
HAL Id: hal-01170577
https://hal.sorbonne-universite.fr/hal-01170577v1

Submitted on 1 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RNS Arithmetic Approach in Lattice-based
Cryptography Accelerating the ” Rounding-off ” Core

Procedure
Jean-Claude Bajard, Julien Eynard, Nabil Merkiche, Thomas Plantard

To cite this version:
Jean-Claude Bajard, Julien Eynard, Nabil Merkiche, Thomas Plantard. RNS Arithmetic Approach
in Lattice-based Cryptography Accelerating the ” Rounding-off ” Core Procedure. 2015 IEEE 22nd
Symposium on Computer Arithmetic, Jun 2015, Lyon, France. pp.113-120, �10.1109/ARITH.2015.30�.
�hal-01170577�

https://hal.sorbonne-universite.fr/hal-01170577v1
https://hal.archives-ouvertes.fr


RNS Arithmetic Approach in Lattice-based
Cryptography

Accelerating the ”Rounding-off” Core Procedure

Jean-Claude Bajard, Julien Eynard�
Sorbonne Universités, UPMC Univ. Paris 6,
UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris
{jean-claude.bajard,julien.eynard}@lip6.fr

Nabil Merkiche
DGA/MI

Rennes, France
nabil.merkiche@intradef.gouv.fr

Thomas Plantard
Univ. of Wollongong

CCISR
Wollongong, Australia
thomaspl@uow.edu.au

Abstract—Residue Number Systems (RNS) are naturally con-
sidered as an interesting candidate to provide efficient arithmetic
for implementations of cryptosystems such as RSA, ECC (El-
liptic Curve Cryptography), pairings, etc. More recently, RNS
have been used to accelerate fully homomorphic encryption as
lattice-based cryptogaphy. In this paper, we present an RNS
algorithm resolving the Closest Vector Problem (CVP). This
algorithm is particularly efficient for a certain class of lattice
basis. It provides a full RNS Babai round-off procedure without
any costly conversion into alternative positional number system
such as Mixed Radix System (MRS). An optimized Cox-Rower
architecture adapted to the proposed algorithm is also presented.
The main modifications reside in the Rower unit whose feature
is to use only one multiplier. This allows to free two out of three
multipliers from the Rower unit by reusing the same one with
an overhead of 3 more cycles per inner reduction. An analysis
of feasibility of implementation within FPGA is also given.

Index Terms—Residue Number System, Lattices, CVP, Round-
off, Hardware Implementation, FPGA

INTRODUCTION

On the one hand Residue Number Systems (RNS) are sup-
plied with efficient arithmetic. Computations over big data are
distributed across small units concurrently and independantly.
On the other hand cryptography area deals with lots of compu-
tations over huge numbers. Thus, RNS is naturally interesting
to provide efficient implementations of some cryptosystems.
There have already been conducted works on RSA [1], ECC
[2], and pairings [3], [4] procedures acceleration. Advantages
of RNS are exploited so as to optimize modular multiplication,
which is a core operation for some cryptoprimitives.

Besides these considerations, modern cryptography makes
more and more room for lattice-based cryptography which
appears to remain secure in a post-quantum paradigm. In this
area, protocols are based on some problems related to Eu-
clidean lattices, such as the Closest Vector Problem (CVP) [5].
For instance, it has been used to create GGH [6] and NTRU
[7] cryptosystems. Moreover, interest of lattice-based cryp-
tography has significantly increased since discovery of fully
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homomorphic encryption scheme by Gentry [8]. Expected for
more than 30 years, this property is based on ideal lattices used
within GGH-like cryptosystems. Despite all those powerful
results, huge computational cost of underlying operations over
lattices restrains feasibility of practical implementations. A
recent result [9] dealing with this drawback contributes to
arithmetical enhancement of lattice-based cryptography by
giving a specific RNS-MRS algorithm which computes Babai’s
round-off procedure. However, it has the inconvenience to
require a conversion into a positional system, like MRS [10],
in order to obtain an exact RNS modular reduction.

The present work aims at constructing a full RNS round-off
procedure, which will avoid an inconvenient MRS conversion.
In particular, the problem of possible inacurracy of RNS
modular reduction operation is addressed by using some of
geometrical properties of the involved lattice basis. Finally, a
full RNS CVP algorithm is analysed and considerations about
hardware implementation are given.

Preliminary definitions on RNS and lattice-based cryptogra-
phy are given in Section I, along with RNS modular reduction
inaccuracy problem. Section II presents a solution to this
problem along with an optimised algorithm solving the CVP.
Section III presents a dedicated architecture and practical
considerations are provided in section V before conclusion.

Writing convention: in further discussions, matrices (resp.
vectors) will be denoted by uppercase (resp. lowercase) bold-
faced letters.

I. BACKGROUND OVERVIEW

A. RNS and modular reduction

1) Recalls and notations: RNS are based on the Chinese
Remainder Theorem (CRT) [10]. This theorem states that
given an RNS base B � tm1, . . . ,mnu (which is a set of
n pairwise coprime numbers called moduli) there exists a
ring isomorphism Z{MZ �

Ñ Z{m1Z � . . . � Z{mnZ where
M �

±n
i�1mi. Each integer x belonging to the so-called

dynamic range v0,Mv of B is bijectively associated to a tuple
of residues p|x|mi � x mod miq1¤i¤n. Moreover, additions,



subtractions and multiplications can be performed concur-
rently and independantly on the residues. Exact divisions by
an integer z are also possible as long as gcdpz,Mq � 1. In
this case, it boils down to the multiplication by

��z�1
��
M

.
The main drawback of RNS is that they are non positional

numerical systems. Thus, comparisons require conversion
within a positional system, such as Mixed Radix System
(MRS) [10]. Modular reduction is also quite a difficult task.
State-of-art algorithms [11], [12] are based on an adaptation
of classical Montgomery’s modular reduction [13]. Such tech-
niques use conversion operations between two RNS bases.

