of total carbonylated proteins of human rectus abdominis muscle biopsies
electrophoresis. Protein carbonyl were detected byWestern-blotting against protein-DNP
protein profiles stained with colloidal Coomassie brilliant blue G after 1D gel electro
quantitative assessment of modified proteins was done using total protein staining for no
difference was found between the young and old groups.
Proteomics data acquisition and analysis

Spot detection and quantification were carried out using the
image Master 2D Platinum 7 software (GE Healthcare). For com-
parison, we used the data expressed as spot % volume (%vol) in
pixels, which corresponds to a normalized value of the spot vo-
lume by considering the total volume of all the spots present in the
membrane [25]. To take into account the total amount of loaded
protein in each IPG strip, we defined a %vol per carbonylated spot
(N%vol) by normalizing the %vol of each anti-DNP incubated
membrane with its corresponding %vol on the Fast Green-sta-
tioned membrane. The relative modification index ratio (RMI ratio)
was obtained by dividing the N%vol of the old group of samples by
the N%vol of the young one.

In-gel digestion and mass spectrometry

Spots of interest were manually excised from Coomassie Blue
stained 12% (v/v) polyacrylamide gels and were automatically in-
. (A) Carbonylated protein profiles from young and old human biopsies after 1D gel
derivatives and monitored by fluorescent secondary antibody hybridation. (B) Total

phoresis. (C) Densitometric analysis of carbonylated protein western-blots. Semi-
rmalization. Relative values are expressed as mean7S.D. (n¼11) and no significant
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gel digested by trypsin [26] using a robot Freedom EVO 100 di-
gester/spotter robot (Tecan). Resulted peptides were then desalted
for mass spectrometry (MS/MS) analysis. Results obtained were
subjected to a search on the SwissProt database using the MASCOT
software (Matrix Science Ltd., London, UK). The software compares
the MASCOT peptide sequences derived from spectra with those in
libraries for protein identification. Search parameters were as
follows: database, SwissProt; taxonomy, all entries or mammalian;
enzyme, trypsin; allow up to one missed cleavage; fixed mod-
ifications, none; variable modifications, methionine oxidation;
peptide mass tolerance, 70 ppm; and fragment mass tolerance,
500 ppm.
Results and discussion

Initial screening looking at changes at the global proteome le-
vel of carbonylated proteins was performed after derivatization of
protein carbonyls with DNPH followed by immunodetection of
DNP protein adducts after SDS-PAGE (Fig. 1A). Densitometry ana-
lysis was performed and normalized by total protein content for
each sample (Fig. 1B and C). No significant differences at the global
level in protein carbonyl content was detected between groups, in
agreement with what was previously reported by Marzani et al.
who did not find a statistical difference on protein carbonyl con-
tent during ageing in both rectus abdominis and vastus lateralis
human muscles [18]. More recently, Fanò et al., using skeletal
muscle biopsy samples obtained from vastus lateralis, found that
protein carbonyls, showed a significant increase during ageing.
However, this difference was not significant after splitting by
gender [27]. Importantly, immunodetection of carbonylated pro-
teins after one-dimensional (1D) electrophoresis separation has
Fig. 2. Oxi-proteome analysis of young and old human skeletal muscle samples. Protei
separated by 2D gel electrophoresis. After the second dimension, gels were electrotrans
derivatized carbonylated proteins (left panels). Densitometry analysis was done by imag
loading control.
serious limitations for the resolution of single protein bands and
can provide only restricted information.

To further analyze the occurrence of protein carbonylation at
the single protein level, 2D gel electrophoresis separation of pro-
tein extracts was performed prior to immunodetection of carbo-
nylated proteins. 2D gels are very appropriate to investigate pro-
tein isoforms since many post-translational modifications (such as
carbonylation of arginine or lysine residues) often leads to changes
in the isoelectric point of proteins, and thus shift the position of
the protein in 2D gels. After electrotransfer onto nitrocellulose
membranes total protein profiles were obtained by fast-green
staining (Fig. 2). All the analyzed samples displayed a similar
protein migration pattern, suggesting no drastic shifts in the
protein profiles at the expression level (Fig. 2, right panels) be-
tween the two experimental groups. Immunodetection of carbo-
nylated proteins was performed after their derivatization by DNPH
as described in Material and methods. Interestingly, the pattern of
the modified proteins was not superimposable with the pattern
obtained for the total protein staining, indicating that certain
proteins represent preferential targets for these deleterious oxi-
dative modifications. Several proteins of high molecular weight
were found preferentially carbonylated (Fig. 2, left panel) while
certain proteins with an isoelectric point higher than 5, also ap-
peared to be preferentially carbonylated.

