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Abstract

The complex spatio-temporal structures that appear in chemical and bi-

ological systems require far-from-equilibrium conditions which may lead to

the circulation of reaction fluxes. We investigate how time asymmetry of

cross-correlation functions of concentration fluctuations may be exploited to

determine reaction fluxes at the cellular level. Using simulations of the master

equation as a reference, we show that, far from a bifurcation, the Langevin

approach provides a reliable tool to compute analytical expressions for time

correlation functions. Biochemical mechanisms associated with bistability and

oscillations issued from a Hopf bifurcation or a saddle-node infinite period bi-

furcation are considered. We show that the blind use of the simple relation

obtained when assuming a linear deterministic dynamics often leads to a poor

estimation of the value of the reaction flux and even of its sign.
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Highlights:
- We design a protocol for determining a reaction flux in far-from-equilibrium sys-
tems.
- Time asymmetry of the correlation functions reveal departure from equilibrium.
- The fluctuations of the concentrations depend on the nonlinearities of dynamics.
- Time correlation functions are derived for bistable and oscillating systems.
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1 Introduction

The interplay between nonlinearity and departure from equilibrium is at the origin

of complex spatio-temporal organization in chemical and biological systems [1, 2].

The diversity of the structures developing at the cellular level is related to the

nonlinearities of the dynamics, and organization occurs at the cost of energy or

matter consumption. Sustained exchanges with the exterior, which drive the system

of interest in far-from-equilibrium conditions, are necessary to the emergence of

organized structures. Adenosine triphosphate (ATP) offers a well-known example

of biochemical species whose concentration is regulated and that plays a crucial role

in maintaining a biological system in far-from-equilibrium states. The evaluation of

the departure from equilibrium in biology is therefore an essential task.

Recent progress in nonequilibrium statistical physics offers powerful tools to

characterize far-from-equilibrium systems [3, 4, 5, 6, 7, 8, 9, 10, 11]. In particular,

the fluctuation theorem [4, 5] states that, when considering a stochastic trajectory

over a finite time t, the ratio between the probability that the time-averaged entropy

production takes a value V and the probability that it takes the opposite value

exponentially depends on the product V t. Consequently, in a far-from-equilibrium

system of sufficiently small size observed during a sufficiently small time, a negative

entropy production can be a priori observed at such a mesosocpic scale, contrary to

the prediction of the second law of thermodynamics, valid at the macroscopic scale.

However, dealing with temperature in nonequilibrium conditions remains delicate,

whereas isothermal chemical systems and the laws of chemical kinetics constitute a

favorable framework to illustrate nonlinear behaviors specific to far-from-equilibrium

dynamical systems. Efficient fluorescent probes have been developed [12, 13] and

fluorescence correlation spectroscopy (FCS) provides a sensitive detection method

of concentration fluctuations, including in vivo investigations of small volumes [14].

Time asymmetry of the correlation functions of concentration fluctuations has been
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recently observed during endocytosis, a reactant-consuming process by which cells

absorb molecules by engulfing them [15]. When the deterministic dynamics of such

a far-from-equilibrium system is linear, the difference of cross-correlation functions

of concentration fluctuations around a steady state has been shown to be universally

related to the reaction flux circulating into the system [16]. Reaction flux refers to

the notion of generalized flux introduced in thermodynamics of irreversible processes

[17]. A thermodynamic flux is said to be conjugated to a thermodynamic force

if their product gives the term of entropy production for the process of interest.

In the case of a chemical system, the reaction flux is equal to the reaction rate

and is conjugated to the affinity of the reaction. At equilibrium, all the chemical

reactions obey detailed balance, the reaction fluxes vanish and time reversibility of

the correlation functions of concentration fluctuations is recovered.

We propose to assess whether the determination of the cross-correlation functions

can be used to evaluate the reaction flux in the biologically relevant cases of nonlinear

deterministic dynamics. Specifically, we consider chemical mechanisms involving two

variable concentrations and possessing either a stable nonequilibrium steady state

or a stable limit cycle.

The paper is organized as follows. In the next Section, the method used to

derive an analytical expression of the cross-correlation functions from Langevin-

type equations is given and the result obtained for linear dynamics is recalled [16,

18]. In Section 3, a nonlinear model of enzymatic catalysis is studied and the

approximate expression of the cross-correlation functions deduced from the Langevin

approach is compared to simulations of the chemical master equation, considered

as the reference [18]. Then, chemical systems exhibiting oscillations of different

natures are considered. We give the results obtained for the Brusselator model in

the vicinity of a Hopf bifurcation [19] in Section 4. Another approach exploiting the

normal form of the deterministic equations is used to evaluate the cross-correlation
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functions around the limit cycle. In Section 5, the limitations of the Langevin

approach are pointed out in the case of large amplitude oscillations issued from a

global bifurcation, the saddle-node infinite period bifurcation. The possibility to

design a method for reaction flux evaluation from the cross-correlation functions in

the absence of knowledge of the considered dynamics is discussed in Section 6 which

concludes this paper.

2 Cross-Correlation Functions Near a Steady State

We consider a chemical mechanism involving two species X and Y of variable con-

centrations X and Y . At the macroscopic scale, the rate laws are described by

ordinary differential equations that are often nonlinear. The considered systems are

supposed to possess at least a stable steady state (Xs, Ys). The biological system

may be maintained far from equilibrium due to sustained exchanges of matter or

energy with the exterior. The Langevin approach to chemical kinetics offers the

simplest way to incorporate internal fluctuations into the description of small sys-

tems [20]. The Langevin equations are simply obtained by adding a Langevin force

with zero mean to the deterministic equations. The variances of the Langevin forces

compatible with the chemical master equation have well-known expressions depend-

ing on the rate constants and the concentrations X and Y [21, 22]. The linearized

Langevin equations around the steady state (Xs, Ys) may be written as follows:

dx

dt
= ax+ by + ξx(t) (1)

dy

dt
= cx+ dy + ξy(t) (2)

where x = X −Xs, y = Y − Ys and the four real parameters a, b, c, and d depend

on the rate constants of the considered mechanism. The variances of the Langevin

forces ξx(t) and ξy(t) are evaluated at the steady state (Xs, Ys) and denoted by

〈ξx(t)ξx(t′)〉 = Fxx δ(t
′ − t) (3)
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〈ξx(t)ξy(t′)〉 = Fxy δ(t
′ − t) (4)

〈ξy(t)ξy(t′)〉 = Fyy δ(t
′ − t) (5)

For discussing the stability of the steady state, we compute the eigenvalues λ±

of the matrix M associated with Eqs. (1,2):

M =

(

a b
c d

)

(6)

which are solutions of the characteristic polynomial

λ2 − λ(a+ d) + ad− bc = 0. (7)

The solutions λ± can be real or complex numbers.

