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ABSTRACT 

Objective: While risk of Acute Kidney Injury (AKI) is well-documented as adverse effects 

of some drugs, few studies have assessed relationship between Drug-Drug Interactions 

(DDI) and AKI. Our objective was to develop an algorithm capable of detecting potential 

signals on this relationship by mining retrospectively data from an electronic health 

record.  

Material and methods: Data were extracted  from the clinical datawarehouse (CDW) of 

the Hôpital Européen Georges Pompidou (HEGP). AKI was defined as the first level of the 

RIFLE criteria i.e an increase ≥ 50% of creatinine basis. Algorithm acuracy was tested on 

20 single drugs, 10 nephrotoxic and 10 non-nephrotoxic. We tested then 45 pairs of non-

nephrotoxic drugs, among the most prescribed at our hospital and representing distinct 

pharmacological classes for DDI.  

Results: Sensitivity and specificity were respectively: 50% [95%CI, 23.66%-76.34%], and 

90% [95%CI, 59.58%-98.21%] for single drugs. Our algorithm confirmed a precedently 

identified signal concerning clarithromycin and calcium-channel blockers (ORu 2.92 

[95%CI, 1.11-7.69], P =0.04). Among the 45 drug pairs investigated, we identified a signal 

concerning 55 patients on association with bromazepam and hydroxyzine (ORu 1.66 

[95%CI, 1.23-2.23]). This signal was not confirmed after a chart review. Even so, AKI and 

co-prescription were confirmed for respectively 96% [95%CI, 88%-99%] and 88% [95%CI, 

76%-94%] of these patients.  

Conclusion: Data mining techniques on CDW can foster the detection of adverse drug 

reaction when drugs are used alone or in combination. 
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Key Points 

- The re-use of data from Electronic Health Record (EHR) generated by real clinical 

activities for pharmacoepidemiological studies is booming, it seemed that DDIs could be 

identified by mining such databases. 

- We have developed a new signal detection algorithm using data mining techniques and 

the RIFLE criteria capable to re-use real care data from EHR in order to identify potential 

pharmacovigilance signal concerning DDIs and AKI. 

- This study confirms that real care data from EHRs could be utilized to identify new 

pharmacovigilance signal concerning DDIs. 

 

1 Introduction 

Adverse Drug Reaction (ADR) can result either from the prescription of single drug  or 

from the prescription of a combinations of drugs (CADRs) considered as a special class of 

Drug-Drug Interactions (DDIs). DDI, in a large sense, can also be defined as a clinically 

significant alteration in the effect of one drug, as a consequence of co-administration of 

another drug.[1] While most of the ADRs can be expected and hence can be avoided, 

CADRs are more highly complex to identify and, as a consequence, not well studied. 

CADRs could represent between 6-30% of unexpected adverse drug effects.[2] 

Spontaneous Reporting Systems (SRS) are very reliable data sources for early detection of 

rare ADRs  in post-marketing surveillance. However, at least three limitations of SRS are 

well known. First, most ADRs are under-reported in SRS, especially for those already 

known or less serious; the median under-reporting rate was estimated at 94%  in a 

systematic review in 2006.[3] Second, some ADRs can be over-reported, especially those 

highlighted by media. Third, SRS do not allow the calculation of a true incidence rate in 
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the lack of precise knowledge on the exact number of patients exposed to a drug. These 

difficulties are even greater for DDIs since the number of reports is lower. A high potential 

approach consists in reusing data collected and stored in Electronic Health Records (EHR), 

either directly or through mining a Clinical Data Warehouse (CDW) derived from an EHR. 

It becomes, then, possible to identify, confirm, or refute pharmacovigilance signals 

coming from Adverse Event Reporting System database[4,5] or eventually directly suggest  

new ADRs.[6–9] The combination of these methods could finally decrease the time 

consuming and financial cost of ADR detection for the community.[10] 

Methods and tools, known as data mining, have been developed over the years to 

analyse large sets of data. Data mining methods in pharmacovigilance have been used 

with several goals,[8,9] (i) in order to automate the search of publications concerning ADR 

in Medline,[11] (ii) to correlate and predict post-marketing adverse drug effects based on 

screening data from public databases of chemical structures like Pubchem,[12] (iii) to 

develop new algorithms to detect new or latent multi-drug adverse events in Adverse 

Event Reporting System database[5] and (iv) to find out new pharmacovigilance signal by 

mining EHR data.[13,14] For example, in a recently published work,[13] Tatonetti NP et al.  

confirmed a potential signal from the Food and Drug Administration’s Adverse Event 

Reporting System, between diabetes and co-prescription of paroxetine, a selective 

serotonin re-uptake inhibitor and pravastatin, a cholesterol lowering agent by using data 

from EHRs. It was the first time that real life care data constrained in EHR were used in 

order to confirm a potential signal regarding DDIs. 