A relative modification index (RMI) per spot was calculated in
order to evidence differentially carbonylated proteins between the
two experimental groups taking into account their protein ex-
pression levels. Seventeen protein spots exhibited an RMI ratio
consistently higher than 1.3 (increasingly carbonylated) in all
biopsies from the aged group as compared with the young one. On
the other hand, fourteen protein spots showed decreased carbo-
nylation in the old group (RMIo0.7). Protein spots evidenced as
n extracts from young (n¼3) and old (n¼3) human skeletal muscle biopsies were
ferred onto nitrocellulose membranes for subsequent immune detection of DPNH-
e Master 2D software (GE Healthcare) using total protein staining (right panels) as



Fig. 3. Coomassie blue staining of one representative 2D gel. The numbers and
positions of the 17 selected spots identified by MS/MS correspond to those found as
consistently increased on the old group (RMI41.3).
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increasingly carbonylated were excised from Coomassie Blue
stained 2D gels (Fig. 3) and analyzed by MS/MS for protein iden-
tification. Protein spots that were identified in the aged group are
listed in Table 2. Among the identified proteins, 8 are muscle
specific, 4 are ubiquitous in different tissues and organ systems,
and 2 proteins belong from plasma (Table 2).

The identified skeletal muscle proteins were then analyzed and
grouped by metabolic pathways and cellular functions. Major
biological functions include muscle contraction, energy transduc-
tion and energy metabolism (Fig. 4). Among proteins involved in
muscle contraction, we have found that myosin 7, troponin T,
myosin-binding protein C (MyBPC), and LIM domain-binding
protein 3 (ZASP) are increasingly carbonylated in aged muscle.
Interestingly, the decreased speed of contraction observed in old
age at both the muscle and motor protein levels is a hallmark of
skeletal muscle ageing [28–31]. Myosin is a highly conserved
protein that converts chemical energy into mechanical force and a
key protein for muscle contraction. Previous studies have shown
increased glycation of myosin in both fiber types of aged rats [32].
In addition, the carbonylated residues have been identified [33].
Interactions of myosin with cytoskeletal proteins such as titin,
myomesin/M protein and MyBPC play an important role in thick
filaments physiology. MyBPC contributes to the assembly and
stabilization of thick filaments and modulates the formation of
actomyosin cross-bridges, via direct interactions with both thick
myosin and thin actin filaments [34,35]. The importance of MyBPC
to muscle contraction is further emphasized by the discovery that
mutations in genes encoding MyBPC cause myopathies in both
skeletal [36,37] and cardiac muscles [38–40]. Increased oxidation
of MyBPC, together with the previously reported age-dependent
decrease of myosin isoforms and regulatory proteins like myosin
binding proteins C and H [41–44], may contribute to the destabi-
lization of muscle fibers. In addition, perturbations in the thin
sarcomere fillaments of muscle fibers have also been associated
with differently expression of actin and its regulatory proteins
such as troponin and tropomyosin [42,43,45,46]. Here we found
increased carbonylation levels of troponin T in the elderly. Tro-
ponin inhibits the actomyosin Mg2þ-ATPase and the Ca2þ release
from the sarcoplasmic reticulum inducing a change in the tropo-
nin–tropomyosin conformation that exposes myosin binding sites
on the actin filament and activates the myosin ATPase, thereby
allowing muscle contraction [47,48]. Since muscle contraction
depends on myofibrillar thin filament interactions [49], the oxi-
dative damage to these proteins may well compromise this in-
teraction and hence muscle contraction.

The motor functions of striated muscle crucially depend on the
highly ordered arrays of thick myosin and thin actin filaments in
sarcomeres. Although its detailed role has not been elucidated yet,
the LIM domain-binding protein 3 (ZASP), found as increasingly
carbonylated in aged rectus abdominis muscle, functions as an
adapter to couple protein kinase C-mediated signaling to the cy-
toskeleton and to maintain Z-disc stability as well as cytoskeletal
ultrastructure during contraction. Accumulation of this protein in
its oxidized form may lead to protein aggregates formation and
myofibril disintegration that may result in muscle weakness.

Muscle contraction depends also in high-energy fluxes where
creatine kinase plays a central role. During muscle contraction,
myosin hydrolyzes ATP into ADP upon filament sliding. The re-
newal of ATP is achieved mainly by the phosphocreatine–creatine
kinase (PCr–CK) system. Among the creatine kinase (CK) iso-
enzymes, the muscle-type CK (MM-CK) specifically binds to the
myofibril M-line and is associated with the action-activated
myosin ATPase as an intramyofibrillar ATP regenerator [50–52].
Since this MM-CK was found irreversibly oxidized in old rectus
abdominis muscle, this could alter muscle metabolism and com-
promise muscle contraction in the elderly. Besides the PCr–CK
system, the glycolytic network and its closer interaction between
mitochondria and organelles also provide energy within muscle
cells [53]. In this study, 3 glycolytic enzymes appear as highly
carbonylated in old slow oxidative skeletal rectus abdominis mus-
cle: the fructose-bisphosphate aldolase A, the glycerol-3-phos-
phate dehydrogenase (GPD1) and the glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (Table 2). Interestingly, several of these
enzymes involved in anaerobic metabolism have been found de-
creased with age in murine and human skeletal muscle [54,55].