The new variables x′(t) and y′(t) in the basis of the eigenvectors are related to

x(t) and y(t) according to

(

x(t)
y(t)

)

=







Pxx = b√
b2+(λ+−a)2

Pxy =
b√

b2+(λ−−a)2

Pyx = λ+−a√
b2+(λ+−a)2

Pyy =
λ−−a√

b2+(λ−−a)2







(

x′(t)
y′(t)

)

(8)

When the eigenvalues are real, Pxx and Pyx are the coordinates of the eigenvector

associated with the eigenvalue λ+, and Pxy and Pyy are the coordinates of the eigen-

vector associated with λ−.

The correlation functions are easily determined for the new variables

x′(t) = x′(0)eλ+t +
∫ t

0
eλ+(t−t′)

(

P−1
xx ξx(t

′) + P−1
xy ξy(t

′)
)

dt′ (9)

y′(t) = y′(0)eλ−t +
∫ t

0
eλ−(t−t′)

(

P−1
yx ξx(t

′) + P−1
yy ξy(t

′)
)

dt′ (10)

where P−1 is the inverse matrix of the change of basis matrix P defined in Eq. (8).

Then, the change of basis matrix P is used again to compute the time correlation

functions 〈x(t)y(t′)〉 of the concentration fluctuations between times t and t′. In the

long time limit, the correlation functions depend only on the time delay τ = t′ − t
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and the difference I(τ) of cross-correlation functions is given by [18]:

I(τ) = 〈x(0)y(τ)〉 − 〈x(τ)y(0)〉 with x = X −Xs, y = Y − Ys (11)

= −(PyxPyyFxx − (PxxPyy + PxyPyx)Fxy + PxxPxyFyy)(e
λ+τ − eλ−τ )

(PxxPyy − PxyPyx)(λ+ + λ−)
(12)

When the initial dynamics is linear, the difference of cross-correlation functions is

proportional to the reaction flux J , which measures the departure from equilibrium

[16, 18]:

I(τ) = J
eλ+τ − eλ−τ

λ+ − λ−
(13)

At equilibrium, the reaction flux J and the difference of cross-correlation functions

I(τ) vanish. Conversely, when the system is maintained in a nonequilibrium steady

state, the cross-correlation functions of concentration fluctuations are asymmetric

under time reversal. The linearization of the Langevin equations around a steady

state provides the same result as the exact solution of the master equation written

for a linear dynamics [16]. The property expressed in Eq. (13) can be exploited to

evaluate the reaction flux J from the determination of the correlation functions of

concentration fluctuations in a chemical or biological system using for example FCS

for tagged fluorescent species. In the total absence of mechanistic and kinetic data

on the system of interest, the reaction flux can be evaluated by the slope of I(τ) at

time τ = 0, as suggested in reference [16]. If the typical chemical time scales of the

system, i.e. the eigenvalues λ±, can be determined, then a better estimation of the

reaction flux can be a priori obtained by using J as a fitting parameter in Eq. (13).

The method has been employed to study localized cellular events of the endocytic

pathway using live-cell multichannel fluorescence imaging [15]. The cross-correlation

functions of two species chosen among tagged clathrin, actin, and nexin have been

assessed and the sign of the reaction flux has been deduced for an assumed linear

dynamics. However, biological pathways often involve complex dynamical behaviors

associated with specific nonlinearities. For example, regulation may be obtained
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with feedback loops which may induce oscillations, as observed in the well-known

case of glycolysis [1, 23]. In other cases, a bistable behavior may be observed and

the system then switches between two different states as a threshold is crossed [24].

In the next Sections, our aim is to check the validity of Eq. (13) in the case of

nonlinear chemical mechanisms. Three typical behaviors are investigated: Bistabil-

ity [18], oscillations arising after a Hopf bifurcation [19], and oscillations resulting

from a saddle-node infinite-period bifurcation.

3 Bistable Enzymatic System

Bistability is commonly encountered in biology. It is for example observed during

mitosis, a phase of the cell cycle leading to the division of the mother cell into two

identical daughter cells. The expression of total cyclin B1 controls the entrance into

the mitotic phase. As the total cyclin B1 is increased, it is necessary to reach a larger

threshold for the system to enter into mitosis than the threshold observed to leave

the mitotic process and enter into interphase as the total cyclin B1 is decreased.

A well-formed hysteresis loop has been recently observed in extracts of eggs of the

frog xenopus when measuring the concentration of a maturation promoting factor,

the cyclin B1/CDK1 (cyclin-dependent kinase) complex, as the concentration of the

total cyclin B1 varies [24].