We payed particular attention to a frequent adverse effect of drugs: Acute Kidney Injury 

(AKI). Nephrotoxic drugs are involved in 19-25% of the cases of severe acute renal failure 

in critically ill patients.[15,16]  Although, there is still no total consensual definition of AKI, 
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the RIFLE criteria are one of the most used and well defined[17,18] and, primarily 

considered in our study,  because of their high sensitivity and specificity and their 

independent association with morbidity and mortality.[19,20] Although the association 

between AKI and some classes of drugs (such as antiretroviral drugs, non-steroidal anti-

inflammatory drugs, angiotensin-converting enzyme inhibitors, aminoglycosides...) are 

well-known and, therefore, can be expected and, hence, avoided; to this date, only few 

studies have investigated the association between AKI and DDIs.[21–24]  

The objective of this study was to develop a new signal detection algorithm using data 

mining techniques, RIFLE criteria and real care data from EHR in order to identify 

potential pharmacovigilance signal concerning CADRs and AKI.  

2 MATERIEL AND METHODS 

2.1 Study Site and Settings 

The Hôpital Européen Georges Pompidou (HEGP) is a teaching hospital with 24 clinical 

departments and 795 beds. Since 2011, HEGP has provided his researchers with a CDW, a 

database that collect all information from the EHR generated by clinical activities since its 

opening in 2000.[25,26] Thirteen years of health data collection from 606,524 different 

patients, including patient’s history, demographics, diagnosis, symptoms, drug 

treatments, clinical laboratory and image results, ICD-10 codes and fulltext inpatient and 

outpatient reports; all made available for research. Demographic data, drug prescriptions, 

lab values and ICD 10 billing codes were extracted to conduct this study. 

 

2.2 Study Design: 

We conducted a retrospective observational studies based on HEGP’s EHR data in three 

steps.  



 6 

Fig.1 We chose to assess the association between AKI and the co-prescription of ten drugs, representing 45 
drug pairs, among the most prescribed at the Hôpital Européen Georges Pompidou (HEGP). The 
pharmacovigilance unit of HEGP provided a list of 393 nephrotoxic drugs that were related to Acute Kidney 
Injury (AKI) at least one time in litterature (http://www.biourtox.com/Mediquick7/index.cfm). We chose 
drugs that were not on the list and must represent different drug classes (see electronic supplementary 
material 1). All relevant Data were extracted from our Electronic Health Record. For each pair of drugs, we 
compared two cohorts: a cohort with  patients  on drug 1 but not drug 2 or drug 2 but not drug 1 and a 
cohort with  patients on both drugs. 

 

Step one concerns the selection of eligible patients according to their clinical context. 

Patients had to have at least two serum creatinine levels and one electronic prescription 

to be included. Patients who had been hospitalized in intensive care units were not 

included since these units were not on the electronic prescription system at the time of 

the study. We excluded patients who had an obvious cause of AKI such as patients under 

antineoplasic agents, patients with cardiogenic, hemorrhagic, septic, traumatic and 

anaphylactic shock diagnosis. We also excluded patients under dialysis since variations of 

creatinine could not be related to the prescription or co-prescription. We used ICD10 

billing codes to define the patients to exclude.  

Step two concerns the selection of patients under drug treatment. For each pair of drugs 

tested, three cohorts were extracted from our CDW: i) patients with co-prescription of 

two drugs, ii) patient prescribed drug 1 but not drug 2, iii) patient prescribed drug 2 but 

not drug 1. In all cases, patients could also have been on other medications. These drugs 

were administered orally or parenterally; topical forms were not considered. We 

aggregated all drugs with the same International Nonproprietary Name (INN) regardless 

of doses.  

