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Residue Number Systems (RNS) are naturally considered as an interesting candidate to provide efficient arithmetic for implementations of cryptosystems such as RSA, ECC (Elliptic Curve Cryptography), pairings, etc. More recently, RNS have been used to accelerate fully homomorphic encryption as lattice-based cryptogaphy. In this paper, we present an RNS algorithm resolving the Closest Vector Problem (CVP). This algorithm is particularly efficient for a certain class of lattice basis. It provides a full RNS Babai round-off procedure without any costly conversion into alternative positional number system such as Mixed Radix System (MRS). An optimized Cox-Rower architecture adapted to the proposed algorithm is also presented. The main modifications reside in the Rower unit whose feature is to use only one multiplier. This allows to free two out of three multipliers from the Rower unit by reusing the same one with an overhead of 3 more cycles per inner reduction. An analysis of feasibility of implementation within FPGA is also given.

INTRODUCTION

On the one hand Residue Number Systems (RNS) are supplied with efficient arithmetic. Computations over big data are distributed across small units concurrently and independantly. On the other hand cryptography area deals with lots of computations over huge numbers. Thus, RNS is naturally interesting to provide efficient implementations of some cryptosystems. There have already been conducted works on RSA [START_REF] Guillermin | A coprocessor for secure and high speed modular arithmetic[END_REF], ECC [START_REF]A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over GF(p)[END_REF], and pairings [START_REF] Cheung | FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction[END_REF], [START_REF] Yao | Faster Pairing Coprocessor Architecture[END_REF] procedures acceleration. Advantages of RNS are exploited so as to optimize modular multiplication, which is a core operation for some cryptoprimitives.

Besides these considerations, modern cryptography makes more and more room for lattice-based cryptography which appears to remain secure in a post-quantum paradigm. In this area, protocols are based on some problems related to Euclidean lattices, such as the Closest Vector Problem (CVP) [START_REF] Babai | On Lovász' lattice reduction and the nearest lattice point problem[END_REF]. For instance, it has been used to create GGH [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF] and NTRU [START_REF] Hoffstein | NTRUSign: Digital Signatures Using the NTRU Lattice[END_REF] cryptosystems. Moreover, interest of lattice-based cryptography has significantly increased since discovery of fully This work has been supported in part by the European Unions H2020 Programme under grant agreement number ICT-644209.

¦ Author granted by Direction Générale de l'Armement (DGA). homomorphic encryption scheme by Gentry [START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF]. Expected for more than 30 years, this property is based on ideal lattices used within GGH-like cryptosystems. Despite all those powerful results, huge computational cost of underlying operations over lattices restrains feasibility of practical implementations. A recent result [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF] dealing with this drawback contributes to arithmetical enhancement of lattice-based cryptography by giving a specific RNS-MRS algorithm which computes Babai's round-off procedure. However, it has the inconvenience to require a conversion into a positional system, like MRS [START_REF] Szabó | Residue arithmetic and its applications to computer technology[END_REF], in order to obtain an exact RNS modular reduction.

The present work aims at constructing a full RNS round-off procedure, which will avoid an inconvenient MRS conversion. In particular, the problem of possible inacurracy of RNS modular reduction operation is addressed by using some of geometrical properties of the involved lattice basis. Finally, a full RNS CVP algorithm is analysed and considerations about hardware implementation are given.

Preliminary definitions on RNS and lattice-based cryptography are given in Section I, along with RNS modular reduction inaccuracy problem. Section II presents a solution to this problem along with an optimised algorithm solving the CVP. Section III presents a dedicated architecture and practical considerations are provided in section V before conclusion.

Writing convention: in further discussions, matrices (resp. vectors) will be denoted by uppercase (resp. lowercase) boldfaced letters.

I. BACKGROUND OVERVIEW

A. RNS and modular reduction 1) Recalls and notations: RNS are based on the Chinese Remainder Theorem (CRT) [START_REF] Szabó | Residue arithmetic and its applications to computer technology[END_REF]. This theorem states that given an RNS base B tm 1 , . . . , m n u (which is a set of n pairwise coprime numbers called moduli) there exists a ring isomorphism Z{M Z Ñ Z{m 1 Z ¢ . . . ¢ Z{m n Z where M ± n i1 m i . Each integer x belonging to the so-called dynamic range v0, M v of B is bijectively associated to a tuple of residues p|x| mi x mod m i q 1¤i¤n . Moreover, additions, subtractions and multiplications can be performed concurrently and independantly on the residues. Exact divisions by an integer z are also possible as long as gcdpz, M q 1. In this case, it boils down to the multiplication by § § z ¡1 § § M . The main drawback of RNS is that they are non positional numerical systems. Thus, comparisons require conversion within a positional system, such as Mixed Radix System (MRS) [START_REF] Szabó | Residue arithmetic and its applications to computer technology[END_REF]. Modular reduction is also quite a difficult task. State-of-art algorithms [START_REF] Posch | Modulo reduction in residue number systems[END_REF], [START_REF] Bajard | Modular multiplication and base extensions in residue number systems[END_REF] are based on an adaptation of classical Montgomery's modular reduction [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF]. Such techniques use conversion operations between two RNS bases.