Inorder to make explicit the consequences of bistability on the relation between

cross-correlation functions and reaction flux, we consider a simple model and use

a modified version of the well-known Michaelis-Menten mechanism for enzymatic

catalysis, in which the autocatalytic production of species X by the reverse reaction

1 has been introduced, leading to a possible bistable behavior [18]:

3X + S
k∗+1

⇀↽
k−1

Z + 2X (14)
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Z
k+2

⇀↽
k−2

Y (15)

Y
k+3

⇀↽
k∗
−3

X + P (16)

The concentrations of species S and P are supposed to be constant due to appropriate

exchanges with the surrounding. The notation k+1 = k∗
+1S and k−3 = k∗

−3P for

apparent rate constants is employed. The laws of chemical kinetics lead to the

following deterministic equations for the two variables X and Y :

dX

dt
= −k+1X

3 + k−1ZX
2 − k−3X + k+3Y (17)

dY

dt
= k−3X − k+3Y + k+2Z − k−2Y (18)

where the variable Z may be eliminated using the conservation relation X+Y +Z =

C, where C is constant. Depending on the parameter values, the system may admit

one or three stationary states. In what follows, we set the rate constants k±1, k±2,

k+3 at the values given in the caption of Fig. 1 and use k−3 as a convenient control

parameter. The steady values Xs of the concentration of species X as k−3 varies are

given in Fig. 1. Bistability is observed for k−3 in the range [0.468, 1.196].

In the absence of exchanges with the surroundings, the system would reach

an equilibrium state and each reaction given in Eqs. (14-16) would obey detailed

balance, i.e. the rate of each chemical process would vanish. When the system is

sustained in the nonequilibrium steady state (Xs, Ys, Zs), with Zs = C − Xs − Ys,

the reaction flux J measures the departure from detailed balance

J = k+1(Xs)
3 − k−1Zs(Xs)

2 = k+2Zs − k−2Ys = k+3Ys − k−3Xs (19)

For the nonlinear enzymatic system, the four parameters a, b, c and d introduced

in Eqs. (1,2) are given by

a = −3k+1(Xs)
2 + k−1

(

2(C − Ys)Xs − 3(Xs)
2
)

− k−3 (20)
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Figure 1. Bifurcation diagram associated with an autocatalytic enzymatic system.
The lines give the stationary values Xs of species X concentration, solutions of the
nonlinear deterministic equations (Eqs. (17,18)), versus rate constant k−3. The
other parameters are fixed at k+1 = 10−6, k−1 = 4 × 10−6, k+2 = 0.5, k−2 = 0.1,
k+3 = 10−3. The solid lines are associated with the two stable branches of steady
states. The thick line of the upper branch corresponds to focuses associated with
complex eigenvalues and the thin lines to nodes associated with real eigenvalues.
The dashed line is the unstable branch. The blue squares give the mean stable
steady state values deduced from the solution of the master equation (Eq. (28))
for N = 10000 particles and an ensemble average over 107 realizations. The solid
squares are associated with oscillating correlation functions and the open squares,
with nonoscillating correlation functions.

b = k+3 − k−1(Xs)
2 (21)

c = k−3 − k+2 (22)

d = −(k+2 + k−2 + k+3) (23)

We employ an expression of the variances of the Langevin forces which is compatible

with the chemical master equation [22]. When evaluated at the steady state, the
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variances become

Fxx = k+1(Xs)
3 + k−1Zs(Xs)

2 + k−3Xs + k+3Ys (24)

Fxy = −(k−3Xs + k+3Ys) (25)

Fyy = k+2Zs + k−2Ys + k−3Xs + k+3Ys (26)

In the case of the autocatytic enzymatic system, the explicit calculation of the

difference of cross-correlation functions using Eq. (12) leads to [18]:

I(τ) = J
(

1− 4k−3

λ+ + λ−

) eλ+τ − eλ−τ

λ+ − λ−
(27)

where the reaction flux J is given by Eq. (19) and the eigenvalues λ± are solutions

of Eq. (7) for the parameters a, b, c, and d defined in Eqs. (20-23).

The validity of the linearized Langevin approach is checked by comparing the re-

sults given by Eq. (27) and a direct computation of the difference of cross-correlation

functions from kinetic Monte Carlo simulations of the master equation for the prob-

ability of the numbers NX , NY and NZ of molecules of species X, Y and Z, respec-

tively [20, 21, 25]. The master equation associated with the mechanism described

in Eqs. (14-16) reads:

dP (NX , NY , NZ)

dt
=

= k+1[(NX + 1)NX(NX − 1)P (NX + 1, NY , NZ − 1)

−NX(NX − 1)(NX − 2)P (NX , NY , NZ)]

+k−1[(NZ + 1)(NX − 1)(NX − 2)P (NX − 1, NY , NZ + 1)

−NZNX(NX − 1)P (NX , NY , NZ)]

+k+2[(NZ + 1)P (NX , NY − 1, NZ + 1)−NZP (NX , NY , NZ)]

+k−2[(NY + 1)P (NX , NY + 1, NZ − 1)−NY P (NX , NY , NZ)]

+k+3[(NY + 1)P (NX − 1, NY + 1, NZ)−NY P (NX , NY , NZ)]

+k−3[(NX + 1)P (NX + 1, NY − 1, NZ)−NXP (NX , NY , NZ)] (28)
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with N = NX +NY +NZ . We use the algorithm introduced by Gillespie [26] to sim-

ulate the master equation. Each chemical process of the nonlinear mechanism has

an assigned rate r±i, with i = 1, 2, 3, equal to its transition probability in the master

equation. For example, when the system containsNX particles of species X, the tran-

sition probability of the forward reaction 1 is given by r+1 = k+1NX(NX−1)(NX−2).

The total rate rtot =
∑3

i=1 r±i is computed. Starting from a given state (NX , NY )

and NZ = N−NX−NY , we randomly choose a process and a waiting time θ sampled

from the distribution rtot exp(−rtotθ). Time is increased by θ, the new population

values and the transition rates are updated according to the changes associated with

the chosen reaction. Hence, a stochastic trajectory is generated in the phase space

(NX , NY ). The quantity I(τ) defined in Eq. (11) is computed using an ensemble

average over a large number of stochastic trajectories.