Step three concerns the defining of AKI and drug exposure. We estimated the baseline 

creatinine as an outpatient serum creatinine level measured within the past three months 

before the prescription of drug 1 or drug 2 or both.[27,28] The treatment creatinine was 

defined as the highest serum creatinine value measurement within the 30 days after the 

http://www.biourtox.com/Mediquick7/index.cfm
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beginning of the prescription or the co-prescription.[28] The beginning of exposure to 

drug 1 or 2 was defined as the first start date of prescription present in our CDW. The 

start of the co-prescription was defined as the first start date of drug 2 while the patient 

was already on drug 1 (Figure 2). Therefore, in our model, patients in each cohort had to 

be at least under a defined drug prescription in order to differentiate « base creatinine » 

and « treatment creatinine » and therefore, identify an AKI related to a drug prescription. 

 

Fig.2 Baseline creatinine was defined as the first outpatient serum creatinine level measured within the past 
three months, before the prescription of drug 1 or drug 2 or both.[27,28] Baseline creatinine was compared 
to the treatment creatinine. The treatment creatinine was defined as the highest serum creatinine value 
measurement within the 30 days after the beginning of the prescription or the co-prescription.[28] The 
start of the co-prescription was defined as the first start date of drug 2 while the patient was already on 
drug 1. 

 

We included patients regardless of which drug was prescribed first (i.e., drugs pairs 1-2 

and 2-1 were processed the same way). 

As we worked only with start date prescriptions, regardless of end date prescriptions, we 

checked that patient had a start date of the first drug within 7 days before the start date 

of the second drug, to be sure of a genuine co-prescription. 

We created an algorithm based on the first level of the RIFLE criteria to indentify whether 

or not  patients had or had not an AKI.[17] We considered an AKI as an increase of at least 

50% from the baseline creatinine within the 30 days after the start of the prescription or 

the co-prescription.[20] 

2.3 Validation Tests of the Algorithm: 

In a first step, to validate our method, we tested ten drugs which were not on the list of 

the 393 nephrotoxic drugs (Table 1) and ten drugs that were on this list (Table 2). 

Selected drugs were chosen among the most prescribed during the study period and must 

represent different drug classes. We took patients under vitamine D oral solution as 
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control, a drug  that is unknown, up to this date, to induce AKI.  

Then, to test our method on DDIs, we aimed to identify an association between co-

prescription of clarithromycin and Calcium Channel Blockers (CCB); since this association 

has been highlighted in a recent published study to be at risk of inducing AKI.[23] For this 

purpose, all HEGP prescribed CCB have been pooled in the same cohort. 

2.4 Drug-Drug Interaction Concerned Two by Two Combined Drugs Administration and 

AKI: 

We chose to assess the association between AKI and all 45-drug pairs combined with ten 

drugs unknown, up to this date, to induce AKI and  picked among the most prescribed at 

HEGP (see electronic supplementary material 1)  for the time period of the study. The 10 

drugs we  selected  must not be on the 393 nephrotoxic drug list and  must represent 

different drug classes. 

2.5 Chart Review Method: 

Two senior physicians from the pharmacovigilance department conducted a chart review  

for patients under drug pairs for which we had a signal. For each patient record, 

pharmacologist experts had to confirm (i) the existence of an AKI (ii) the existence of a  

genuine co-prescription (iii) and to find out other causes of AKI as nephrotoxic drug co-

prescriptions, injection of iodinated contrast media, multiple organ failure and so forth. A 

nephrologist was in charge to analyse unobvious cases. 

2.6 Additional Analysis: 

We conducted several additional analysis for the drug pairs for which we had a signal: (i) 

the impact of the prescription order, (ii) different time intervals (3, 5 and 7 days) between 

the sart of co-prescription and AKI and (iii) the mean of concomitant nephrotoxic 

prescriptions per patient between patients under co-presciption and patients under 



 9 

single drugs. 

2.7 Statistical Methods: 

For the validation test, we estimate sensitivity, specificity, predictive positive value,  

predictive negative value and the Yule’s Q contingency coefficient of the algorithm. 