2) Base conversions: A base conversion denoted Bex pB, B I , xq aims at computing residues in a base B I of an integer x v0, M v given in a base B tm 1 , .., m n u.

To achieve it, the constructive proof of CRT leads to:

x n i1 § § x i M ¡1 i § § mi M i mod M. (1) 
The efficiency of such conversion depends on how reduction modulo M is performed, or in other words how the integer

α x t 1 M °n i1 § § x i M ¡1 i § § mi M i u is computed.
It can be done by adding a redundant modulus to B [START_REF] Shenoy | Fast Base Extension Using a Redundant Modulus in RNS[END_REF], or by computing an approximation [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF]. A particularly efficient but not accurate conversion consists in not computing α x at all [START_REF] Bajard | Modular multiplication and base extensions in residue number systems[END_REF]. That way, a conversion is a single matrix multiplication. But one only obtains residues of

°n i1 § § x i M ¡1 i § § mi M i in B I .
Another approach is to reconstruct x into a positional mixed radix system [START_REF] Szabó | Residue arithmetic and its applications to computer technology[END_REF] and to reduce it into B I . The problem is that computation of MRS coefficients is not absolutely parallel. Therefore it breaks the efficiency brought by RNS.

3) RNS modular reduction: Implementation of efficient RNS modular reduction is a critical question because of non positional character of RNS. Optimized algorithms are adapted from Montgomery's reduction [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF] and use base conversions.

The principle is the following. Let B and B I be two coprime RNS bases and x be an integer expressed in those two bases and which has to be reduced modulo p. Then by denoting q |¡x{p| M we compute s x pq M . By construction, s xM ¡1 mod p. q is easily computed from residues of x and |¡1{p| M directly into B. However, division by M cannot be performed in B as is. Hence, q is converted into an The value of e can depend on the sign of x and on the chosen base conversion technique used to convert q ¥ 0. If |x| M p and Bex pB, B I , qq gives residues of q δM with δ ¥ 0, then the result satisfies ¡p x pq δM p M p2 δq p. Thus e v¡1, δ 1w. Even if δ 0, e may still be equal to ¨1. This error can be detected by comparing the result to p and 0. But such a comparison requires a costly RNS-to-MRS conversion.

The computational cost of RNS modular reduction mainly depends on chosen base conversion technique. Because reduction can be inaccurate whatever base conversion is (cf. Rem.

1.1), a new approach is proposed in [START_REF] Bajard | Modular multiplication and base extensions in residue number systems[END_REF] to accelerate the reduction by not computing reduction modulo M in (1) at all. In this case, the final result belongs to w ¡ p, pn 1qpv. It can be sufficient for certain situations, as it will be for ours. The general scheme of this reduction is summarized in Alg. 1.

Algorithm 1 RNSModRed px, p, B, B I q Require: x in B B I with |x| M p. n def |B|. Ensure: s § § xM ¡1 § § p ep in B I , with e v¡1, nw. 1: q Ð ¡xp ¡1 ¨mod M #in parallel in B 2: q I Ð °n i1 § § qiM ¡1 i § § m i Mi 3: s Ð x q I p M mod M I #in parallel in B I 4: return s B.
Round-off operation in lattice-based cryptography 1) GGH-like cryptosystems: Some classical lattice-based cryptographic protocols rely on the complexity of computation of a close vector of a lattice L for any given vector c Z .

Here and further denotes the dimension of L. If one knows a nearly orthogonal basis R Z ¢ of L, an obvious way to exhibit such a close vector is to compute coordinates of c relatively to R, and to select the closest integer vector by applying a round-off operation. This approach was introduced by Babai [START_REF] Babai | On Lovász' lattice reduction and the nearest lattice point problem[END_REF]. Consequently, computations of the form tcR ¡1 s are core operations in lattice-based cryptography. For instance, this approach forges GGH cryptosystem principles [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF]. Given a fixed integer parameter σ the plaintext space is P σ v¡σ, σw . The secret key is a basis R of L verifying the following "Babai's condition":

hε s0, 1 2 r, 0 σρ R 1 2 ¡ ε, (2) 
where ρ R denotes the maximum L 1 -norm of columns of R ¡1

and is defined as ρ R maxt ° i1 |pR ¡1 q i,j | | 1 ¤ j ¤ u. This condition ensures that tpR ¡1 s 0 for any p P σ . More precisely, for any p P σ and any kR L (for k Z ), then the Babai condition implies the following equalities:

tpp kRqR ¡1 s tpR ¡1 s k k. (3) 
The encryption function requires a public basis B UR (with U unimodular: U GL pZq). Consequently, an encryption (4) consists in adding a vector of L to p. This vector is obtained by using B. Decryption (5) performs the round-off procedure.

Enc ppq p kB c pk R Ð Z q (4) Dec pcq c ¡ tcR ¡1 sR p (5) 
Correctness of decryption (i.e. Dec pEnc ppqq p for p P σ ) is due to (3). Indeed, the vector kBR ¡1 kU is integer. So it can be ruled out from the round-off operation.

2) RNS Babai's round-off: In [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF] it is suggested to reduce computational cost of lattice-based cryptoprimitives by using RNS as an efficient arithmetic. More precisely an RNS-MRS algorithm implementing the round-off is given.