The results of the three stochastic approaches are compared in Figs. 2, 3 for two

values of the control parameter k−3. The difference of cross-correlation functions

I(τ) is calculated in the framework of the Langevin approaches, using Eq. (13)

in the hypothesis of linear deterministic dynamics and Eq. (27) for the nonlinear

enzymatic system. The two Langevin approaches are compared to the simulations

of the master equation, considered as a reference.

As shown in Fig. 2 for a sufficiently small value of k−3, the three approaches

are in good agreement. According to Fig. 3 obtained for a larger value of k−3,

the Langevin approach applied to nonlinear dynamics remains in good agreement

with the results of the master equation and they both depart from the expression

of I(τ) established for linear dynamics. The analytical result given in Eq. (27)

can be considered as a good approximation of the correlation functions around the

nonequilibrium steady state deduced from kinetic Monte Carlo simulations of the

master equation. Some differences between the two approaches are discussed in
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Figure 2. Enzymatic system. Difference of temporal cross-correlation functions
I(τ) = 〈x(0)y(τ)〉 − 〈x(τ)y(0)〉 versus time lag τ for k−3 = 0.4 in the domain of
monostability associated with a high Xs value. The black dotted line refers to the
result of Eq. (13) deduced from Langevin approach to a system with assumed linear
dynamics. The red solid line refers to the result of Eq. (27) deduced from Langevin
approach to nonlinear dynamics with autocatalysis. The blue dashed line refers to
the results of the direct simulation of the master equation (Eq. (28)) associated with
nonlinear dynamics. The statistics is performed over 107 stochastic trajectories. The
other parameter values are given in the caption of Fig. 1.

reference [18] in the close vicinity of the bifurcation between monostability and

bistability. The difference between the results of the Langevin approach to linear

dynamics and the analogous approach applied to nonlinear dynamics increases as

k−3 increases, in agreement with the analytical expression of the correction term,

− 4k−3

λ++λ−

, appearing in Eq. (27). Typically, for the parameter values used to draw

Fig. 1 and for k−3 ≃ 1, an underestimation of the reaction flux by a factor of 6 is

obtained when computing J from the slope of I(τ) at time τ = 0 when using Eq. (13)

instead of Eq. (27). No divergence of the error is observed as the control parameter

k−3 crosses the bifurcation from monostability to bistability. In the next Section, we
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investigate the case of an oscillating system, also commonly encountered in biology

and for which a less smooth behavior of the correlation functions is expected.

Figure 3. Enzymatic system. Difference of temporal cross-correlation functions
I(τ) = 〈x(0)y(τ)〉 − 〈x(τ)y(0)〉 versus time lag τ for k−3 = 0.7 in the bistable
domain around the node associated with a lower Xs value. See the caption of Fig.
2 to recover the meaning of the symbols and the parameter values.

4 Oscillations associated with a Hopf Bifurcation

One of the most studied examples of time periodic behaviors in biology is glycolysis

[1]. Glycolysis is the metabolic pathway that converts glucose into pyruvate and the

free energy released in the process is used to form the high energy compounds adeno-

sine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH).

The emergence of time oscillations of NADH through a Hopf bifurcation has been

observed in individual yeast cells as glucose or cyanide concentration is increased

[23]. For the sake of simplicity and without loss of generality, we consider the reac-
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tion scheme associated with the Brusselator model in order to study the behavior

of the correlation functions in the vicinity of a Hopf bifurcation [25, 27]:

A
k∗+1

⇀↽
k−1

X (29)

2X + Y
k+2

→ 3X (30)

B + X
k∗+3

→ C+ Y (31)

where the concentration of species A, B, and C is constant. The deterministic

dynamics is governed by the following system of ordinary differential equations:

dX

dt
= k+1 − k−1X + k+2X

2Y − k+3X (32)

dY

dt
= −k+2X

2Y + k+3X (33)

where we have set k+1 = k∗
+1A and k+3 = k∗

+3B for apparent rate constants.

The steady state (Xs, Ys) of the system reads:

Xs =
k+1

k−1
(34)

Ys =
k+3k−1

k+2k+1
(35)

In the next Subsections, we evaluate the difference of cross-correlation functions I(τ)

defined in Eq. (11) using two different methods. We first apply Eq. (12), supposed

to be valid in the vicinity of the steady state, and then evaluate the difference of

cross-correlation functions around the limit cycle.

4.1 Evaluation of the cross-correlation functions in the do-

main of stability of the fixed point

In the absence of the reverse steps associated with the forward reactions given in

Eqs. (30,31), i.e. for vanishing rate constants k−2 = k−3 = 0, the Brusselator model

intrinsically violates detailed balance and the reaction flux at steady state is different
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from zero. However, the first reaction given in Eq. (29) obeys detailed balance when

X = Xs. When the system is in the steady state (Xs, Ys) given in Eq. (34,35), the

reaction flux can be written as follows:

J = k+2X
2
sYs = k+3Xs (36)

The four parameters a, b, c and d of Eqs. (1,2), which define the linear stability

operator M around the steady state, read:

a = −k−1 + k+3 (37)

b = k+2(Xs)
2 (38)

c = −k+3 (39)

d = −k+2(Xs)
2 (40)

The solution of the characteristic polynomial defined in Eq. (7) are complex and

written in the following form: λ± = α± iβ where

α =
k+3 − (k−1 + k+2(Xs)

2)

2
(41)

β =
1

2

√

4k−1k+2(Xs)2 − α2 (42)

A Hopf bifurcation occurs for α = 0, i.e. for

k+3 = k−1 + k+2(Xs)
2 (43)

where Xs is given in Eq. (34). For α > 0, the focus (Xs, Ys) is unstable and the

attractor of the system is a limit cycle associated with oscillations of period 2π/β.

The bifurcation diagram associated with the Brusselator model is given in Fig. 4.