2) Base conversions: A base conversion denoted
Bex pB,B1, xq aims at computing residues in a base B1
of an integer x P v0,Mv given in a base B � tm1, ..,mnu.
To achieve it, the constructive proof of CRT leads to:

x �
ņ

i�1

��xiM�1
i

��
mi
Mi modM. (1)

The efficiency of such conversion depends on how reduction
modulo M is performed, or in other words how the integer
αx � t 1

M

°n
i�1

��xiM�1
i

��
mi
Miu is computed. It can be done

by adding a redundant modulus to B [14], or by computing
an approximation [15]. A particularly efficient but not accurate
conversion consists in not computing αx at all [12]. That way,
a conversion is a single matrix multiplication. But one only
obtains residues of

°n
i�1

��xiM�1
i

��
mi
Mi in B1.

Another approach is to reconstruct x into a positional mixed
radix system [10] and to reduce it into B1. The problem is that
computation of MRS coefficients is not absolutely parallel.
Therefore it breaks the efficiency brought by RNS.

3) RNS modular reduction: Implementation of efficient
RNS modular reduction is a critical question because of non
positional character of RNS. Optimized algorithms are adapted
from Montgomery’s reduction [13] and use base conversions.
The principle is the following. Let B and B1 be two coprime
RNS bases and x be an integer expressed in those two bases
and which has to be reduced modulo p. Then by denoting
q � |�x{p|M we compute s � x�pq

M . By construction,
s � xM�1 mod p. q is easily computed from residues of
x and |�1{p|M directly into B. However, division by M
cannot be performed in B as is. Hence, q is converted into an
auxiliary base B1 by using a base conversion. Thus the exact
division by M is done in B1. However, a problem emphasized
in Remark 1.1 rises.

Remark 1.1: As for binary Montgomery reduction, RNS
modular reduction gives

��xM�1
��
p
� e� p where e is integer.

The value of e can depend on the sign of x and on the chosen
base conversion technique used to convert q ¥ 0. If |x|  Mp
and Bex pB,B1, qq gives residues of q� δM with δ ¥ 0, then
the result satisfies �p   x�pq�δMp

M   p2� δq p. Thus e P
v�1, δ � 1w. Even if δ � 0, e may still be equal to �1. This
error can be detected by comparing the result to p and 0. But
such a comparison requires a costly RNS-to-MRS conversion.

The computational cost of RNS modular reduction mainly
depends on chosen base conversion technique. Because reduc-
tion can be inaccurate whatever base conversion is (cf. Rem.

1.1), a new approach is proposed in [12] to accelerate the
reduction by not computing reduction modulo M in (1) at all.
In this case, the final result belongs to w� p, pn� 1qpv. It can
be sufficient for certain situations, as it will be for ours. The
general scheme of this reduction is summarized in Alg. 1.

Algorithm 1 RNSModRed px, p,B,B1q

Require: x in B Y B1 with |x|  Mp. n def
� |B|.

Ensure: s �
��xM�1

��
p
� ep in B1, with e P v�1, nw.

1: q Ð
�
�xp�1

�
mod M #in parallel in B

2: q1 Ð
°n
i�1

��qiM�1
i

��
mi

Mi

3: sÐ x�q1p
M

mod M 1 #in parallel in B1
4: return s

B. Round-off operation in lattice-based cryptography

1) GGH-like cryptosystems: Some classical lattice-based
cryptographic protocols rely on the complexity of computation
of a close vector of a lattice L for any given vector c P Z`.
Here and further ` denotes the dimension of L. If one knows
a nearly orthogonal basis R P Z`�` of L, an obvious way
to exhibit such a close vector is to compute coordinates of
c relatively to R, and to select the closest integer vector
by applying a round-off operation. This approach was intro-
duced by Babai [5]. Consequently, computations of the form
tcR�1s are core operations in lattice-based cryptography. For
instance, this approach forges GGH cryptosystem principles
[6]. Given a fixed integer parameter σ the plaintext space is
Pσ � v�σ, σw`. The secret key is a basis R of L verifying
the following ”Babai’s condition”:

Dε Ps0,
1

2
r, 0   σρR  

1

2
� ε, (2)

where ρR denotes the maximum L1-norm of columns of R�1

and is defined as ρR � maxt
°`
i�1 |pR

�1qi,j | | 1 ¤ j ¤ `u.
This condition ensures that tpR�1s � 0 for any p P Pσ .

More precisely, for any p P Pσ and any kR P L (for k P Z`),
then the Babai condition implies the following equalities:

tpp� kRqR
�1

s � tpR�1s� k � k. (3)

The encryption function requires a public basis B � UR (with
U unimodular: U P GL`pZq). Consequently, an encryption (4)
consists in adding a vector of L to p. This vector is obtained
by using B. Decryption (5) performs the round-off procedure.