As a first step, the rational formula tcR ¡1 s is turned into an integer formula. If d denotes det R then R I def dR ¡1 is an integer matrix. Consequently one can rewrite tcR ¡1 s t cR I d 1 2 v 1 u where v 1 def p1, . . . , 1q Z . This leads to [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF], where d denotes the vector

d ¢ v 1 . tcR ¡1 s 2cR I d ¡ rp2cR I dq mod p2dqs 2d (6) 
The modular reduction is feasible through RNS Montgomery reduction (Alg. 1) with a main base B whose product of moduli is denoted M . To do so, one has to compute the following "Montgomery representations": R 2M R I ¨mod p2dq, d pMdq mod p2dq. [START_REF] Hoffstein | NTRUSign: Digital Signatures Using the NTRU Lattice[END_REF] Since our goal is to provide a full RNS implementation of the Dec function ( 5) and because p is in P σ v¡σ, σw , computation of ( 6) can be performed within a single modulus RNS base called m σ . m σ has to be greater than 2σ 1. Thus p is recovered from its centered remainder mod m σ . The reduction mod 2d requires a large base B tm 1 , . . . , m n u in order to use RNS reduction (in our case, B I is just tm σ u).

As mentioned in Remark 1.1, a problem is that we can possibly obtain an uncompletely reduced value. Remark 1.2: When the modular reduction in ( 6) is performed by using RNSModRed

¡ c R d, 2d, B, m σ © , one
obtains p2cR I dq mod p2dq 2de with an error vector e v¡1, nw . Thus, ( 6) computed together with Alg. 1 gives tcR ¡1 s ¡ e ¨mod m σ .

In [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF] this error is corrected thanks to a comparison. A modified version of Alg. 1 is used. A redundant modulus m r besides a base B I allows to perform a second reduction directly into B I . That way, the final error vector e belongs to v0, 1w . However, it does not completely solve the problem.

The solution in [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF] is to use a large base B I which verifies M I ¡ 4d ¡ p2cR I dq mod p2dq 2de. Then a conversion into MRS is performed. It allows the comparison with 2d. Finally, this allows to recover and to correct e.

Our purpose is to avoid expensive conversion into any other number system than RNS. So we choose to compute the modular reduction in (6) via Alg. 1 as is. The next section aim at finding another type of approach to correct the error vector e. To achieve it, some properties of R will be used.

II. ACCELERATING THE ROUND-OFF A. Correcting modular reduction in round-off computation

We aim at recovering e in order to correct it. It will allow to compute tcR ¡1 s ¡ e thanks to (6) used together with Alg. 1.

1) Establishing a strategy: Following Remark 2.1 will be a guideline for the new strategy.

Remark 2.1: If one can find an integer γ such that tcR ¡1 s 0 mod γ for any ciphertext c and such that e $ 0 mod γ as soon as e $ 0, then e can easily be detected.

A priori there is no reason that such a γ exists. Thus, we consider some integer γ ¡ 0 and we compute tγcR ¡1 s. Since this round-off is still computed via [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF] and Alg. 1, we obtain tγcR ¡1 s ¡ e, where e belongs to v¡1, nw . Moreover, we have tγcR ¡1 s tγpR ¡1 s γtcR ¡1 s (cf. ( 3)). But now Babai's condition (2) for R does not guarantee anymore that tγpR ¡1 s 0. Thus by computing tγcR ¡1 s we introduce a global error which is tγpR ¡1 s ¡e. Finally, the result obtained at the end of computation is (8).

tγcR ¡1 s ¡ e γtcR ¡1 s tγpR ¡1 s ¡ e (8) ñ tγcR ¡1 s ¡ e ¨mod γ tγpR ¡1 s ¡ e ¨mod γ (9)

Consequently, if there exists an integer γ large enough so that tγpR ¡1 s ¡ e is computable from its residue mod γ, we will be able to correct it. Then the exact round-off result can be obtained. This is the purpose of following remark.

Remark 2.2: modc denotes the centered remainders mod γ.

If for any i v1, w the bounds ¡t γ¡1 2 u ¤ t γpR ¡1 ¨is ¡e i ¤ t γ 2 u hold, then one can retrieve tγpR ¡1 s ¡ e by: tγpR ¡1 s ¡ e tγpR ¡1 s ¡ e ¨modc γ.

(

) 10 
Therefore, using ( 8), ( 9) and ( 10), tcR ¡1 s can be exactly computed via following equality:

tcR ¡1 s 1 γ tγcR ¡1 s ¡ e ¡ t tγcR ¡1 s ¡ e ¨modc γu ¨.
(11) From now on, the goal is to find a condition so that γ satisfies the bounds emphasized in Remark 2.2. Then, after computation of tγcR ¡1 s through ( 6), we will be able to deduce the exact round-off tcR ¡1 s using [START_REF] Posch | Modulo reduction in residue number systems[END_REF]. Furthermore, it may be noticed that since we need to compute tγcRs mod γ through [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF] in order to obtain [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF], γ must be coprime to 2d.

2) Finding an adequate γ: We need to find an acceptable odd γ for which the bounds described in Remark 2.2 are verified for any p P σ and any e v¡1, nw . For that purpose, we use Remark 2.3.