Then, we conducted a logistic regression model to evaluate the asssociation between AKI 

and co-prescription. For this purpose, we compared two cohorts (Figure 2): a cohort with 

people who had drug 1 but not drug 2 or drug 2 but not drug 1 and a cohort with people 

on both drugs, assuming that patients under one or the other drug would be closer in 

terms of potential counfounding factors vs. patients with any other drugs. 

In a first step, we tested the association with AKI for each pair of drugs by a Chi-squared 

test. The aim was to ensure that the possible association was well related to the co-

prescription and not to the effect of potential confounding factors specifically associated 

with one of the drugs, for we previously pooled patients under drug 1 or 2 in a single 

cohort. If there was a significant difference between the two drugs, we would abort our 

investigations (see electronic supplementary material 2). For each patient, age, sex, 

number of prescriptions at the maximum creatinine level, baseline creatinine and time 

period between the start date of (co-) prescription were used as covariates. Age, number 

of prescriptions, baseline creatinine and time period were coded as continuous variables, 

others as binary. 

The Logistic Regression Model was Defined as follows: 

Logit (IRA) = b0 +b1Drug1&2/Drug1xor2 + b2Age + b3Sex + b4Baseline_creatinine + 

b5Number of precriptions + b6Time_period 

The number of prescriptions, at the date of the treatment creatinine, ignored saline, 

glucose infusions and topical form medications. 
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An Open Database Connection (ODBC) linking an Oracle® database (11g Enterprise Edition 

Release 11.2.0.1.0) of i2b2 CDW (version 1.3) to R software (version 2.15.3) was set up. 

The extraction of data was performed with SQL queries then R was used for all the 

analysis (RODBC, stats, MASS and epitools Packages) . We used the false discovery rate 

control method to correct multiple comparisons.  

We obtained an approval from the institutionnal review board of our hospital 

(IRB#00001072  Study #CDW_2013_0004). 

 

3 RESULTS 

3.1 Data mining and clinical screening of patients cohorts (Figure 3): 

We extracted data from 606,524 patients from July 2000 to June 2013 from HEGP 

CDW.[25,26] Off these patients, 88,687 patients had at least two serum creatinine levels 

and one electronic prescription. We excluded patients who had obvious cause of 

creatinine variation i.e., 12,620 patients with at least one ICD-10 billing codes for shocks 

or antineoplastic agents or dialysis. Finally, 76,067 patients had been included in this 

study. 

Fig.3 Flow diagram: we extracted data from the Clinical Data Warehouse (CDW) of the Hôpital Européen 
Georges Pompidou (HEGP) containing care data of 606,524 patients from July 2000 to June 2013. 88,687 
patients had at least two serum creatinine levels and one electronic prescription. Out of these patients, 
12,620 had at least an ICD-10 billing codes of shocks or antineoplastic agents or dialysis and were excluded. 
Finally, 76,067 patients had been included in this study. 

 

 

3.2 Testing our algorithm on pairwise single drugs-AKI: 

The validation of the algorithm, for AKI adverse event detection, was performed on 20 

types of single prescription drugs among the most prescribed in our hospital: (i) 10 drugs 
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known to cause AKI; (ii) 10 drugs not known to cause AKI. Vitamine D oral solution was 

considered as control. 

3.2.1 Acute Kidney Injury and Non Nephrotoxic Drugs: 

 

Table 1: Testing our Signal Identification Algorithm on ten Non Nephrotoxic Drugs. 

Tested Drugs Drug 
but not VIT-D 

N (AKI/ NO AKI) 

VIT-D 
but not drug 

N (AKI/ NO AKI) 

ORu P value P  value 
corrected 

ACETYLCYSTEINE 110/1,489 40/744 1.37 
[0.94 ; 1.99] 

0.106 0.278 

ATENOLOL 58/971 54/823 0.91 
[0.62; 1.33] 

0.696 0.875 

FOLIC ACID 75/998 49/764 1 .17 
[0.81 ; 1.70] 

0.453 0.850 

GLIMEPIRIDE 27/401 52/820 1.06 
[0.65 ; 1.71] 

0.806 0.896 

LOPERAMIDE 70/710 49/803 1.62 
[1.11 ; 2.36] 

0.013 0.066 

METOPROLOL 58/971 55/822 0.91 
[0.62 ; 1.33] 

0.70 0.875 

MIANSERIN 39/433 50/790 1.42 
[0.92 ; 2.22] 