Enc ppq � p� kB � c pk
R
Ð Z`q (4)

Dec pcq � c� tcR�1sR � p (5)

Correctness of decryption (i.e. Dec pEnc ppqq � p for p P
Pσ) is due to (3). Indeed, the vector kBR�1 � kU is integer.
So it can be ruled out from the round-off operation.

2) RNS Babai’s round-off: In [9] it is suggested to reduce
computational cost of lattice-based cryptoprimitives by using
RNS as an efficient arithmetic. More precisely an RNS-MRS
algorithm implementing the round-off is given.

As a first step, the rational formula tcR�1s is turned into
an integer formula. If d denotes detR then R1 def� dR�1 is



an integer matrix. Consequently one can rewrite tcR�1s �

tcR
1

d � 1
2v1u where v1

def
� p1, . . . , 1q P Z`. This leads to (6),

where d denotes the vector d� v1.

tcR�1s �
2cR1 � d� rp2cR1 � dq mod p2dqs

2d
(6)

The modular reduction is feasible through RNS Montgomery
reduction (Alg. 1) with a main base B whose product of moduli
is denoted M . To do so, one has to compute the following
”Montgomery representations”:

R̃ �
�
2MR1

�
mod p2dq, d̃ � pMdq mod p2dq. (7)

Since our goal is to provide a full RNS implementation of
the Dec function (5) and because p is in Pσ � v�σ, σw`,
computation of (6) can be performed within a single modulus
RNS base called mσ . mσ has to be greater than 2σ� 1. Thus
p is recovered from its centered remainder mod mσ . The
reduction mod 2d requires a large base B � tm1, . . . ,mnu
in order to use RNS reduction (in our case, B1 is just tmσu).
As mentioned in Remark 1.1, a problem is that we can possibly
obtain an uncompletely reduced value.

Remark 1.2: When the modular reduction in (6) is per-
formed by using RNSModRed

�
cR̃� d̃, 2d,B,mσ

	
, one

obtains p2cR1 � dq mod p2dq � 2de with an error vector
e P v�1, nw`. Thus, (6) computed together with Alg. 1 gives�
tcR�1s� e

�
mod mσ .

In [9] this error is corrected thanks to a comparison. A
modified version of Alg. 1 is used. A redundant modulus
mr besides a base B1 allows to perform a second reduction
directly into B1. That way, the final error vector e belongs to
v0, 1w`. However, it does not completely solve the problem.
The solution in [9] is to use a large base B1 which verifies
M 1 ¡ 4d ¡ p2cR1 � dq mod p2dq � 2de. Then a conversion
into MRS is performed. It allows the comparison with 2d.
Finally, this allows to recover and to correct e.

Our purpose is to avoid expensive conversion into any other
number system than RNS. So we choose to compute the
modular reduction in (6) via Alg. 1 as is. The next section
aim at finding another type of approach to correct the error
vector e. To achieve it, some properties of R will be used.

II. ACCELERATING THE ROUND-OFF

A. Correcting modular reduction in round-off computation

We aim at recovering e in order to correct it. It will allow to
compute tcR�1s� e thanks to (6) used together with Alg. 1.

1) Establishing a strategy: Following Remark 2.1 will be
a guideline for the new strategy.

Remark 2.1: If one can find an integer γ such that tcR�1s �
0 mod γ for any ciphertext c and such that e � 0 mod γ as
soon as e � 0, then e can easily be detected.

A priori there is no reason that such a γ exists. Thus, we
consider some integer γ ¡ 0 and we compute tγcR�1s. Since
this round-off is still computed via (6) and Alg. 1, we obtain
tγcR�1s � e, where e belongs to v�1, nw`. Moreover, we
have tγcR�1s � tγpR�1s � γtcR�1s (cf. (3)). But now
Babai’s condition (2) for R does not guarantee anymore that

tγpR�1s � 0. Thus by computing tγcR�1s we introduce a
global error which is tγpR�1s�e. Finally, the result obtained
at the end of computation is (8).

tγcR�1s� e � γtcR�1s� tγpR�1s� e (8)
ñ
�
tγcR�1s� e

�
mod γ �

�
tγpR�1s� e

�
mod γ (9)

Consequently, if there exists an integer γ large enough so that
tγpR�1s� e is computable from its residue mod γ, we will
be able to correct it. Then the exact round-off result can be
obtained. This is the purpose of following remark.

Remark 2.2: modc denotes the centered remainders mod γ.
If for any i P v1, `w the bounds �tγ�1

2 u ¤ t
�
γpR�1

�
i
s�ei ¤

tγ2 u hold, then one can retrieve tγpR�1s� e by:

tγpR�1s� e �
�
tγpR�1s� e

�
modc γ. (10)

Therefore, using (8), (9) and (10), tcR�1s can be exactly
computed via following equality:

tcR�1s �
1

γ

�
tγcR�1s� e� t

�
tγcR�1s� e

�
modc γu

�
.

(11)
From now on, the goal is to find a condition so that γ

satisfies the bounds emphasized in Remark 2.2. Then, after
computation of tγcR�1s through (6), we will be able to
deduce the exact round-off tcR�1s using (11). Furthermore,
it may be noticed that since we need to compute tγcRs mod
γ through (6) in order to obtain (9), γ must be coprime to 2d.