Remark 2.3: If ¡t γ¡1 2 u ¡ 1 2 γpR ¡1 ¨i ¡ e i t γ 2 u 1 2
for all i v1, w, then Remark 2.2 and (10) hold.

From Remark 2.3 we deduce that γ will depend on ε in Babai's condition (2). Theorem 2.4 clarifies this dependancy.

Theorem 2.4: Let R Z ¢ be a basis of lattice L verifying Condition (2) for a certain ε s0, 1 2 r. Let e v¡1, nw be an integer vector (with n ¥ 1), and c p kB with p P σ and k Z . Then for any odd integer γ verifying γε ¥ n, the following equality holds:

tγpR ¡1 s ¡ e tγcR ¡1 s ¡ e ¨modc γ. Proof: Due to Babai's condition, pR ¡1 s¡ 1 2 ε, 1 2 ¡εr . Consequently, any i th component of pγpR ¡1 ¡ eq verifies: ¡ γ 2 γε ¡ n γpR ¡1 ¡ e ¨i γ 2 ¡ γε 1.
Hence, by using Remark 2.3, the bounds ¡t γ¡1 2 u ¤ t γpR ¡1 ¡ e ¨is ¤ t γ 2 u hold as soon as γ verifies the following set of conditions: 

5 ¡t γ¡1 2 u ¡ 1 2 ¤ ¡ γ 2 γε ¡ n γ 2 ¡ γε 1 ¤ t γ 2 u 1 2 ô 5 γε ¥ n γε ¥ 1 ô γε ¥ n ( 
tcR ¡1 s mod m σ § § § § ¢ 2γcR I d ¡ r 2d ¡ 4 2γcR I d ¡ r 2d modc γ B γ ¡1 § § § § mσ ( 13 
)
Proof: We fix ε 1 2 ¡σρ R . It follows that γ R,n r n ε s r 2n 1¡2ρ R
s is a lower bound for acceptable odd γ's with respect to theorem 2.4. Moreover, by using ( 6) and ( 8), we can write: Then, residues modulo γ enable to correct residues modulo m σ of rounded value tcR ¡1 s. Fig. 1 illustrates this approach.

2γcR I d ¡ r 2d tγcR ¡1 s ¡ e γtcR ¡1 s tγpR ¡1 s ¡ e.
B. About the size of γ GGH-like protocols with parameter σ N are based on the matrices R Z ¢ verifying σρ R 1 2 . By definition the lower bound γ R,n exists for any such matrix R and any n. It is clear that closer to 1 2 the σρ R is, the bigger γ R,n will be. 

q I n i1 q mi M i , q mi | ¡ pc R dqp2dM i q ¡1 | mi (15) r |2γcR I d| 2d 2de c R d 2dq I M ( 16 
)
s tγcR ¡1 s ¡ e 1 2d 2γcR I d ¡ r ¨(17)
First, [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF] is obtained in RNS base B. Second, ( 16) is computed in tγ, m σ u. Then, ( 17) is obtained modulo γ and m σ . Finally centered remainder of s mod γ enables to correct residues in RNS channel m σ so that tcR ¡1 s mod m σ can be obtained (cf. (13) in Corollary 2.5).

In B: By using Rmi and dmi in (22) we can re-write [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF] with q mi § § §c Rmi dmi § § § mi for all m i B. For base conversion, it will be useful to write the set of n vectors q mi as a matrix Q whose i th row is the vector q mi .

In tγu: If we develop right member of ( 17) modulo γ by using ( 15) and ( 16) we obtain:

|s| γ § § § § § c ¡ R 2dM d 2d ¡ d 2dM ¡ n i1 q mi m i § § § § § γ . (18) 
Due to precomputations (22) the required result modulo γ is:

|s| γ ¡ c γ Rγ dγ h γ Q © modc γ tγpR ¡1 s ¡ e. ( 19 
)
In tm σ u: The one modulus-base tm σ u is dedicated to the full computation of c ¡ tcR ¡1 sR. First, by using [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF] from corollary and ( 17) and [START_REF] Bigou | Improving Modular Inversion in RNS Using the Plus-Minus Method[END_REF], it comes that:

§ § c ¡ tcR ¡1 sR § § mσ § § § § c ¡ 1 γ ps ¡ s γ q R § § § § mσ ( 20 
)
where Ensure: c ¡ tcR ¡1 s ¢ R ¨modc m σ . 1: pc m q mBtγ,mσu Ð Bin_to_RNSpcq #1 st parallel step 2: for i 1 to n do #2 nd parallel step 3: β σ -words. To compare with a binary approach, each coefficient of R ¡1 should be computed with a rlog 2 c V p 1 2 ¡ σρ R q ¡1 ¨s bit precision to ensure no decryption error [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF]. We recall that γ R,n def rn ¢ p 1 2 ¡ σρ R q ¡1 s and that our approach is optimal when γ R,n β. Thus the binary method requires at most rlog 2 p cVβ n qs ¢ 2 bits of storage. Tab. II shows some memory ratio between binary storage of R ¡1 and RNS precomputations where we assume that c V d and d is set to Hadamard's bound (e.g. R results in a LLL-reduction applied to some random matrix in v¡ , w 2 , cf. [START_REF] Micciancio | Improving Lattice Based Cryptosystems Using the Hermite Normal Form[END_REF]). 3) Comparison with hybrid RNS-MRS approach [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF]: In [START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF], the final computation is also performed modulo m σ . The same main RNS base B than ours (i.e. M ¡ c V 1) is used for computing modular reduction. The main difference in this other approach is that an auxilairy base B I with M I ¡ 4d is required. Indeed the result of reduction is in v0, 4dv, and it must be compared with 2d through MRS. The first step of reduction is a fast conversion (like in Alg. 1) from B to B I tm r , m σ u. Then a second reduction is based on a conversion from tm r u to B I tm σ u (simple "duplication" of residues mod m r ) in order to reduce the result in v0, 4dv. Montgomery representations differ from ( 14) but their size is still the same. The only extra cost is due to |m ¡1 r | mσ for second conversion.