Although slow skeletal muscles uses mainly oxidative mi-
tochondrial processes to generate the levels of ATP needed to
maintain contractile activity for long time without showing fatigue
[53], they also rely in glycolysis for their energy production [56].
For this reason, muscle metabolism and contraction in aged ske-
letal muscle would be affected by irreversible carbonylation on
glycolytic proteins, as previously reported in certain diseases when
these glycolytic enzymes are not functional [57–62]. Defects in the
muscle form of glycogen phosphorylase, another protein found
increased carbonylated in old rectus abdominis muscle, are in-
volved in type 5 glycogen storage disease, also known as McArdle
disease, a myopathy also characterized by exercise intolerance,
such as easy fatigability, muscle cramps and contractures as well
as muscle weakness [63,64]. Intramuscular glycogen acts as a
readily available source of glucose-6-phosphate for glycolysis
within skeletal muscle and glycogen phosphorylase catalyses the
rate-limiting step in glycogenolysis [65]. Therefore, a deficiency in
glycogen phosphorylase may result in the inability to mobilize
muscle glycogen during anaerobic metabolism [66].

Although it is well recognized that ageing causes changes in the
proteome, the nature and targets of these changes, their con-
sequences on skeletal muscle function and how they may con-
tribute to sarcopenia have not yet been completely elucidated. Our
results suggest that oxidative stress during skeletal muscle ageing
targets the contractile machinery, but also structural and reg-
ulatory proteins. In addition, the main mechanism of energy pro-
duction, the phosphocreatine kinase system was affected by



Table 2
Localization of carbonylated proteins identified from old skeletal muscle biopsies.

Protein name and localization Swiss-Prot ac-
cession no

Protein
spot noa

Mascot
scoreb

Sequence cov-
erage (%)

No. of sequenced
peptides

Theoretical protein
mass (kDa)

Theoretical
PI

RMI
ratioc

Ubiquitous proteins:
Collagen alpha-1(VI) chain CO6A1_HUMAN 1 205 7 5 108 5.3 4.34
Heat shock cognate 71 kDa protein HSP7C_HUMAN 5 256 15 5 71 5.4 1.63
Glycerol-3-phosphate dehydrogenase
[NADþ], cytoplasmic (GPD1)

GPDA_HUMAN 13 214 22 4 38 5.8 1.52

Glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH)

G3P_HUMAN 14 243 12 3 36 8.6 1.67

Glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH)

G3P_HUMAN 15 424 25 5 36 8.6 1.68

Voltage-dependent anion-selective chan-
nel protein 1

VDAC1_HUMAN 16 685 39 8 31 8.6 1.88

Muscle specific proteins:
Myosin-binding protein C, slow-type
(MyBPC)

MYPC1_HUMAN 2 119 3 3 128 5.8 1.54

Glycogen phosphorylase, muscle form PYGM_HUMAN 3 882 22 13 97 6.6 1.67
Myosin-7 MYH7_HUMAN 7 63 – 1 223 5.6 3.12
Creatine kinase M-type KCRM_HUMAN 8 206 9 3 43 6.8 1.44
Creatine kinase M-type KCRM_HUMAN 9 416 20 6 43 6.8 1.54
Fructose-bisphosphate aldolase A ALDOA_HUMAN 10 611 31 7 39 8.3 1.65
Troponin T, slow skeletal muscle TNNT1_HUMAN 11 512 22 6 33 5.9 1.87
Troponin T, slow skeletal muscle TNNT1_HUMAN 12 244 22 5 33 5.9 1.42
LIM domain-binding protein 3 (ZASP) LDB3_HUMAN 17 206 8 4 77 8.5 1.70

Plasma proteins:
Serotransferrin TRFE_HUMAN 4 399 17 10 77 6.8 1.31
Serum albumin ALBU_HUMAN 6 986 29 13 69 5.9 1.33

Spots of interest were identified by MALDI-TO–FTOF-MS as described under Material and methods. For each spot, different parameters clarifying protein identification by MS
are indicated.

a Protein spot number refers to the numbered spots in Fig. 3.
b Mascot protein scores greater than 56 are significant (Po0.05).
c RMI ratio represents the Relative Modification Index ratio.

Fig. 4. Functional grouping of muscle proteins increasingly oxidized with age. Increasingly oxidized muscle-specific proteins identified in aged rectus abdominis biopsies
were grouped in three functional categories: muscle contraction, energy metabolism and energy transduction.
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carbonylation in the elderly while other energetic metabolic
pathways such as glycolysis appear to be also affected. Finally, the
heat shock 70 kDa protein (HSP70), a key player in protein quality
control with different identified roles in skeletal muscle [67], such
as protection against oxidative stress, was also found highly car-
bonylated in old skeletal muscle. Up-regulation of heat shock
proteins is a well know feature of muscle ageing [46,68,69]. Fur-
ther studies should address the functional status of the identified
carbonylated proteins and related cellular pathways associated
with muscle dysfunction in order to reveal their role in the de-
velopment of the ageing phenotype.
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