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Abstract

The aim of the work presented in this paper is to realise
the model for the control of a robotic interface for equi-
librium assistance during sit-to-stand transfer.
Here, it is thought that interactive robotic devices,
as human-centered robotics, is more comfortable and
more efficient that traditionnal technical devices. One
supposes the need of virtual model of the pathology.
This model, called observer, aims at being used in the
smoothing control part of this assisting device. A usefull
property of this observer should be a prediction ability
of a postural instability.
This article presents a study of different neural solu-
tions : a Neural Trajectory Generator and a Neural
Predictive Observer (NPO). Records used for the learn-
ing have been done from healthy people that stand up
normally and quickly. Some tests will also be done in
patients with cerebellar syndrome disease.
The presented experimental results show the good ac-
curacy of these approaches whatever the speed of the
movement.

1. Introduction

This work concerns the control of robotic devices
interacting with patientsduring rehabilitation exercises.
The interaction between the assisting device and the pa-
tient can be considered as a control loop (cf. fig. 1).
In this case, thepatient is assimilated to an unknown
system and the robot to an actuator regulating disor-

ders. The stabilisation is obtained comparing the pa-
tient’s state with a physiological trajectory generation
[6]. Our aim is to improve the human-robot interaction.
Some classical approach to improve a control is to in-
clude a model in the control loop.

This article will focus on the design of models for
STS trajectories in joints space of both diseased and
healthy subjects. The different models will have dif-
ferent input vector (i) but they always return computed
joint trajectory (q*) (cf. fig. 1).
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Figure 1. Control system overview Attention
image à réparer!!!!

The particular device studied is a robot [2] helping
for STS (cf. fig 2). Composed of two degrees of free-
dom independent handles on an active mobile platform,
this robot can interact with a person during the STS mo-
tion and also all along thewalk.
The kind of control we wanted to evaluate on this device
concerns only the sagittal movements that is the reason
why we will reduce the Sit-To-Stand(STS) modelisation
to a 2 dimensional problem (fig. 8). We suppose that the
latteral motion are reduced by the handle grasping.

The STS transfer(fig. 8) is a complex motion that
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Figure 2. Assistive device : The robotic inter-
face MONIMAD

combinesthe will, the sensori-motor action with a fine
regulation all along the process. Diseases that affect
this movement are very often pathologies concerning
the regulation which is usually considered as the
cerebellum role.

One of the main problems that must be solved to
implement a model based controller depicted in fig. 1
is that there is not any suitable model for healthy and/or
cerebellar disease movement. Focused on STS trajec-
tories, the models presented in this article are used to
control an assistive device during a STS transfer for dis-
eased subjects. AnArtificial Neural Network (ANN)
based modelling are used, which structure has been de-
signed as an intermediate solution between complex
models developped in neuroscience [7], [8], [9] and
simplistic solutions often used in robot control [10],
[11]. As a result, the proposed models will be studied
for the following properties :

• Generalization : the model performs equally for
normal speed STS as for fast one.

• Specialization : the solution must be able to fit an
individual disease expression.

• Disease ability : the best solution will be tested on
diseased trajectory.

2. Method

2.1. Artificial Neural Networks

2.1.1. Description. ANN are commonly used in liter-
ature dedicated to problems involving some behaviours
that are not polynomials and must be learned. This soft-
ware structure (fig. 3) is composed of many artificial
neurons. It is organized in layers. The first layer is di-
rectly connected with the inputs of the system, the last
layer represents the outputs of this structure and the lay-
ers between are called hidden layers.

Figure 3. Artificial Neural Network architecture

The artificial neuron is a computer implementation
of the neuron behaviour. Indeed a neuron is an integra-
tor of signals, and the result is an activation of the neu-
ron which is transmitted on the axon. The artificial one
(fig.4) is composed of weighted inputs(w), an integrator
which is a sum (∑) and finally an activation function (f )
computing the output (axon).
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Figure 4. One artificial neuron

2.1.2. Non-linearity. One of the motivation of this
choice is the ability of this method to work through
some kind of non-linearity. Simple examples of non-
linearity are movement discontinuities : when a person
pulls up a feet, or when he falls. Others kinds of dis-
continuities are singularities in the kinematics model.
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These singularities can be found in some particular
configurations. Therefore, it is important to choose a
method that deals with these problems.
In a classical mechanical approach, the trajectories of
a system are considered as polynomial functions. It is
often considered as a good approximation. ANN are
able to generate non-polynomial solutions. It could be
interesting to see if this property can be an asset for the
solution accuracy.