| ¡ s| mσ § § § § c R¡2γM R I 2dM d¡M d 2dM n °i1 qm i mi § § § § mσ . Thus precomputed data (22) allow to write: § § c ¡ tcR ¡1 sR § § mσ § § §c Rσ dσ ph σ Q s γ q R σ § § § mσ . ( 21 
)
dm i B, Rmi § § § § § ¡ R 2dM i § § § § § mi ; dmi § § § § § ¡ d 2dM i § § § § § mi Rγ § § § § § ¡ R 2dM § § § § § γ ; dγ § § § § § M d ¡ d 2dM § § § § § γ ; h γ £ § § § § ¡1 m i § § § § γ 1¤i¤n Rσ § § § § § I R ¡ 2γM R I 2dγM R § § § § § mσ ; R σ § § § § R γ § § § § mσ dσ § § § § § d ¡ M d 2dγM R § § § § § mσ ; h σ £ § § § § 1 m i § § § § mσ 1¤i¤n ( 
Q i,¦ Ð |c mi Rmi dmi | mi #q mi , ( 15 
¢ q I γ q I σ Ð ¢ h γ h σ Q Z 2¢ #3 rd parallel step 8: s γ Ð s γ q I γ ¨modc γ #4
Next, MRS conversion requires to precompute kpk¡1q 

III. TOWARDS HARDWARE IMPLEMENTATION

In order to use concurrency properties of RNS, a feasibility study about efficient and dedicated architecture for hardware implementations on FPGA is led. The chosen architecture is based on Cox-Rower architecture proposed in [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF], and in [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF] with several modifications. We also explain how the main Algorithm 2 fits with such type of architecture.

A. Cox-Rower Architecture

In [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF], the Cox-Rower architecture was proposed along with a new approach for base conversion. It has been improved several times [START_REF]A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over GF(p)[END_REF]- [START_REF] Yao | Faster Pairing Coprocessor Architecture[END_REF], [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF]- [START_REF] Bigou | Improving Modular Inversion in RNS Using the Plus-Minus Method[END_REF]. Its structure consists in a Sequencer, a Cox and a set of Rower units. Rowers deal with the core of RNS computations. They compute modular sumof-products °n i1 a i b i mod m i . A Rower is divided into 2 stages. The first one consists in multiplication of 2 elements, and the second one is in charge of reducing and accumulating elements from first stage as shown in Fig. 2. Efficient algorithms for reduction inside the Rower are proposed in [START_REF]A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over GF(p)[END_REF], [START_REF] Cheung | FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction[END_REF], [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF], [START_REF] Nozaki | Implementation of RSA Algorithm Based on RNS Montgomery Multiplication[END_REF]. They take advantage either by the pseudo-Mersenne form of the moduli, which is

m i 2 r ¡ µ i with µ i 2 r{2
, allowing a direct reduction, or by using a second level of Montgomery reduction as proposed in [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF] with gcdpm i , 2 r q 1.

B. Proposed Architecture

Our architecture is based on the one proposed in [START_REF]A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over GF(p)[END_REF], [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF], [START_REF] Nozaki | Implementation of RSA Algorithm Based on RNS Montgomery Multiplication[END_REF], with several modifications. The Cox unit is unnecessary for our purpose, as Alg. 2 does not reduce the base conversion. So as to decrease the area of a Rower, 2 multipliers out of 3 are removed from the Rower for a cost of 3 extra cycles to execute the reduction inside it. Indeed, one of the most time-consuming operation in RNS is the base conversion procedure which is a computation of the form °n i1 a i b i mod m i . Moreover, the [START_REF] Gueron | Enhanced Montgomery Multiplication[END_REF], it is possible to reduce a sum of products only once. Hence the second stage in charge of reduction can be deleted by reusing first stage. Fig. 3 shows the proposed implementation for Rower Unit.

From lines 5 to 11 of Alg. 2, only 2 Rower units are required. To compute the modc function (line 8), two tricks are used to make it easy in hardware without using signed numbers. First, one can see that s γ,i modc γ

4 s γ,i if s γ,i ¤ tγ{2u s γ,i ¡ γ otherwise
. This can be used if the comparison is easy to perform. Thus, our second trick is to choose γ 2α ¡ 1 such that α 2 θ . It makes the comparison easy to be done in hardware (we just need to check the θ th bit). Moreover, these 2 Rower units are used to compute respectively mod m σ and mod γ. Because m σ is small (¤ 7 as σ t2, 3u), and because of the trick for γ, we dedicate two Rower units to computations mod m σ and mod γ. The γ Rower unit remains the same than the one in Fig. 3 but with the test of the θ th bit in order to subtract or not γ.