The variances of the Langevin forces evaluated at the steady state are given by

[22]:

Fxx = k+1 + k−1Xs + k+2X
2
sYs + k+3Xs (44)

Fxy = −(k+2X
2
sYs + k+3Xs) (45)

Fyy = k+2X
2
sYs + k+3Xs (46)
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Figure 4. Bifurcation diagram associated with the Brusselator model. In the
domain (F) where the focus is stable, variation of the coordinates Xs (in blue) and
Ys (in red) versus rate constant k+3. In the domain (LC) where the limit cycle is
stable, minimal and maximal values of the coordinates X (in blue) and Y (in red)
on the limit cycle versus k+3. The other parameters are fixed at k+1 = 104, k−1 = 1,
and k+2 = 10−8. The critical value of the control parameter is kc

+3 = 2.

Finally, Eq. (12) is used to find the expression of the difference of cross-correlation

functions of concentration fluctuations around the focus [19]:

I(τ) =
2k−1

α
J exp(ατ)

sin(βτ)

β
(47)

Whereas the Langevin approach to the correlation functions given in Eq. (27) did

not predict any singularity at the bifurcation points between monostable and bistable

domains, the remarkable feature of Eq. (47) is the divergence of the amplitude of

I(τ) at the Hopf bifurcation for which the real part, α, of the eigenvalues vanishes.
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Figure 5. Brusselator model. Difference of temporal cross-correlation functions
I(τ) = 〈x(0)y(τ)〉 − 〈x(τ)y(0)〉 versus time lag τ for k+3 = 1.5 in the domain of
stability of the focus (Xs, Ys). The other parameters are the same as in the caption
of Fig. 4. The blue dashed line refers to the results of the direct simulation of
the master equation. The statistics is performed over 106 stochastic trajectories.
The red solid line refers to the result of Eq. (47) deduced from Langevin approach.
The black dotted line refers to the result of Eq. (13) valid when assuming linear
deterministic dynamics for the same values of the reaction flux J and the same
eigenvalues λ± as for nonlinear dynamics.

4.2 Evaluation of the cross-correlation functions in the do-

main of stability of the limit cycle

A different method relying on the determination of the normal form of the deter-

ministic equations (Eq. (32,33)) can be used to evaluate the difference of cross-

correlation functions around the limit cycle [28, 29]. First, a linear change of basis

is made so that the Jacobian around the steady state (Xs, Ys) is in the form

(

α −β
β α

)

= Q−1MQ (48)
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where the elements of the matrix Q, the departure from the fixed point, (x =

X −Xs, y = Y − Ys), and the coordinates (x′′, y′′) are related by

(

x
y

)

= Q

(

x′′

y′′

)

, withQ =

(

k+2(Xs)
2 0

−α− k+2(Xs)
2 −β

)

(49)

Using Eq. (49) and Eqs. (32,33), we find that the dynamics of (x′′, y′′) is governed

by

dx′′

dt
= αx′′ − βy′′ + f(x′′, y′′) (50)

dy′′

dt
= βx′′ + αy′′ + g(x′′, y′′) (51)

where the functions f and g are given by

f(x′′, y′′) = k+2Xs(k−1 − k+2(Xs)
2)x′′2 − 2k+2Xsβx

′′y′′

−(k+2Xs)
2
(

α + k+2(Xs)
2
)

x′′3 − (k+2Xs)
2βx′′2y′′ (52)

g(x′′, y′′) = −α

β
f(x′′, y′′) (53)

Then, near-identity tranformations, X ′′ = x′′ + h(x′′, y′′), where h(x′′, y′′) is a

nonlinear function, are used to eliminate nonresonant terms [30]. Finally, polar

coordinates, such that X ′′ = R cos(θ), Y ′′ = R sin(θ) are introduced, leading to

dR

dt
= R(α− γR2) (54)

dθ

dt
= β − δR2 (55)

where the coefficients γ and δ are evaluated at the bifurcation for α = 0 and at the

steady state x′′ = y′′ = 0. At leading order, we find [28, 29]:

γ = − 1

16β

(

(fx′′x′′x′′ + fx′′y′′y′′ + gx′′x′′y′′ + gy′′y′′y′′)β + fx′′y′′(fx′′x′′ + fy′′y′′)

−gx′′y′′(gx′′x′′ + gy′′y′′)− fx′′x′′gx′′x′′ + fy′′y′′gy′′y′′
)

(56)

=
(k+2Xs)

2

8
(2k−1 + k+2(Xs)

2) (57)
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Figure 6. Brusselator model. Difference of temporal cross-correlation functions
I(τ) = 〈x(0)y(τ)〉− 〈x(τ)y(0)〉 versus time lag τ for k+3 = 1.99, immediately before
the Hopf bifurcation occurring at kc

+3 = 2 for the same other parameters as in Fig.
4. The blue dashed line refers to the results of the direct simulation of the master
equation. The statistics is performed over 103 stochastic trajectories. The red solid
line refers to the result of Eq. (47) deduced from Langevin approach. The green
long-dashed line gives the results of Eq. (65) obtained when assuming the existence
of a limit cycle. The black dotted line refers to the result of Eq. (13) valid when
assuming linear deterministic dynamics for the same values of the reaction flux J
and the eigenvalues λ± as for nonlinear dynamics.

According to Eqs. (54,55) and at leading order in α, the dynamics on the limit cycle

is given by

RLC =

√

|α|
γ

(58)

θLC = βt (59)

or, equivalently, X ′′
LC(t) = RLC cos(βt) and Y ′′

LC(t) = RLC sin(βt). The inverse near-

identity transformations are used to switch from (X ′′
LC , Y

′′
LC) to (x′′

LC , y
′′
LC) and the

change-of-basis matrix Q given in Eq. (49) is used to switch from (x′′
LC , y

′′
LC) to
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(xLC , yLC). At dominant order in α, we get

(

xLC

yLC

)

=

(

XLC −Xs

YLC − Ys

)

= Q

(

RLC cos(βt)
RLC sin(βt)

)

(60)

where (XLC , YLC) are the coordinates of a point on the limit cycle in the initial basis.