0.111 0.278 

PHYSIOLOGICAL 
SALINE 0,5L & 1L 

550/6,203 17/380 1.98 
[1.21 ; 3.25] 

0.004 0.040 

TAMSULOSIN 85/1,221 50/738 1.03 
[0.72 ; 1.47] 

0.927 0.927 

TRIMETAZIDINE 24/301 55/826 1.20 
[0.73 ; 1.97] 

0.51 0.850 

VITAMINE D 
Oral solution 

0 901 1 - - 

ORu, unadjusted Odds Ratio 

Among the 10 drugs not known to cause AKI, we didn’t find any association with AKI for 

all drugs except for physiological saline (odds ratio (OR) 1.98 [95% CI. 1.21-3.25], P 

corrected = 0.040) (Table 1) after multiple testing correction. 

 

3.2.2 Acute Kidney Injury and Nephrotoxic Drugs: 

 Among the 10 drugs known to cause AKI, we found a statistically significant association 

with AKI for 5 of them after multiple testing correction. (Patients under amphotericine B 

(ORu 2.79 [95%CI, 1.87-4.16], absolute risk increase (ARI) 7.09% [95%CI, 4.49%-9.73%], 
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number needed to harm (NNH) 14), patients under ciprofloxacin (ORu 1.82 [95%CI, 1.27-

2.61], ARI 4.39% [95%CI, 1.77%-7.04%], NNH 23), patients under gentamicin (ORu 2.96 

[95%CI, 2.11-4.15], ARI 9.07% [95%CI, 6.55%-11.48%], NNH 11), patients under 

metronidazole  (ORu 1.97 [95%CI, 1.36-2.86], ARI 4.68% [95%CI, 2.18%-7.19%], NNH 21) 

and patients under vancomycin  (ORu 2.23 [95%CI, 1.57-3.16], ARI 5.90% [95%CI, 3.49%-

8.21%], NNH 17) (Table 2). 

Table 2: Testing our Signal Identification Algorithm on ten Nephrotoxic Drugs. 

 

 

3.2.3 Acuracy of our algorithm: 

 We evaluated the sensitivity and specificity of our method considering identified drugs in 

table 1 as false positive and, identified drugs in table 2 as true positive (Se 50% [95%CI, 

23.66%-76.34%], Sp 90% [95%CI. 59.58%-98.21%]. Positive likelihood ratio (PLR) were 5 

Tested Drugs Drug 
but not VIT-D 

N (AKI/ NO AKI) 

VIT-D 
but not drug 
N (AKI/ NO 

AKI) 

ORu P value P value 
corrected 

ALLOPURINOL 114/1,300 51/779 1.34 
[0.95 ; 1.89] 

0.0946 0.158 

AMPHOTERICINE B 98/749 35/747 2.79 
[1.87 ; 4.16] 

1.63e-07 8.15e-07 

CAPTOPRIL 22/292 55/840 1.15 
[0.69 ; 1.92] 

0.592 0.592 

CIPROFLOXACIN 87/752 50/786 1.82 
[1.27 ; 2.61] 

1.26e-03 2.52e-03 

GENTAMICIN 190/1,122 45/786 2.96 
[2.11 ; 4.15] 

1.37e-11 1.37e-10 

KETOPROFEN 27/471 55/826 0.86 
[0.53 ; 1.38] 

0.556 0.592 

METFORMIN 77/1,453 50/772 0.94 
[0.57 ; 1.18] 

0.293 0.367 

METRONIDAZOLE 92/824 44/777 1.97 
[1.36 ; 2.86] 

3.19e-04 7.97e-04 

RIFAMPIN 25/255 53/820 1.46 
[0.88 ; 2.41] 

0.168 0.240 

VANCOMYCIN 143/1,121 44/769 2.23 
[1.57 ; 3.16] 

3.03e-06 1.01e-05 

VITAMINE D 
Oral solution 

0 901 1 - - 
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[95%CI, 0.7-35.5] and negative likelihood ratio (NLR) were 0.6% [95%CI. 0.3-1.1] using 

correction for multiple test. The Yule’s Q contingency coefficient indicated a strong 

association 0.71.  