Alg. 3 details the computation of an inner reduction by using the proposed Rower implementation. From line 1 to 4, we multiply and accumulate the result. Then, the reduction is performed at steps 5 and 6. Because of the Rower unit pipeline, the computation cannot be done directly. Thus we need to wait 2 depth of the pipeline. However, as usually in cryptography, most of computations can be pipelined. Thus no idle cycles are induced. We can show that the computations in Alg. 2 can be done with a 100% occupancy of the pipeline. In order to fully compute Alg. 2 with the proposed architecture, the residues have to be reduced from 2m i to m i before they go to the main bus (as we need the exact value during the base conversion procedure). This last reduction can be done by a module added in the main bus. It reduces the residues going through the bus.

Algorithm 3 InnerReductionpa, b, mq

Require: A set of a, b pZ{2mZq k , s parameter for lazy-reduction, ¡m ¡1 mod 2 r s and d the pipeline depth Ensure: t °k i1 aibi2 ¡pr sq mod m, 0 ¤ t 2m 

C. Full RNS CVP Algorithm Implementation

Alg. 4 gives the procedure to compute lines 2 to 4 of Alg. 2 by using the Rower unit detailed previously. Most of the precomputations have to be done using the inner Montgomery representation in the Rower unit (i.e. precomputed values have to be multiplied by 2 r s where r the radix size and s enables the use of lazy reduction). Other steps of Alg. 2 are not detailed but are executed in a similar way. The point is that all computations are modular sums of products, fitting well with Cox-Rower architecture. As emphasized in comments of main Alg. 2, there are 6 main steps which do not overlap.

Features of the Cox-Rower architecture presented here match GPGPU and multi-core CPU architecture purposes. More generally, practical considerations that we make are essentially due to the well flexibility of main algorithm. Since it involves only RNS and fast base conversions, parallelization is easily achieved. In next section, we analyse feasibility of FPGA implementation. The efficiency of such platforms has been proven for RNS implementations.

IV. ABOUT FEASIBILITY OF IMPLEMENTATION ON FPGA

Estimations about performances and area for some dimensions will be given. Parameters are determined by a radix size β 2 r , and by Hadamard's bound for c V and d.

A. Performance and Memory Analysis

With n 2 parallel Rowers, binary-to-RNS conversion requires rlog β pc V qs¡1 n cycles when residues of powers of β are precomputed. 

Ensure: Q Z n¢ s.t. Qi,¦ p|c R d|m i q for 1 ¤ i ¤ n 1: for i Ð 1 to n do #concurrently in n Rowers 2:
Qi,¦ Ð p0q 

B. Implementation

We focus on FPGA SRAM devices. Indeed, FPGA are good candidates for hardware implementation as they embed DSP blocks as well as Block RAM. Moreover, the Rower unit proposed in previous section easily fits in Block RAM and DSP blocks, without adding too many LUTs or registers from the FPGA (except for multiplexers and control). Thus good performances can be reached in terms of frequency. We implement the Rower unit in Xilinx Virtex-5 FPGA family (Tab. VI) as well as Kintex-7 (Tab. VII) and estimate overall area and performance. We take r 24 as bit-size of radix by cascading 2 DSP blocks in order to have few more bits for lazy reduction (10 bits). The results show good perspective to implement lattice on FPGA, but a memory bottleneck rapidly appears. Indeed, for 128, there are not enough BRAM in both devices (Virtex-5 and Kintex-7) to store precomputed data.

C. Discussion

In previous part, we have shown that hardware implementation of lattices can be done using RNS and Algorithm 2. Adding a margin error of 25% to the maximal frequency of the design, one can easily deduce that we need around 20µs to compute a close lattice vector in dimension 64, which can be implemented on FPGA as is. For dimension 128, too much precomputations have to be stored. Thus it could be interesting to work on specific architectures such as clusters of FPGA, or with a DMA for quick changes of memorised values. Nevertheless, our hardware implementation shows a real good trade-off for all existing RNS architecture in terms of footprint or reachable frequency [START_REF]A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over GF(p)[END_REF]- [START_REF] Yao | Faster Pairing Coprocessor Architecture[END_REF], [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF].

V. CONCLUSION

A method for implementing the Babai round-off procedure in RNS has been proposed. We provide the first full RNS implementation of an algorithm solving the CVP (i.e. without using MRS). The efficiency of this technique depends on the secret lattice basis R which must verify some condition connected to RNS word size. Nevertheless, by analysing several random matrices verifying Babai's condition, the new requirement does not seem restrictive when considering practical RNS word sizes. An architecture for hardware implemention has been detailed. It is based on a Cox-Rower like architecture which is traditionally used for RNS implementations. Some modifications are suggested in order to fit with specific features of lattice-based algorithms. We have given an analysis of FPGA implementation for dimensions 64 and 128. Despite some memory bottlenecks, the results highlight the viability of our approach in terms of flexibility, because the principles of our implementation match GPGPU and multi-core CPU features. It reinforces the fact that the RNS is an excellent candidate for practical implementation of lattice-based protocols.