2) Finding an adequate γ: We need to find an acceptable
odd γ for which the bounds described in Remark 2.2 are
verified for any p P Pσ and any e P v�1, nw`. For that
purpose, we use Remark 2.3.

Remark 2.3: If �tγ�1
2 u � 1

2  
�
γpR�1

�
i
� ei   tγ2 u � 1

2
for all i P v1, `w, then Remark 2.2 and (10) hold.

From Remark 2.3 we deduce that γ will depend on ε in
Babai’s condition (2). Theorem 2.4 clarifies this dependancy.

Theorem 2.4: Let R P Z`�` be a basis of lattice L verifying
Condition (2) for a certain ε Ps0, 12 r. Let e P v�1, nw` be an
integer vector (with n ¥ 1), and c � p � kB with p P Pσ
and k P Z`. Then for any odd integer γ verifying γε ¥ n, the
following equality holds:

tγpR�1s� e �
�
tγcR�1s� e

�
modc γ.

Proof: Due to Babai’s condition, pR�1 Ps� 1
2�ε,

1
2�εr

`.
Consequently, any ith component of pγpR�1 � eq verifies:

�
γ

2
� γε� n  

�
γpR�1 � e

�
i
 
γ

2
� γε� 1.

Hence, by using Remark 2.3, the bounds �tγ�1
2 u ¤

t
�
γpR�1 � e

�
i
s ¤ tγ2 u hold as soon as γ verifies the fol-

lowing set of conditions:#
�tγ�1

2 u� 1
2 ¤ �γ

2 � γε� n
γ
2 � γε� 1 ¤ tγ2 u� 1

2

ô

#
γε ¥ n

γε ¥ 1
ô γε ¥ n

(12)
Then Remark 2.2 and (9) allow to conclude the proof.

Theorem 2.4 provides a lower bound for acceptable γ’s for
any basis R verifying σρR   1

2 � ε. This enables to directly



Fig. 1: Computing tcR�1s mod mσ by formula (6), together with strategy
described in Corollary 2.5

deduce the following corollary, which expresses this bound no
more in terms of ε but by directly using the value of ρR. It
also details how to use previous theorem to perform an exact
round-off through formula (6).

Corollary 2.5: Let R be a basis of lattice L such that σρR  
1
2 , n ¥ 1 an integer (e.g. for our purpose, n is size of RNS
base B involved in the modular reduction, Alg. 1), and mσ a
modulus coprime to 2d. Let’s denote γR,n

def
� r 2n

1�2σρR
s and

r � p2γcR1 � dq mod p2dq � 2d� e with e P v�1, nw`. For
any γ coprime to 2dmσ and s.t. γ ¥ γR,n, we have:

tcR�1s mod mσ �����
�
2γcR1 � d� r

2d
�

"
2γcR1 � d� r

2d
modc γ

*

γ�1

����
mσ
(13)

Proof: We fix ε � 1
2�σρR. It follows that γR,n � rnε s �

r 2n
1�2ρR

s is a lower bound for acceptable odd γ’s with respect
to theorem 2.4. Moreover, by using (6) and (8), we can write:

2γcR1 � d� r

2d
� tγcR�1s� e � γtcR�1s� tγpR�1s� e.

Furthermore, previous theorem enables to write tγpR�1s �

e � 2γcR1�d�r
2d modc γ. Hence (13) immediately follows.

Given adequate γ with respect to Corollary 2.5, the strategy
is to compute the whole formula (6) mod mσ and mod γ with
RNSModRed

�
cR̃� d̃, 2d,B, tγ,mσu

	
where Montgomery

representations are now the following ones:

R̃
def
�
�
2γMR1

�
mod p2dq, d̃

def
� pMdq mod p2dq. (14)

Then, residues modulo γ enable to correct residues modulo
mσ of rounded value tcR�1s. Fig. 1 illustrates this approach.

B. About the size of γ

GGH-like protocols with parameter σ P N are based on
the matrices R P Z`�` verifying σρR   1

2 . By definition the
lower bound γR,n exists for any such matrix R and any n. It
is clear that closer to 1

2 the σρR is, the bigger γR,n will be.
For implementing an efficient RNS CVP round-off proce-

dure which uses new error correction technique, γR,n should

` 128 256 384 512 640 768
σ 3 3 3 3 3 2

max 2003 4775 3637 4059 683 334
min 10 6 6 6 5 4

median 66.5 37.5 31 28.5 21 9
mean diff. 193.7 260.9 162.6 193.6 41.6 13.2

TABLE I: Statistics about γR,1 for 100 random LLL-reduced matrices R
for each dim. `

be ”reasonably” small, meaning comparatively to word size β
of other moduli (i.e. m   β for all m P B). Indeed when γR,n
is not larger than β, γ can be a single modulus. Then the base
B1 in Alg. 1 is just the set of two moduli tγ,mσu. In this
case the needed comparison to recover a centered remainder
modulo γ is directly performed on the residue mod γ. Hence
the present technique is particularly efficient for matrices R
such that 0   σρR   1

2 �
n
β (i.e. γR,n   β).

In practice, the constraint γR,n   β does not seem to be
so restrictive for usual values of β � 2r (i.e. r ¥ 16). By
analysing basis R obtained through LLL-reduction of matrices
randomly picked up in v�`, `w`�` (as suggested in [16]) for
some dimensions ` from 128 to 768 with respect to σ � 2 or
3, it appears (cf. Tab. I) that γR,1 is most of the time quite
”small” (i.e. comparatively to β). Then choosing a lattice basis
R with γR,n   β should not weaken the protocol.