3.3 Acute kidney injury and drug-drug interactions: 

To assess our method on DDIs, we first tested a pair of drugs that was already known to 

be associated with AKI : clarithromycin and calcium-channel blockers.[23] We found a 

statistically significant association between AKI and this co-prescription by re-using our 

health care data (ORu 2.92 [95%CI, 1.11-7.69] P =0.04).  

To identify new pharmacovigilance signal concerning DDIs, we investigated  forty-five 

pairs of drugs that could be formed with ten drugs we selected among the most 

prescribed at HEGP (see electronic supplementary material 1). Only 27 pairs of drugs 

were eligble for comparison after a Chi square test (see methods & see electronic 

supplementary material 2). Considering unadjusted Odds Ratio, the co-prescription of 

one pair of drugs was associated with AKI : hydroxyzine and bromazepam (ORu 1.66 

[95%CI, 1.23-2.23], ARI 3.70% [95%CI, 1.39%-6.52%], NNH 27). 

Table 3: Association between Acute Kidney Injury and Drug Drug Interaction for 27 
Comparable Drug Pairs. 

DRUG PAIRS (Drug 1/ Drug 2) Cohort 
 Drug 1 or 2 

N (AKI/NO AKI) 

Cohort  
Drug 1 & 2 

N (AKI/NO AKI) 

ORu P 
corrected 

HYDROXYZINE/BROMAZEPAM 352/5,266 56/506 1.66[1.23 ; 2.23] 0.04 
NICARDIPINE/BISOPROLOL 482/6,714 50/440 1.58[1.16 ; 2.15] 0.07 
PHLOROGLUCINOL/NICARDIPINE 336/4,111 32/231 1.69[1.15 ; 2.49] 0.11 
CONTRAMAL/NICARDIPINE 525/7,851 87/990 1.31[1.04 ; 1.66] 0.17 
ACUPAN/BISOPROLOL 550/8,106 50/531 1.39[1.03 ; 1.89] 0.20 
BROMAZEPAM/BISOPROLOL 417/6,262 59/675 1.31[0.99 ; 1.74] 0.30 
PHLOROGLUCINOL/BROMAZEPAM 347/4,173 28/238 1.41[0.94 ; 2.12] 0.38 
ACUPAN/HYDROXYZINE 388/5,799 72/929 1.16[0.89; 1.50] 0.56 
L-THYROXINE/MACROGOL 394/5,876 24/447 0.80[0.52 ; 1.22] 0.56 
HYDROXYZINE/BISOPROLOL 496/7,426 67/848 1.18[0.91 ; 1.54] 0.56 
NICARDIPINE/BROMAZEPAM 357/4,326 26/251 1.26[0.83 ; 1.91] 0.56 
CONTRAMAL/BROMAZEPAM 549/8,335 60/780 1.17[0.89 ; 1.54] 0.56 
NICARDIPINE/ACENOCOUMAROL 310/3,669 7/128 0.65[0.30 ; 1.40] 0.56 
ACUPAN/BROMAZEPAM 407/5,473 28/473 0.80[0.54 ; 1.18] 0.56 
ACUPAN/NICARDIPINE 406/5,274 51/547 1.21[0.89 ; 1.64] 0.56 
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CONTRAMAL/HYDROXYZINE 558/8,450 94/1,280 1.11[0.89 ; 1.39] 0.56 
HYDROXYZINE/NICARDIPINE 431/5,472 27/422 0.81[0.54 ; 1.21] 0.56 
PHLOROGLUCINOL/ACENOCOUMAROL 276/3,819 28/262 0.54[0.87 ; 1.53] 0.56 
ACUPAN/ACENOCOUMAROL 399/5,380 16/154 1.40[0.83 ; 2.37] 0.58 
HYDROXYZINE/ACENOCOUMAROL 366/5,223 17/211 1.15[0.69 ; 1.91] 0.75 
L-THYROXINE/ACUPAN 413/5,489 17/272 0.83[0.50 ; 1.37] 0.75 
ACENOCOUMAROL/BISOPROLOL 404/5,819 33/505 0.94[0.65 ; 1.36] 0.95 
CONTRAMAL/ACENOCOUMAROL 590/8,545 28/388 1.05[0.71 ; 1.55] 0.95 
CONTRAMAL/BISOPROLOL 622/9,863 85/1,368 0.99[0.78 ; 1.24] 0.95 
BROMAZEPAM/ACENOCOUMAROL 263/3,429 20/250 1.04[0.65 ; 1.67] 0.95 
L-THYROXINE/CONTRAMAL 584/8,635 36/507 1.05[0.74 ; 1.49] 0.95 
CONTRAMAL/ACUPAN 468/7,053 142/2,116 1.01[0.83 ; 1.23] 0.95 

 

3.4 Study of Covariates: 

We conducted a covariates study for people under hydroxyzine and/nor bromazepam. 