Finally, the function ILC(τ), to be compared with the difference of cross-correlation

function I(τ), is defined on the limit cycle by

ILC(τ) = xLC(0)yLC(τ)− xLC(τ)yLC(0) (61)

=
−8k+1 |α|√

k+2k−1

(

2k−1 + k+2(Xs)2
) sin(βτ) (62)

where the steady concentration value Xs is given in Eq. (34). The above equation

is supposed to be valid only for positive values of the real part α of the eigenvalues

of M around the fixed point. However, the introduction of absolute values gives the

possibility to study the validity of the approach just above the bifurcation, for a still

stable fixed point with α small but negative. On the limit cycle, the time averaged

reaction flux can be defined as follows:

JLC = k+2〈X2
LCYLC〉 − k+3〈XLC〉 (63)

where 〈.〉 is here understood as a time average over the oscillation period 2π
β
. At

leading order and at the bifurcation point, α = 0, the reaction flux JLC is evaluated

at

JLC = −(k+2)
3(Xs)

5(RLC)
2 (64)

where the radius RLC of the limit cycle is given in Eq. (58). Consequently, in the

domain of stability of the limit cycle, the function ILC(τ) given in Eq. (62) is related

to the time averaged reaction flux JLC by

ILC(τ) =
JLC

k+2

√

k−1

k+2

(

k−1

k+1

)2

sin(βτ) (65)

It is worth noting that the function ILC(τ), deduced from a deterministic analysis,

offers a first-order evaluation of the difference of cross-correlation functions of the
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concentration fluctuations in the vicinity of the limit cycle, whereas the derivation

of Eq. (47) for I(τ) required a stochastic analysis of the fluctuations around the

fixed point.

Figure 7. Brusselator model. Same caption as in Fig. 6 for k+3 = 2.01, immedi-
ately after the Hopf bifurcation occurring at kc

+3 = 2.

In the next Subsection, kinetic Monte Carlo simulations of the chemical master

equation are used to check the validity of the difference of cross-correlation functions

I(τ) and ILC(τ) in the domain of stability of the focus and the domain of stability

of the limit cycle, respectively.

4.3 Comparison with simulations of the master equation

The master equation for the probability of the number of particles NX and NY of

species X and Y is written for the chemical scheme given in Eqs. (29-31) [19] and

numerically solved using the same lines as for the enzymatic system [26].

The two Langevin approaches to the cross-correlation functions and the numer-
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Figure 8. Brusselator model. Same caption as in Fig. 6 for k+3 = 2.2, in the
domain of stability of the limit cycle.

ical solutions of the master equation are compared in Figs. 5-9 for different values

of the control parameter k+3, above and beyond the bifurcation observed for the

critical value kc
+3 = 2. As shown in Fig. 5 sufficiently far from the Hopf bifurcation,

the analytical result given in Eq. (47) following Lanvegin approach to nonlinear

dynamics perfectly agrees with the simulations of the master equation, whereas the

estimation provided by Eq. (13) for an assumed linear dynamics qualitatively differs

and even leads to a false evaluation of the sign of the flux.

Figures 6 and 7 show the results of the three stochastic approaches around the

fixed point and the deterministic approach on the limit cycle for parameter values

very close to the Hopf bifurcation, just above and just beyond the bifurcation point,

respectively. In these critical conditions, for which Eq. (47) predicts the divergence

of I(τ), the Langevin approach to nonlinear dynamics does not correctly provide

the amplitude of the oscillation and the three stochastic approaches disagree. While
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Eq. (47) overestimates the increase of the amplitude of the correlation functions

in the vicinity of the bifurcation, Eq. (65) for ILC(τ) correctly evaluates that the

amplitude of the cross-correlation functions remains of the order of the product of

the values taken by the concentrations on the limit cycle. According to Fig. 7, the

evaluation of ILC(τ) around the limit cycle compares well with the results of the

master equation. In addition, the extension of the validity of Eq. (65) to the domain

in which the limit cycle has still not appeared leads to a very good prediction of

both the period 2π/β and, more surprisingly, the amplitude, −8k+1|α|√
k+2k−1

(

2k−1+k+2(Xs)2
) ,

of the difference of cross-correlation functions, as shown in Fig. 6. Although ob-

tained at leading order in the bifurcation parameter α, Eq. (65) for ILC(τ) provides

a satisfying evaluation of the cross-correlation functions as k+3 departs from the

critical value kc
+3 = 2 as observed in Fig. 8 for k+3 = 2.2. However, as the control

parameter reaches k+3 = 2.5, the agreement between the predictions of Eq. (65)

and the master equation becomes worse, as shown in Fig. 9. Indeed, the radius

of the limit cycle RLC increases as
√
α and the first-order expansion in α becomes

insufficient. Moreover, the shape of the limit cycle departs more from the circle as

observed in the bifurcation diagram given in Fig. 4 and in the nonsymmetrical oscil-

lations of the cross-correlation functions deduced from the master equation in Fig. 9.

Hence, the correlation functions around a focus in a system which possesses a

Hopf bifurcation are extremely poorly evaluated when assuming a linear determin-

istic dynamics. The approximation would lead to a wrong information about the

sign of the reaction flux and a mediocre evaluation of the absolute value departing

from several orders of magnitude from the actual one. In contrast, the Langevin

equations, linearized around the focus, give a good approximation of the correlation

functions even if they overestimate the amplitude in the vicinity of the bifurcation.

When the limit cycle is formed, the normal form of the deterministic equations
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gives access to an expression of the correlation functions. Instead of the non physi-

cal divergence of the correlations predicted by the local stochastic approach around

the focus, the deterministic analysis around the limit cycle correctly accounts for

the amplitude and period of the correlation functions, provided that the limit cycle

remains sufficiently small.

Figure 9. Brusselator model. Same caption as in Fig. 6 for k+3 = 2.5, far in the
domain of stability of the limit cycle.