2.1.3. Learning. The flexibility is defined as system
ability to perform particular problems without chang-
ing its structure. In the proposed solutions, flexibility
is one of the most important thing that leads the choice
of learning based approach. As it is mentioned in the
introduction part, a particularity of the gait and STS
diseases, is that they require a solution adapted to each
person. ANN seems to be the best way to achieve this
goal. In the studied cases, the activation functions will
be hyperbolic tangentf defined in equation (1).

f (x) = tanh(x) =
ex−e−x

ex +e−x (1)

The approach in the edge of neuroscience and robotic
motivates the choice of a classical learning approach in
ANN domain based on back-propagation [17], [18].
This learning method is also based on the relation (2):

g = ∑(wi .gi) (2)

whereg is a vector of precedent layer outputs (gi) and
wi are the weights of the linksand i is the number
of the current layer. The weights learning (wi) are
based on a gradient backpropagation expressed as the
expression(3):

METTRE INDICEs
i,s et j sur ttes les
equation pour expli-
quer leur diff

ws+1 = ws−α.LGs (3)

with s as learning step,α as learning rate andLGs as
local gradient.
Local gradient is computed with the backpropagation
algorithm and the computation basis in each step k is
a cost function gradientGs expressed for thej th out-
put. The back propagation learning tries to minimize
the Neural Network (NN) objective function ( f c). This
function is a simple Root Mean Square Error between
the desired trajectory (q j ) and the NN outputs (q∗j ).

2.1.4. Motivation. According to the literature, an
ANN is able to fit the considered problem of predic-
tion. But there are few works dealing with the ANN
dimensions. In this lack of information case, problems
like overfitting can occur. Indeed the work presented in
[20] describes a method to generate FES patterns but the
obtained structure is not studied. So the understanding
of how and why the ANN achieves the problem is there
very difficult. That’s the reason why this paper puts the
stress onthe results accuracy and in the description of
the ANN.

2.2. Neural Trajectory Generator

Figure 5. NTG System Description Attention
image chang ée!!!!

2.2.1. Description. As noticed in the figure 5, the
Neural Trajectory Generator (NTG) takes as input the
initial angular values (q0), the final angular values (qf )
and a time vector which is used as time reference for
the movement. The outputs will be angulars trajectories
values. The initials values will be particularly different,
indeed for the learning process it is necessary to give
some angular values, in this paper we only give one set
of STS trajectories. This initial values and also the ini-
tial process which is the learning of the neural network
are represented with a dashed line.

2.2.2. Parameters.Following an evaluation of differ-
ent NN sizes, the best NN obtained was composed by 5
hidden cells. This NN is structured as one layer percep-
tron with hyperbolic tangent(see relation (1)) as activa-
tion functions.

2.3. Neural Predictive Observer

2.3.1. Description. As noticed in figure 6, the only
difference between inputs and outputs is the time ref-
erence. Indeed the outputs are angular forward values
of the inputs. For the learning process the database is
a set of angular values of one kind of STS:normal and
fast. This initial values are used in the initial process
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which is the learning of the neural network represented
on figure 6 with a dashed line.

Figure 6. NPO System Description

The NPO can be represented as in figure 6,
q(k) is a vector composed of the three angu-
lar values (ankle, hip and knee values) at instant
t and boxes named d are delay functions
(je ne vois nulle part de box ”d”:̀a expliquer.
The NN inputs size is q(k) size multiplied by sliding
window size : 3xBW (Backward Window is a scalar
value defining the time sliding window size). For each
input in one STS trajectory learning, only 3 new values
are given. Others values are obtained from the last in-
puts with d. This NN provides in each step the three
angular values in forward time : q*(k+1).
So, we have a prediction on the angular values there are
used in the postural state.