We fully realize that 64 and 128 are not dimensions high enough to allow lattice-based cryptography with secure parameters. Nevertheless, this implementation should be seen as a proof concept. It opens the door to multiple directions such as approaches by blocks and pipeline, or by using FPGA clusters or eventually multi-core CPU's or GPU's. All those future works will use as their core this new proposition.
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 11 auxiliary base B I by using a base conversion. Thus the exact division by M is done in B I . However, a problem emphasized in Remark 1.1 rises. Remark As for binary Montgomery reduction, RNS modular reduction gives § § xM ¡1 § § p e ¢ p where e is integer.

Furthermore, previous

  theorem enables to write tγpR ¡1 s ¡ e 2γcR I d¡r 2d modc γ. Hence (13) immediately follows. Given adequate γ with respect to Corollary 2.5, the strategy is to compute the whole formula (6) mod m σ and mod γ with RNSModRed ¡ c R d, 2d, B, tγ, m σ u © where Montgomery representations are now the following ones:R def 2γM R I ¨mod p2dq, d def pMdq mod p2dq.[START_REF] Shenoy | Fast Base Extension Using a Redundant Modulus in RNS[END_REF] 
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 222 Main Algorithm 2: RNS base B used for the modular reduction[START_REF] Micciancio | Improving Lattice Based Cryptosystems Using the Hermite Normal Form[END_REF] verifies 2dM ¡ |c R d| for any input c. Thus we assume that the set of all possible }c} V is bounded by some integer c V . c can own negative coefficients. Finally B is assumed to satisfyM ¡ c V 1.Complexity analysis: Complexity of RNS algorithms is generally expressed in terms of elementary modular multiplications with respect to some moduli m such that m β 2 r . To simplify complexity analysis, EMM β denotes such modular multiplication. The n 1 moduli of B tγu are assumed to own only one β-digit. Since bit-size of m σ and β can differ by orders of magnitude it is useful to denote β σ the quantity 2 rlog 2 pmσqs . Binary-to-RNS conversions are based on decom- position of coefficients of c in base β. Residues of powers of β can be precomputed. That way the conversion requires pn 1q ¢ rlog β pc V qsEMM β ¢ rlog βσ pc V qsEMM βσ . When this conversion is done, the cost of steps 2 to 11 of RNS CVP algorithm 2 is pn 1q 2 n ¨EMM β 2 2 n ¨EMM βσ . Space efficiency: Precomputed powers of β for binaryto-RNS conversion cost no more than pn 1qprlog β pc V qs¡1q β-words and prlog βσ pc V qs ¡ 1q β σ -words. Precomputations (22) represent pn 1qp 2 q n β-words and 2 Algorithm Full RNS Rounding-off CVP algorithm Require: input c; data: RNS base B with M ¡ p c V 1q and n |B|, γ ¥ γ R,n , m σ ¥ 2σ 1, M , γ, m σ and 2d all pairwise coprime, and precomputations (22).

  They are R |2m r M R I | 2d and d |m r M d| 2d . By denoting k |B I |, i.e. k rlog β p4dqs, the extra cost (mem. and comp.) of hybrid approach are due to computations in B I and to the MRS conversion. In terms of precomputations dedicated to modular reduction, the overhead is kp 2 q pk 1qn β-words for adequate matrices and vectors Rm I j , dm I j , h m I j and extra specific values |m ¡1 r | m I j for each m I j B I . Size of precomputations modulo m σ is almost identical.

  | m I j for 1 ¤ i j ¤ k. A similar analysis leads to an extra cost in terms of EMM β given by pk 2 k pn 1q kpk¡1q 2 qEMM β . Tab. III and IV show these overheads with bounds c V d ¤ 3 2 . In this case, n k. Thus the RNS-MRS approach requires around twice more moduli. Ratio in Tab. IV are clearly greater than 2 because of MRS conversions.
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  This enables to directly Fig.1: Computing tcR ¡1 s mod mσ by formula (6), together with strategy described in Corollary 2.5 deduce the following corollary, which expresses this bound no more in terms of ε but by directly using the value of ρ R . It also details how to use previous theorem to perform an exact round-off through formula[START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF].

	def	r 2n 1¡2σρ R

[START_REF] Bajard | Modular multiplication and base extensions in residue number systems[END_REF] 

Then Remark 2.2 and (9) allow to conclude the proof.

Theorem 2.4 provides a lower bound for acceptable γ's for any basis R verifying σρ R 1 2 ¡ ε. Corollary 2.5: Let R be a basis of lattice L such that σρ R 1 2 , n ¥ 1 an integer (e.g. for our purpose, n is size of RNS base B involved in the modular reduction, Alg. 1), and m σ a modulus coprime to 2d. Let's denote γ R,n s and r p2γcR I dq mod p2dq 2d ¢ e with e v¡1, nw . For any γ coprime to 2dm σ and s.t. γ ¥ γ R,n , we have:

  For implementing an efficient RNS CVP round-off procedure which uses new error correction technique, γ R,n should

		128	256	384	512	640	768
	σ	3	3	3	3	3	2
	max	2003	4775	3637	4059	683	334
	min	10	6	6	6	5	4
	median	66.5	37.5	31	28.5	21	9
	mean diff.	193.7	260.9	162.6	193.6	41.6	13.2

TABLE I :