C. Full RNS Rounding-off CVP algorithm

The next part presents a detailed algorithm computing
c� tcR�1sR. It is based on Alg. 1 together with (6), and it
performs the acceleration technique. To provide an optimized
algorithm, all possible precomputations for Alg. 2 are provided
in a first part. A radix β � 2r as word size is fixed from now
on. All moduli used are constrained to own only one β-digit.
So any involved matrix R is assumed to verify γR,n   β with
n � |B|. Next, the proposed algorithm is detailed. Finally, a
discussion on computational and space costs is provided.

1) Precomputations: Precomputable data (22) are found by
expanding involved expressions. We aim at computing c �
tcR�1sR mod mσ . c is the only input variable. Due to our
previous discussions, the strategy exploits following quantities:

q1 �
ņ

i�1

qmiMi, qmi � | � pcR̃� d̃qp2dMiq
�1|mi (15)

r � |2γcR1 � d|2d � 2de �
cR̃� d̃� 2dq1

M
(16)

s � tγcR�1s� e �
1

2d

�
2γcR1 � d� r

�
(17)

First, (15) is obtained in RNS base B. Second, (16) is
computed in tγ,mσu. Then, (17) is obtained modulo γ and
mσ . Finally centered remainder of s mod γ enables to correct
residues in RNS channel mσ so that tcR�1s mod mσ can be
obtained (cf. (13) in Corollary 2.5).

In B: By using R̃mi and d̃mi in (22) we can re-write
(15) with qmi �

���cR̃mi � d̃mi

���
mi

for all mi P B. For base
conversion, it will be useful to write the set of n vectors qmi
as a matrix Q whose ith row is the vector qmi .



In tγu: If we develop right member of (17) modulo γ
by using (15) and (16) we obtain:

|s|γ �

�����c �R̃2dM
�

d

2d
�

d̃

2dM
�

ņ

i�1

qmi
mi

�����
γ

. (18)

Due to precomputations (22) the required result modulo γ is:

|s|γ �
�
cγR̃γ � d̃γ � hγQ

	
modc γ � tγpR�1s� e. (19)

In tmσu: The one modulus-base tmσu is dedicated to
the full computation of c � tcR�1sR. First, by using (13)
from corollary and (17) and (19), it comes that:

��c� tcR�1sR
��
mσ

�

����c� 1

γ
ps� sγqR

����
mσ

(20)

where | � s|mσ �

����c R̃�2γMR1

2dM � d̃�Md
2dM �

n°
i�1

qmi
mi

����
mσ

. Thus

precomputed data (22) allow to write:��c� tcR�1sR
��
mσ

�
���cR̃σ � d̃σ � phσQ� sγqRσ

���
mσ

.

(21)

@mi P B, R̃mi �

����� �R̃2dMi

�����
mi

; d̃mi �

����� �d̃2dMi

�����
mi

R̃γ �

����� �R̃2dM

�����
γ

; d̃γ �

�����Md� d̃

2dM

�����
γ

;hγ �

������1mi

����
γ

�
1¤i¤n

R̃σ �

�����I` � R̃� 2γMR1

2dγM
R

�����
mσ

;Rσ �

����Rγ
����
mσ

d̃σ �

����� d̃�Md

2dγM
R

�����
mσ

;hσ �

����� 1mi

����
mσ

�
1¤i¤n

(22)
2) Main Algorithm 2: RNS base B used for the modular

reduction (16) verifies 2dM ¡ |cR̃� d̃| for any input c. Thus
we assume that the set of all possible }c}8 is bounded by
some integer c8. c can own negative coefficients. Finally B
is assumed to satisfy M ¡ `c8 � 1.

Complexity analysis: Complexity of RNS algorithms is
generally expressed in terms of elementary modular multipli-
cations with respect to some moduli m such that m   β � 2r.
To simplify complexity analysis, EMMβ denotes such modular
multiplication. The n � 1 moduli of B Y tγu are assumed to
own only one β-digit. Since bit-size of mσ and β can differ
by orders of magnitude it is useful to denote βσ the quantity
2rlog2pmσqs. Binary-to-RNS conversions are based on decom-
position of coefficients of c in base β. Residues of powers
of β can be precomputed. That way the conversion requires
pn� 1q`� rlogβ pc8qsEMMβ � `� rlogβσ pc8qsEMMβσ . When
this conversion is done, the cost of steps 2 to 11 of RNS CVP
algorithm 2 is

�
pn� 1q`2 � n`

�
EMMβ �

�
2`2 � n`

�
EMMβσ .

Space efficiency: Precomputed powers of β for binary-
to-RNS conversion cost no more than pn�1qprlogβpc8qs�1q
β-words and prlogβσ pc8qs � 1q βσ-words. Precomputations
(22) represent pn � 1qp`2 � `q � n β-words and 2`2 � ` � n

Algorithm 2 Full RNS Rounding-off CVP algorithm
Require: input c; data: RNS base B with M ¡ p`c8�1q and

n � |B|, γ ¥ γR,n, mσ ¥ 2σ � 1, M , γ, mσ and 2d all
pairwise coprime, and precomputations (22).

Ensure:
�
c� tcR�1s�R

�
modcmσ .