2.4. Linear Predictor (LP)

As we know, there is no predictive approach for hu-
man STS movement. So we describe a Linear Predictor
(LP) in order to have a comparison point. This LP is a
simple linear extrapolation. The aim of a linear extrap-
olation is to define the line two parameters, a and b in
relation (4):

yk = a.k+b (4)

This is obtained with a pseudo-inverse (noted with sym-
bol +) of the BW last parameters as shown in expres-
sions (5): 

uk = [k 1]T

Dk = [uk−BW ... uk]
Yk = [yk−BW ... yk]

D+
k = DT

k .(Dk.DT
k )−1

AB= Yk.D
+
k = [a b]

yk+1 = AB.uk+1

(5)

UNE CONCLUSION S’IMPOSE!!!!!!!!!!!!!!!!!

Figure 7. A three links model

3. Application

3.1. Biomechanical model

From the 3-bar mechanism (fig. 7), the dynami-
cal model is determined according to classical equations
(eq.6),q(t) represents the vector (3X1) of the 3 angular
values,H(q) is the 3X3 mass matrix ,h(q, q̇) is the vec-
tor (3X1) of Coriolis and rotation effects andC(q(t)) is
a vector of gravity terms.

H(q)q̈+h(q, q̇)+C(q(t)) = τ +JT
λ

qmin≤ q≤ qmax

q(t0) = q0,q(tF) = qF

q̇(t0) = q̇0, q̇(tF) = 0 (6)

As far as it is not a redundant system, there is no need
of Lagrangian coefficient :JTλ = 0

3.2. Data acquisition

Figure 8. A Sit-To-Stand movement

Records (fig.8) on healthy persons are performed
with goniometers placed on ankle, knee and hip of the
right leg. Statistical informations concerning the go-
niometers are presented in table 1, where SD is the Stan-
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Table 1. Statistical information of goniometers
SD Max

(rad x 10−2)[rel.(%)] (rad x 10−2)[rel.(%)]
hip 0.32 [1.17] 0.54 [1.96]

knee 0.18 [0.16] 0.50 [0.45]
ankle 0.20 [0.09] 0.01 [0.23]

dard Deviation and Max represents the maximum er-
ror. The persons were asked to stand-up normally with
crossed arms on chest. They were also asked to stand-
up as quickest as they can.

Concerning the diseased people, records has
been done with a motion capture system developped
by Motion Analysis. This system give the position
of some points. So a geometrical model is used to
reconstruct the angular values. This reconstruction can
cause some discontinuities, so we have to be aware of
these problems in the results interpretation.

3.3. Specialisation

In this paper, it is considered that if the observer
keep a good accuracy in normal speed and in fast speed,
then it is able to keep it all along the speeds between
these two extrema. It has been decided to look at the
speed of the movements as a proof of specialisation of
this approach. Using NPO or NTG should be interesting
only if this method may be specialized for one person
and if it is able to have a good accuracy in all the situa-
tions used.

3.4. Learning process

For these tests, learning for NTG and NPO is
stopped with one verticalisation record results which is
used as a validation database. The learning database
is composed of movements from one person in normal
speed (9 records) and in fast speed (11 records).
First, the results will be studied in the same speed field
of data. Then, a cross test will be performed in order
to know if a network which learns a normal (resp. fast)
STS trajectory can observe a fast (resp. normal) move-
ment.
Indeed this solution should be able to identify a STS for
every speed.

Table 2. Comparaison between polynomial op-
timization and neural network approach

NTG (rel) KUZE(rel)
A 0.0389 (1.78) 0.0028 (0.81)
B 0.0207 (0.95) 0.0376 (1.72)
C 0.0160 (0.73) 0.0150 (0.69)
D 0.0159 (0.73) 0.0100 (0.46)

where NN is a neural network with one hidden layer
composed of 5 cells.

4. Results

4.1. Preamble

Some first evaluation tests has been done on a small
databaseof STS of four different subjects (A, B, C, D).
These tests may answer the questions :
• ”Can a neural observer learns a human movement?”
• ”Is the non-polynomial property an asset for the prob-
lem?”