In the next Section, we study the behavior of the difference of cross-correlation

functions I(τ) as another type of bifurcation leading to oscillations arises, the saddle-

node infinite-period bifurcation, for which a global analysis becomes rapidly neces-

sary as the bifurcation approaches.
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5 Chemical System Close to a Saddle-Node Infinite-

Period Bifurcation

The saddle-node infinite-period (SNIPER) bifurcation can be found in models of

cell-cycle regulation, for example to account for a transition between interphase and

mitosis [31, 32]. Contrary to the (supercritical) Hopf bifurcation, which gives birth to

a limit cycle with vanishing radius, the saddle-node infinite-period bifurcation leads

to an already well-formed limit cycle from a homoclinic trajectory. A local analysis

relying on an expansion in the departure from the bifurcation point is a priori of

limited interest in the case of such a global bifurcation. In order to investigate the

behavior of the correlation functions of the concentration fluctuations in the vicinity

of a saddle-node infinite-period bifurcation, we use a slightly modified version of the

two-variable chemical mechanism proposed by Erban et al. [33]:

A
k∗+1

−→ Y
k+2

−→ X
k+3

−→ B (66)

B + 2X
k∗+4

⇀↽
k−4

3X (67)

A + X+ Y
k∗+5

−→ X + 2Y (68)

2X + Y
k+6

−→ 2X + B (69)

where we have introduced two species of constant concentrations A and B. Apparent

rate constants can be written as k+1 = k∗
+1A, k+4 = k∗

+4B, and k+5 = k∗
+5A. The

macroscopic equations governing the dynamics of species X and Y are given by

dX

dt
= k+2Y − k+3X + k+4X

2 − k−4X
3 (70)

dY

dt
= k+1 − k+2Y + k+5XY − k+6X

2Y (71)

The stationary states are defined as the intersections of the nullclines dX
dt

= 0 and

dY
dt

= 0. Figures 10, 11 give two typical behaviors obtained as the control parameter
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k+1 increases and crosses the critical value kc
+1 ≃ 488 associated with the saddle-node

infinite-period bifurcation. As shown in Fig. 10 for k+1 = 440 above the SNIPER

bifurcation, the system has three steady states, an unstable node, a saddle and a

stable node (Xs, Ys). At the bifurcation point, the node is absorbed by the saddle

and a homoclinic trajectory is formed. Such an infinite period closed trajectory

starts along the unstable eigendirection of the saddle and returns to the saddle

point along the stable eigendirection.

Figure 10. System with SNIPER bifurcation. Nullclines (blue dashed line and red
solid line) obtained for k+1 = 440, above the saddle-node infinite-period bifurcation.
The other parameters are fixed at k+2 = 1, k+3 = 33, k+4 = 0.275, k−4 = 0.000625,
k+5 = 0.015, k+6 = 0.00008125. The system possesses three steady states, a stable
node (SN), a saddle and an unstable node (UN). The black solid line gives one
trajectory connecting the saddle and the stable node.

In Fig. 11 for k+1 = 520, beyond the saddle-node infinite period bifurcation, the

system has a single unstable node (UN) surrounded by a stable limit cycle, directly

formed from the homoclinic orbit after the disappearance of the saddle.
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Figure 11. System with SNIPER bifurcation. Same caption as in Fig. 10 for
k+1 = 520, beyond the saddle-node infinite period bifurcation. The system possesses
a single unstable node (UN) and a stable limit cycle (black solid line).

Above the SNIPER bifurcation, we define the reaction flux J at the stable steady

state (Xs, Ys) using the flux that the reservoir of species A has to inject into the sys-

tem to counterbalance reactions 1 and 5 or, equivalently, the flux that the reservoir

of species B has to remove from the system to counterbalance reactions 3, 4, −4 and

6, in such a way that the concentrations of species A and B remain constant

J = k+1 + k+5XsYs = k+3Xs − k+4(Xs)
2 + k−4(Xs)

3 + k+6(Xs)
2Ys (72)

The four parameters a, b, c and d defining the linear operator in Eqs. (1,2) are given

by

a = −k+3 + 2k+4Xs − 3k−4(Xs)
2 (73)

b = k+2 (74)

c = k+5Ys − 2k+6XsYs (75)
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d = −k+2 + k+5Xs − k+6(Xs)
2 (76)

The variances of the Langevin forces are

Fxx = k+2Ys + k+3Xs + k+4(Xs)
2 + k−4(Xs)

3 (77)

Fxy = −k+2Ys (78)

Fyy = k+1 + k+2Ys + k+5XsYs + k+6(Xs)
2Ys (79)

Then, Eqs. (7,8) are used to compute the eigenvalues of the linear operator and the

change of basis matrix. Finally, Eq. (12) gives the difference of cross-correlation

function I(τ). For the sake of conciseness, we do not explicitly write the master

equation associated with the SNIPER model, which can be easily written [21] and

numerically solved using Gillespie algorithm [26].

The results are given in Figs. 12, 13 for k+1 = 440 far from the SNIPER

bifurcation and for k+1 = 487.6, close to the critical value kc
+1 ≃ 488.

Exactly as in the case of the Hopf bifurcation, the analytical prediction of the

Langevin approach to nonlinear dynamics (Eq. (12)) is validated by the simulations

of the master equation as shown in Fig. 12, sufficiently far from the SNIPER

bifurcation. As for the Hopf bifurcation, Eq. (13), obtained for linear dynamics,

is not able to predict the sign of the flux, i.e. if the chemostats are solicitated

to provide species A and absorb species B or the contrary. Close to the SNIPER

bifurcation (see Fig. 13), the master equation leads to a deep minimum for the

difference of cross-correlation functions whereas the Langevin approaches predict

a maximum of small amplitude. Hence, for critical parameter values, the sign of

the reaction flux is not correctly predicted by the Langevin approaches even when

considering nonlinear dynamics. It is worth noting that the Langevin approaches

are local, since the stochastic differential equations are linearized around the steady

state even in the case of nonlinear dynamics. The limit cycle formed through the

SNIPER bifurcation directly corresponds to a large excursion of the phase space.