 I Statistics about γ R,1 for 100 random LLL-reduced matrices R for each dim.be "reasonably" small, meaning comparatively to word size β of other moduli (i.e. m β for all m B). Indeed when γ R,n is not larger than β, γ can be a single modulus. Then the base B I in Alg. 1 is just the set of two moduli tγ, m σ u. In this case the needed comparison to recover a centered remainder modulo γ is directly performed on the residue mod γ. Hence the present technique is particularly efficient for matrices R such that 0 σρ R

	1 2 ¡ n β (i.e. γ R,n β).
	In practice, the constraint γ R,n	β does not seem to be
	so restrictive for usual values of β 2

r (i.e. r ¥ 16). By analysing basis R obtained through LLL-reduction of matrices randomly picked up in v¡ , w ¢ (as suggested in

[START_REF] Micciancio | Improving Lattice Based Cryptosystems Using the Hermite Normal Form[END_REF]

) for some dimensions from 128 to 768 with respect to σ 2 or 3, it appears (cf. Tab. I) that γ R,1 is most of the time quite "small" (i.e. comparatively to β). Then choosing a lattice basis R with γ R,n β should not weaken the protocol.

C. Full RNS Rounding-off CVP algorithm

The next part presents a detailed algorithm computing c ¡ tcR ¡1 sR. It is based on Alg. 1 together with

[START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF]

, and it performs the acceleration technique. To provide an optimized algorithm, all possible precomputations for Alg. 2 are provided in a first part. A radix β 2 r as word size is fixed from now on. All moduli used are constrained to own only one β-digit. So any involved matrix R is assumed to verify γ R,n β with n |B|. Next, the proposed algorithm is detailed. Finally, a discussion on computational and space costs is provided.

1) Precomputations: Precomputable data (22) are found by expanding involved expressions. We aim at computing c ¡ tcR ¡1 sR mod m σ . c is the only input variable. Due to our previous discussions, the strategy exploits following quantities:

  ) 4: end for 5: s γ Ð |c γ Rγ dγ | γ #2 nd parallel step; part of (19)6: p mσ Ð |c mσ Rσ dσ | mσ #2 nd parallel step; part of (21)

7:

  : p mσ Ð |p mσ t mσ R σ | mσ

	9: t mσ Ð |q I	σ	s γ | mσ		th parallel step; (19) #5 th parallel step; part of (21) #6 th parallel step; (21)
	11: return p mσ modc m σ		
		64		128	256	512	1024
	r 24	6.9%	3.2%	1.5%	0.7%	0.3%
	r 32	8.0%	3.7%	1.7%	0.8%	0.4%
	r 64	12.4%	5.7%	2.6%	1.2%	0.6%
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TABLE II :

 II Memory overhead of RNS precomputations comparatively to binary storage of R ¡1 for several word-size β 2 r and dimensions .

TABLE III :

 III Memory overhead of[START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF] comparatively to present full RNS approach for several word-size β 2 r and dimensions .

		64	128	256	512	1024
	24	133.5%	141.9%	149.1%	155.9%	162.3%
	32	123.1%	130.5%	136.4%	141.7%	146.6%
	64	105.1%	112.1%	116.7%	120.2%	123.0%

TABLE IV :

 IV Number of EMM β overhead of[START_REF] Bajard | Babai round-off CVP method in RNS: Application to lattice based cryptographic protocols[END_REF] comparatively to present full RNS approach for several word-size β 2 r and dimensions .

  : q Ð pt ¢ ¡m ¡1 q mod 2 r s #Cycle k 1 d: Mult. and get

	1: t Ð a1 ¢ b1 2: for i Ð 2 to k do 3: t Ð t ai ¢ bi	#Cycle 1: Multiply #Cycle 2 to k #Mult. and acc.
	4: end for	
	r s LSB 6: t Ð t q¢m 2 r s and get r 1 MSB #Cycle k 1 2d: Mult., cycle k 2 2d: add
	7: return t	

5

  Table V details the number of cycles needed to execute Alg. 2, as well as the number of precomputed elements required for each of 6 main steps of Alg. 2. For instance, we can notice that lines 5 and 6 completely overlap with computation of Q detailed in Alg. 4. Full RNS CVP Detailed: Q computation step Require: Residues of c in B and precomputations among (22)

	Algorithm 4

TABLE V :

 V Performance and Memory Size

	p , nq Mem./Rower	Area/Rower	Freq.	Tot. Area
	p64, 16q	(Elts) 4162	(LUTs/Regs/DSP/BRAM) 19	MHz 400	(estimation) 304
	p128, 38q 16514	(30/17/2/15) 19	300	(480/272/32/240) 722
			(30/17/2/56)		(1140/646/76/2128)

TABLE VI :

 VI Results of P&R for ML510 Eval. board (Virtex5)

	p , nq Mem./Rower	Area/Rower	Freq.	Tot. Area
	p64, 16q	(Elts) 4162	(LUTs/Regs/DSP/BRAM) 20	MHz 468	(estimation) 320
	p128, 38q 16514	(60/17/2/15) 20	415	(960/272/32/240) 760
			(60/17/2/56)		(2280/646/76/2128)

TABLE VII :

 VII Results of P&R for KC705 Eval. board (Kintex7)