1: pcmqmPBYtγ,mσu Ð Bin_to_RNSpcq #1st parallel step
2: for i � 1 to n do #2nd parallel step
3: Qi,� Ð |cmiR̃mi � d̃mi |mi #qmi , (15)
4: end for
5: sγ Ð |cγR̃γ � d̃γ |γ #2nd parallel step; part of (19)
6: pmσ Ð |cmσR̃σ � d̃σ|mσ #2nd parallel step; part of (21)

7:

�
q1γ
q1σ



Ð

�
hγ
hσ



Q P Z2�` #3rd parallel step

8: sγ Ð
�
sγ � q1γ

�
modc γ #4th parallel step; (19)

9: tmσ Ð |q1σ � sγ |mσ #5th parallel step; part of (21)
10: pmσ Ð |pmσ � tmσRσ|mσ #6th parallel step; (21)
11: return pmσ modcmσ

` 64 128 256 512 1024

r � 24 �6.9% �3.2% �1.5% �0.7% �0.3%
r � 32 �8.0% �3.7% �1.7% �0.8% �0.4%
r � 64 �12.4% �5.7% �2.6% �1.2% �0.6%

TABLE II: Memory overhead of RNS precomputations comparatively to
binary storage of R�1 for several word-size β � 2r and dimensions `.

βσ-words. To compare with a binary approach, each coefficient
of R�1 should be computed with a rlog2

�
c8p

1
2 � σρRq

�1
�
s

bit precision to ensure no decryption error [6]. We recall
that γR,n

def
� rn � p 12 � σρRq

�1s and that our approach is
optimal when γR,n   β. Thus the binary method requires
at most rlog2p

c8β
n qs � `2 bits of storage. Tab. II shows

some memory ratio between binary storage of R�1 and RNS
precomputations where we assume that c8 � d and d is set
to Hadamard’s bound `

3
2 ` (e.g. R results in a LLL-reduction

applied to some random matrix in v�`, `w`
2

, cf. [16]).
3) Comparison with hybrid RNS-MRS approach [9]: In [9],

the final computation is also performed modulo mσ . The same
main RNS base B than ours (i.e. M ¡ `c8 � 1) is used
for computing modular reduction. The main difference in this
other approach is that an auxilairy base B1 with M 1 ¡ 4d is
required. Indeed the result of reduction is in v0, 4dv, and it
must be compared with 2d through MRS. The first step of
reduction is a fast conversion (like in Alg. 1) from B to B1 Y
tmr,mσu. Then a second reduction is based on a conversion
from tmru to B1 Y tmσu (simple ”duplication” of residues
mod mr) in order to reduce the result in v0, 4dv. Montgomery
representations differ from (14) but their size is still the same.
They are R̃ � |2mrMR1|2d and d̃ � |mrMd|2d.

By denoting k � |B1|, i.e. k � rlogβ p4dqs, the extra cost
(mem. and comp.) of hybrid approach are due to computations
in B1 and to the MRS conversion. In terms of precomputations
dedicated to modular reduction, the overhead is kp`2 � `q �
pk � 1qn β-words for adequate matrices and vectors R̃m1

j
,

d̃m1
j
, hm1

j
and extra specific values |m�1

r |m1
j

for each m1
j P

B1. Size of precomputations modulo mσ is almost identical.



` 64 128 256 512 1024

r � 24 �97.0% �98.8% �99.5% �99.8% �99.9%
r � 32 �95.6% �98.1% �99.2% �99.7% �99.9%
r � 64 �91.2% �95.8% �98.1% �99.2% �99.6%

TABLE III: Memory overhead of [9] comparatively to present full RNS
approach for several word-size β � 2r and dimensions `.
` 64 128 256 512 1024

24 �133.5% �141.9% �149.1% �155.9% �162.3%
32 �123.1% �130.5% �136.4% �141.7% �146.6%
64 �105.1% �112.1% �116.7% �120.2% �123.0%

TABLE IV: Number of EMMβ overhead of [9] comparatively to present
full RNS approach for several word-size β � 2r and dimensions `.

The only extra cost is due to |m�1
r |mσ for second conversion.

Next, MRS conversion requires to precompute kpk�1q
2 residues

|pm1
iq
�1|m1

j
for 1 ¤ i   j ¤ k. A similar analysis leads

to an extra cost in terms of EMMβ given by pk`2 � k`pn �

1q� kpk�1q
2 qEMMβ . Tab. III and IV show these overheads with

bounds c8 � d ¤ `
3
2 `. In this case, n � k. Thus the RNS-

MRS approach requires around twice more moduli. Ratio in
Tab. IV are clearly greater than 2 because of MRS conversions.

III. TOWARDS HARDWARE IMPLEMENTATION

In order to use concurrency properties of RNS, a feasibility
study about efficient and dedicated architecture for hardware
implementations on FPGA is led. The chosen architecture is
based on Cox-Rower architecture proposed in [15], and in
[17] with several modifications. We also explain how the main
Algorithm 2 fits with such type of architecture.