28



Figure 12. System with SNIPER bifurcation. Difference of temporal cross-
correlation functions I(τ) = 〈x(0)y(τ)〉− 〈x(τ)y(0)〉 versus time lag τ for k+1 = 440
above the saddle-node infinite period bifurcation. The black dotted line refers to the
result of Eq. (13) deduced from Langevin approach to the system associated with
linear deterministic dynamics. The red solid line refers to the result of Eq. (12)
deduced from Langevin approach to the nonlinear mechanism given in Eqs. (66-69).
The blue dashed line refers to the results of the direct simulation of the master
equation associated with Eqs. (66-69). The other parameter values are given in the
caption of Fig. 10. The statistics is performed over 5× 105 stochastic trajectories.

Clearly, the behavior of the fluctuations is less and less correctly captured by a local

stochastic analysis as the bifurcation gets closer.

6 Discussion and Conclusion

Time asymmetry of fluctuations observed in far-from-equilibrium systems [3] in-

cited us to design a method to evaluate a reaction flux in a chemical or biologi-

cal system with at least two variable concentrations. The difference I(τ) of time

cross-correlations of concentration fluctuations can be experimentally determined in
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Figure 13. System with SNIPER bifurcation. Same caption as in Fig. 12 for
k+1 = 487.6, close to the saddle-node infinite period bifurcation.

small biological systems using, for example, tagged fluorescent species and fluctua-

tion correlation spectroscopy (FCS) [14, 15]. When the deterministic rate equations

for concentrations are linear, the reaction flux can be deduced from the slope of I(τ)

for vanishing time delay τ , without any further knowledge of the system of interest

[16].

We have determined approximate, analytical expressions of the difference of time

cross-correlations of concentration fluctuations using Langevin-type equations asso-

ciated with biologically relevant nonlinear chemical mechanisms. Systems exhibiting

bistability and periodic oscillations of different natures have been studied. The re-

sults have been compared with simulations of the master equation, considered as

a reference. For noncritical parameter values, the predictions of the Langevin ap-

proach to nonlinear dynamics perfectly agree with the results of the master equation.

However, discrepancies between the two approaches are observed in the vicin-
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ity of a bifurcation. Indeed, the Langevin equations are deduced from the master

equation by a truncation of the Kramers-Moyal expansion to the two first terms,

the drift and the diffusion term [20]. The Kramers-Moyal expansion results from a

Taylor expansion of the master equation, when the stochastic processes are assumed

to involve only small jumps of the random variables [20]. A bifurcation is often

associated with vanishing real parts of the eigenvalues of the deterministic operator

and, consequently, small real parts of the drift term. Hence, terms of order higher

than two in the Kramers-Moyal expansion may be not negligible close to a bifur-

cation and Langevin approach may fail. This phenomenon is observed in the case

of the Hopf bifurcation. In the case of the saddle-node infinite period bifurcation,

another effect magnifies the discrepancies between the Langevin approach and the

master equation. Actually, we use linearized Langevin equations around the steady-

state whereas the SNIPER bifurcation would require a global analysis due to the

emergence of a directly well-developed attractor.

In the generic case of noncritical parameter values, the estimation of a reaction

flux from the determination of correlation function remains delicate if the chemical

system of interest is entirely unknown. Indeed, the Langevin approach to nonlinear

dynamics shows that the amplitude of I(τ) is proportional to the reaction flux but

also to a specific combination of parameters which depends on the nonlinearities of

dynamics. Assuming linear dynamics and applying the simple, general expression of

cross-correlation functions obtained in this case often leads to mediocre estimations

of the reaction flux. Even the sign of the flux may be wrong.

From a theoretical point of view, the interplay between fluctuations and non-

linearities of deterministic dynamics is subtle and leads to specific expressions for

the time cross-correlations of concentration fluctuations, that depend on the details

of the dynamics. In order to harvest the determination of correlation functions for

reaction flux estimation in a given chemical system, it is therefore essential, first,
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to identify the reaction mechanism [34], then, to evaluate the associated rate con-

stants [35], and, finally, to compute the specific expression of the difference of time

cross-correlation functions for this mechanism. If these demanding requirements

may be fulfilled and provided that the system is far from a bifurcation, the stochas-

tic differential equations of Langevin type governing the fluctuating dynamics of

concentrations provides a reliable, analytical formula relating the reaction flux and

the correlations of fluctuations in the vicinity of a stable steady state.

Other attempts have been made to derive entropy production in driven systems

without knowing dynamics in detail through the analysis of time reversal asymmetry

of stationary time series corresponding to stochastic realisations of trajectories as-

sociated with the considered physical mechanism. Applications to flashing ratchets

[36] and chemical systems [37] have been proposed but the estimation of entropy pro-

duction has been shown to sensitively depend on the coarse graining of the stochastic

trajectory [38]. Consequently, the quantitative determination of fluxes in nonequi-

librium systems using the estimation of entropy production from stochastic time

series without further information on the system remains challenging.

The fluctuation-dissipation theorem, which relates correlation functions of fluc-

tuations of an observable and response function to a perturbation, has also been

generalized to nonequilibrium systems [39, 40]. The modified fluctuation-dissipation

theorem has been experimentally verified in the vicinity of a nonequilibrium steady

state by studying the position of a colloidal particle confined in an optical trap [41].

The comparison between the correlations of fluctuations of particle position and the

response function to a weak perturbation has been used to confirm the theoretical

predictions. However, the method relies on the computation of the difference be-

tween the results of two series of independent experiments. In such conditions, the

control of the experimental uncertainties is crucial and has been done carefully in a
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system designed to this purpose, with the possibility to test the expected behaviors.

In the case of unknown systems, the implementation of a checking protocol is more

difficult and the possibility to use the method in a blind manner is a delicate task.

In conclusion, the estimation of generalized fluxes in far-from-equilibrium sys-

tems remains a challenging issue.
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