We tested age, sex, base creatinine, number of concomitant prescription and time period 

to AKI. (Table 4) Three covariates were significantly associated with AKI in a univariate 

analysis, age (P = 6.93e−06), number of concomitant prescriptions (P = 1.01e−07) and 

time period (P < 2e-16). OR adjusted for these 3 covariates was: 1.47 [95%CI, 1.07-1.99]. 

 

Table 4: Demographic and Covariates Characteristics for (i) Hydroxyzine and 
Bromazepam, (ii) Hydroxyzine XOR Bromazepam Cohort 

 Hydroxyzine 
XOR 

Bromazepam 

Hydroxyzine 
AND 

Bromazepam 
Age (mean±SD) 62±19 60±18 

Sex (%female) 45 49 

Base creatinine (mean±SD) 97±65 101±78 

Comedications (N±SD) 7±5.5 8.6±6.5 

Time period to AKI  (Median[1Q,3Q])                  2.4[1.2,6.4] 2.5[1.3,7.3] 

 
 

 

 

 



 15 

3.5 Testing of a Potential Class Effect: 

Four other benzodiazepines were prescribed at HEGP: alprazolam, diazepam, lorazepam 

and oxazepam. We tested each one of them in association with hydroxyzine  but did not  

find any significative association with AKI after multiple testing correction (P was 

respectively 1, 0.72, 1, 0.24).  The result was equivalent when we pooled patients with all 

benzodiazepines but bromazepam (P = 0.68). We only tested for hydroxyzine as it is the 

unique representant of its ATC drug class. 

3.6 Additional Analysis: 

We tested the impact of the prescription order and found out a difference: the 

association was present when bromazepam was prescribed first (1.77 [95%CI, 1.24-2.54], 

P = 0.003) but not when hydroxyzine was also first (1.21 [95%CI, 0.73-2.00], P = 0.49). 

Then, we tested association between AKI and hydroxyzine and bromazepam concomitant 

prescription for different time intervals: 3, 5 and 7 days between the start of co-

prescription and serum creatinine levels of interest and did not find any association, P 

were 0.44, 0.16 and  0.13 respectively. We tested the assumption that nephrotoxic drugs 

will be equally distributed between prescription and co-prescription cohorts. The mean of 

concomitant nephrotoxic prescriptions was not statistically different between patients 

under hydroxyzine or bromazepam alone (mean = 5.76) and patients under both drugs 

(mean = 4.82) (P = 0.089). 

3.7 Chart Review: 

To further our investigations on the potential signal concerning hydroxyzine and 

bromazepam, 56 patient’s records who were under this co-prescription and had an AKI 

were reviewed by two senior physicians from the pharmacovigilance department. The 

diagnoses of AKI had been confirmed for 96% [95%CI, 88%-99%] of cases (N = 54); in one 
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case, the baseline creatine level was artificially low due to an hyperhydratation, this 

elevation of creatinine was in fact a normalisation. The concomitant prescription was 

confirmed for 88% [95%CI, 76%-94%] of cases (N = 49). All patients had another cause of 

AKI: renal causes, including functional renal failure (N = 20), other drugs (N = 15), mixed 

causes (clinical status, drugs and functional renal failure) (N = 15), infection (N = 3). A 

nephrologist analysed three unobvious cases that were finaly classified in mixed causes. 