The comparison is made between KUZEmethod
[19] and NTG describes below. The table 2 presents the
RMSEJAMAIS VU AVANT:EXPLIQUER of these
two methods along the STS motions. The learning of
the NTG is made with only A data. As far as the learn-
ing database is very small wich is not the best conditions
for the NTG we can see comparable results.
So a neural solution is able to learn a human with al-
most same accuracy than a polynomial approach.
fig. 9 presents a curve describing how the non-
polynomial approach (dashed line called NN) can reach
a better accuracy than polynomial one (above line called
KUZE).
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Figure 9. Joint trajectories comparison for STS
of subject B

viviane pasqui
Draft



Table 3. RMSE and MAE of the best neural network for two speed of STS

KUZE NTG LP NPO
units rad (%) rad (%) rad (%) rad (%)

Normal 0,0164 (0.75) 0,0229 (1.05) 0.0001 (0.0041) 0.0037 (0.159)
Fast 0.0001 (0.0041) 0.0030 (0.128)

Fast to Slow 0.0001 (0.0041) 0.0024 (0.099)
Slow to Fast 0.0001 (0.0041) 0.0021 (0.0859)

4.2. Generalization

This section puts the light on a comparison between
KUZE, LP, NTG and NPO in the generalization point of
view. In this paper, a method is considered with ability
to generalization when it can keep a comparable accu-
racy when it is tested on another speed database. Fig-
ure 10 presents outputs of NPO learned on fast speed
applied to normal speed data, it is interesting to notice
the similarities between NPO outputs and real values
whereas the learning is done on another speed database.
LP is also performing good results in the different speed
databases.
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Figure 10. Real angular trajectories and neural
network output for the 6th normal STS

4.3. Specialization

In order, to show the specialisation of this approach
the best NPO learned with data of person A has been
evaluated on four STS records of person B. As pre-
sented in table 4, it can be noticed that the root mean
square output errors are ten time upper than the learned
one. It is very interesting because we can say that
the NPO solution has learned only one person STS be-
haviour with good accuracy. The NPO is looking for a
solution defining a virtual model of this person.

The general definition of LP doesn’t allow any special-
isation. As far as it is defined as a minimum error
straight line that fit the precedent values. So there is
no parameter defined that concern individual motion ex-
pression.

Table 4. Results on STS trajectories of other
person

Num 1 2 3 4

NPO 0.0383 0.0299 0.0282 0.0177
LP 0.0001 0.0001 0.0001 0.0001

4.4. Disease Ability

In our point of view the best neural based solution
is the NPO. Because of its accuracy, specialization and
ability in data reduction, we decided to evaluate this
neural structure on diseased patient. In the table 5 and
in the figure 11, we can notice that this structure is suit-
able for diseased motion. It is remarkable to see that LP
gives also very good results on this pathological trajec-
tory.

Table 5. RMSE Results for NPO and LP with
patient 2 and 4

Patient2 Patient 4
NPO 0.0023 0.0025
LP 0.0001 0.0001

5. Conclusion

In this paper, we present two modelisation meth-
ods:

• trajectory generation approach

• prediction

In the trajectory generation we can compare KUZE
and NTG methods. It appears that even if NTG are
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Figure 11. Real angular trajectories and neural
network output for cerebellar patient4

lesser???? than KUZE method, it is interesting to say
that the results obtained have the same size. It has
shown that a neural approach can fit the problem. In
addition, we studied 2 different prediction approaches:
neural and linear. Specialisation property excepted, the
LP seems to be the best approach for the frequency used
(100Hz). With as an asset the fact that we don’t need
any data to define this prediction model. As far as we
consider that we want this structure to be used in reha-
bilitation devices, we need an approach that it is a rep-
resentation of the pathology. Because the models aim
also to be used as an evaluation system. According to
this critical property the NPO is usefull to be used in a
model based control of the rehabilitation robotics. One
of the ANN properties that we didn’t develop in this
paper is parcimonial abilities. That means we can de-
velop some strategies to minimize the number of input
which are for the moment 3 angular values. Reducing
this number could simplify the rehabilitation process.
Indeed, the least sensor number we take on the subjects
gives the simpliest and the most applicable process in
real applications. This is the main reason why we will
continue with the Neural Based Approach. Following
this realist approach, we can notice that many learning
results obtained are done with less than ten STS trans-
fers and need only some minutes to be computed (10-
20mn). This is another positive argument to consider
that a neural based approach is realistic to be used in
the control of an assistive device.
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