A. Cox-Rower Architecture

In [15], the Cox-Rower architecture was proposed along
with a new approach for base conversion. It has been improved
several times [2]–[4], [17]–[19]. Its structure consists in a
Sequencer, a Cox and a set of Rower units. Rowers deal with
the core of RNS computations. They compute modular sum-
of-products

°n
i�1 aibi mod mi. A Rower is divided into 2

stages. The first one consists in multiplication of 2 elements,
and the second one is in charge of reducing and accumulating
elements from first stage as shown in Fig. 2. Efficient algo-
rithms for reduction inside the Rower are proposed in [2],
[3], [17], [18]. They take advantage either by the pseudo-
Mersenne form of the moduli, which is mi � 2r � µi
with µi   2r{2, allowing a direct reduction, or by using a
second level of Montgomery reduction as proposed in [17]
with gcdpmi, 2

rq � 1.

B. Proposed Architecture

Our architecture is based on the one proposed in [2], [17],
[18], with several modifications. The Cox unit is unnecessary
for our purpose, as Alg. 2 does not reduce the base conversion.
So as to decrease the area of a Rower, 2 multipliers out of 3 are
removed from the Rower for a cost of 3 extra cycles to execute
the reduction inside it. Indeed, one of the most time-consuming
operation in RNS is the base conversion procedure which is a
computation of the form

°n
i�1 aibi mod mi. Moreover, the

Fig. 2: ALU’s Rower

Fig. 3: Proposed Rower architecture

most time-consuming operations in Alg. 2 are the matrix-
vector products. By using a second level of Montgomery
reduction coupled with lazy-reduction [20], it is possible to
reduce a sum of products only once. Hence the second stage
in charge of reduction can be deleted by reusing first stage.
Fig. 3 shows the proposed implementation for Rower Unit.

From lines 5 to 11 of Alg. 2, only 2 Rower units
are required. To compute the modc function (line 8), two
tricks are used to make it easy in hardware without us-
ing signed numbers. First, one can see that sγ,imodc γ �"

sγ,i if sγ,i ¤ tγ{2u
sγ,i � γ otherwise . This can be used if the com-

parison is easy to perform. Thus, our second trick is to choose
γ � 2α � 1 such that α � 2θ. It makes the comparison
easy to be done in hardware (we just need to check the
θth bit). Moreover, these 2 Rower units are used to compute
respectively mod mσ and mod γ. Because mσ is small (¤ 7
as σ P t2, 3u), and because of the trick for γ, we dedicate
two Rower units to computations mod mσ and mod γ. The γ
Rower unit remains the same than the one in Fig. 3 but with
the test of the θth bit in order to subtract or not γ.

Alg. 3 details the computation of an inner reduction by
using the proposed Rower implementation. From line 1 to 4,
we multiply and accumulate the result. Then, the reduction
is performed at steps 5 and 6. Because of the Rower unit
pipeline, the computation cannot be done directly. Thus we
need to wait 2 depth of the pipeline. However, as usually in
cryptography, most of computations can be pipelined. Thus no
idle cycles are induced. We can show that the computations in



Alg. 2 can be done with a 100% occupancy of the pipeline. In
order to fully compute Alg. 2 with the proposed architecture,
the residues have to be reduced from 2mi to mi before they
go to the main bus (as we need the exact value during the base
conversion procedure). This last reduction can be done by a
module added in the main bus. It reduces the residues going
through the bus.

Algorithm 3 InnerReductionpa, b,mq

Require: A set of a, b P pZ{2mZqk, s parameter for lazy-reduction,
�m�1 mod 2r�s and d the pipeline depth

Ensure: t �
°k
i�1 aibi2

�pr�sq mod m, 0 ¤ t   2m
1: tÐ a1 � b1 #Cycle 1: Multiply
2: for iÐ 2 to k do #Cycle 2 to k
3: tÐ t� ai � bi #Mult. and acc.
4: end for
5: q Ð pt��m�1q mod 2r�s #Cycle k � 1� d: Mult. and get

r � s LSB
6: tÐ t�q�m

2r�s
#Cycle k � 1� 2d: Mult., cycle k � 2� 2d: add

and get r � 1 MSB
7: return t

C. Full RNS CVP Algorithm Implementation

Alg. 4 gives the procedure to compute lines 2 to 4 of
Alg. 2 by using the Rower unit detailed previously. Most of the
precomputations have to be done using the inner Montgomery
representation in the Rower unit (i.e. precomputed values have
to be multiplied by 2r�s where r the radix size and s enables
the use of lazy reduction). Other steps of Alg. 2 are not
detailed but are executed in a similar way. The point is that all
computations are modular sums of products, fitting well with
Cox-Rower architecture. As emphasized in comments of main
Alg. 2, there are 6 main steps which do not overlap.

Features of the Cox-Rower architecture presented here
match GPGPU and multi-core CPU architecture purposes.
More generally, practical considerations that we make are
essentially due to the well flexibility of main algorithm. Since
it involves only RNS and fast base conversions, parallelization
is easily achieved. In next section, we analyse feasibility of
FPGA implementation. The efficiency of such platforms has
been proven for RNS implementations.

IV. ABOUT FEASIBILITY OF IMPLEMENTATION ON FPGA

Estimations about performances and area for some dimen-
sions will be given. Parameters are determined by a radix size
β � 2r, and by Hadamard’s bound for c8 and d.

A. Performance and Memory Analysis

With n � 2 parallel Rowers, binary-to-RNS conversion re-
quires rlogβpc8qs�1   n cycles when residues of powers of β
are precomputed. Table V details the number of cycles needed
to execute Alg. 2, as well as the number of precomputed
elements required for each of 6 main steps of Alg. 2. For
instance, we can notice that lines 5 and 6 completely overlap
with computation of Q detailed in Alg. 4.

Algorithm 4 Full RNS CVP Detailed: Q computation step
Require: Residues of c in B and precomputations among (22)
Ensure: Q P Zn�` s.t. Qi,� � p|cR̃� d̃|miq for 1 ¤ i ¤ n

1: for iÐ 1 to n do #concurrently in n Rowers
2: Qi,� Ð p0q`

3: for y Ð 1 to ` do #cols of R̃mi

4: for xÐ 1 to ` do #rows of R̃mi

5: Qi,y Ð Qi,y � cmi,x �
�
R̃mi

	
x,y

6: end for
7: Qi,y Ð Qi,y �

�
d̃mi

	
y

#last add.: line 4 of Alg. 2

8: end for #this loop: p`� 1q � ` cycles
9: for xÐ 1 to ` do #reduc. step, no idle cycle here

10: qmi,x Ð Qi,x ��m�1
i mod 2r�s

11: end for #this loop: ` cycles
12: for xÐ 1 to ` do #no idle cyc. when pipeline depth   `

13: Qi,x Ð
Qi,x�qmi,x�mi

2r�s

14: end for #this loop: 2` cycles
15: end for #this loop: p`� 4q � ` cycles
16: return Q

lines of Algorithm 2 Cycles Memory used (nb of words)
1 n` pn� 1qpn� 2q

2 to 6 p`� 4q` pn� 2qpp`� 1q`� 2q
7 pn� 3q` 2pn� 2q
8 `� 3 2
9 `� 3 2

10 p`� 4q` p`� 1q`� 2
Total p2`� 2n� 13q` pn� 2qpn� `2 � `� 1q

�6 �`2 � `� 2n

TABLE V: Performance and Memory Size

p`, nq Mem./Rower Area/Rower Freq. Tot. Area
(Elts) (LUTs/Regs/DSP/BRAM) MHz (estimation)

p64, 16q 4162 19 400 304
(30/17/2/15) (480/272/32/240)

p128, 38q 16514 19 300 722
(30/17/2/56) (1140/646/76/2128)

TABLE VI: Results of P&R for ML510 Eval. board (Virtex5)

p`, nq Mem./Rower Area/Rower Freq. Tot. Area
(Elts) (LUTs/Regs/DSP/BRAM) MHz (estimation)

p64, 16q 4162 20 468 320
(60/17/2/15) (960/272/32/240)

p128, 38q 16514 20 415 760
(60/17/2/56) (2280/646/76/2128)

TABLE VII: Results of P&R for KC705 Eval. board (Kintex7)

B. Implementation

We focus on FPGA SRAM devices. Indeed, FPGA are
good candidates for hardware implementation as they embed
DSP blocks as well as Block RAM. Moreover, the Rower
unit proposed in previous section easily fits in Block RAM
and DSP blocks, without adding too many LUTs or registers
from the FPGA (except for multiplexers and control). Thus
good performances can be reached in terms of frequency. We
implement the Rower unit in Xilinx Virtex-5 FPGA family
(Tab. VI) as well as Kintex-7 (Tab. VII) and estimate overall
area and performance. We take r � 24 as bit-size of radix by
cascading 2 DSP blocks in order to have few more bits for
lazy reduction (10 bits). The results show good perspective to



implement lattice on FPGA, but a memory bottleneck rapidly
appears. Indeed, for ` � 128, there are not enough BRAM
in both devices (Virtex-5 and Kintex-7) to store precomputed
data.

C. Discussion

In previous part, we have shown that hardware implemen-
tation of lattices can be done using RNS and Algorithm 2.
Adding a margin error of 25% to the maximal frequency of
the design, one can easily deduce that we need around 20µs
to compute a close lattice vector in dimension ` � 64, which
can be implemented on FPGA as is. For dimension 128, too
much precomputations have to be stored. Thus it could be
interesting to work on specific architectures such as clusters
of FPGA, or with a DMA for quick changes of memorised
values. Nevertheless, our hardware implementation shows a
real good trade-off for all existing RNS architecture in terms
of footprint or reachable frequency [2]–[4], [17].

V. CONCLUSION

A method for implementing the Babai round-off procedure
in RNS has been proposed. We provide the first full RNS
implementation of an algorithm solving the CVP (i.e. without
using MRS). The efficiency of this technique depends on the
secret lattice basis R which must verify some condition con-
nected to RNS word size. Nevertheless, by analysing several
random matrices verifying Babai’s condition, the new require-
ment does not seem restrictive when considering practical RNS
word sizes. An architecture for hardware implemention has
been detailed. It is based on a Cox-Rower like architecture
which is traditionally used for RNS implementations. Some
modifications are suggested in order to fit with specific features
of lattice-based algorithms. We have given an analysis of
FPGA implementation for dimensions 64 and 128. Despite
some memory bottlenecks, the results highlight the viability
of our approach in terms of flexibility, because the principles
of our implementation match GPGPU and multi-core CPU
features. It reinforces the fact that the RNS is an excellent
candidate for practical implementation of lattice-based proto-
cols.

We fully realize that 64 and 128 are not dimensions high
enough to allow lattice-based cryptography with secure pa-
rameters. Nevertheless, this implementation should be seen as
a proof of concept. It opens the door to multiple directions
such as approaches by blocks and pipeline, or by using FPGA
clusters or eventually multi-core CPU’s or GPU’s. All those
future works will use as their core this new proposition.
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