4. DISCUSSION 

Identification of new DDIs is a major public health concern. While SRS is not suitable for 

the identification of new DDIs, the secondary use of clinical data, collected in EHRs to 

identify new signals for DDIs is promising. We created an algorithm capable of extracting 

EHR's data and identify association between concomitant prescriptions and AKI. AKI was 

identified using real laboratory data and defined by the first level of RIFLE criteria for each 

patient and each drug and drug pair tested.[18] As ADR of single drugs are better known, 

we tested first our algorithm on single drug pairs and were able to identify signals 

concerning drugs known to be nephrotoxic with quite good accuracy (sensitivity: 50% 

[95%CI, 23.66%-76.34%], specificity: 90% [95%CI, 59.58%-98.21%]). The lack of sensitivity 

could have resulted from an indication bias since nephrotoxic drugs are prescribed very 

carefully to people with poor kidney function. However, such exploratory studies often 

suffer from a lack of specificity induced by the oversize number of false positive signals. 

Increasing the sensitivity of the method could have resulted in a lack of specificity which 

was not desirable for the second step of the study. 

In order to test our algorithm on DDIs, we investigated clarithromycin and CCB 

concomitant prescriptions which were associated recently with higher risk of 

hospitalization with AKI (OR = 1.98 [95% CI, 1.68-2.34]).[23] We identified a significant 
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statistical association between co-prescription of these drugs and AKI, ORu 2.92 [95%CI, 

1.11-7.69], P =0.04). By investigating all drug pairs formed with ten drugs chosen among 

the most prescribed in our hospital, we identified a potential signal linked co-medication 

of hydroxyzine and bromazepam and AKI (ORu 2.23 [95%CI, 1.57-3.16], ORa 1.47 [95%CI, 

1.07-1.99]). This signal was not confirmed by a class effect study, different onset time and 

a chart review. Although, other plausible causes of AKI have been detected for all 

patients, chart review confirmed an effective AKI in 98%[95%CI, 88%-99%] of cases and, a 

concomitant prescriptions in 88% [95%CI, 76%-94%] of cases. For pharmacovigilance, 

these results are extremely encouraging, in the aim of the secondary used of real world 

care data contained in EHR, whose main purpose of the present study was not to formally 

identify a relationship between tested co-prescriptions and AKI but, to provide a new tool 

for the identification of potential cases for pharmacovigilance hospital units. This work 

could be the first step of further studies as the detection of DDIs concerning co-

medications of more than two drugs, detection of over DDIs or to develop EHRs alarm 

systems for drugs that have been recently marketed. 

 

4.1 Start Date of Therapy and Beginning of Exposure: 

As the only source of data used came from our hospital database, we had no information 

regarding prescription outside the hospital. Thus, if the first prescription occurred before 

hospitalization, the beginning of exposure could be potentially confused with a simple 

renewal of treatment. To reduce this bias, we should have had manually analysed each 

patient's record to trace off a previous exposure before the hospitalization. It would have 

been possible to analyse a few drug pairs but not in a data mining perspective which is to 

analyse the largest possible number of drug pairs as possible. This bias has already been 
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discused for such studies but it would tend to minimize the signal and therefore reduce 

the detection capability of the algorithm.[13] 

4.2 Concomitant Nephrotoxic Prescriptions: 

In all studied cases, patients of each cohort could be on other prescription. In a first 

analysis, we tried to exclude patients on concomitant nephrotoxic treatment from the the 

393 nephrotoxic drug list. Unfortunately, the lost of many patients made the analysis no 

longer feasible. We finally chose to keep concomitant potential nephrotoxic drugs as we 

accepted the hypothesis that they should be equaly distributed in each cohort.  

This hypothesis was reasonable since there was no reason to think that a nephrotoxic 

drug could be associated to a co-prescription rather than the single medications tested. 

Furthermore, there were no significant difference (P = 0.089) between the mean of 

concomitant nephrotoxic drug prescriptions per patient in the cohorts of hydroxyzine or 

bromazepam alone and hydroxyzine and bromazepam in association. 

4.3 Iodinated Contrast Media: 

AKI is a classical adverse effect of iodinated contrast media. Unfortunately, we were not 

able to exclude patient who underwent an injection of iodinated contrast media as their 

prescriptions not recorded in our CDW. We accepted similar hypothesis with concomitant 

prescription of nephrotoxic drugs. There was no reason to think that there were more 

patients under iodinated contrast media in the co-prescription cohort than in the single 

prescription cohort. 

4.4 Limitation of Data Mining in Retrospective Observational Study: 

Our objective was to analyze the largest possible number of drug pairs. Hence, we could 

not achieve a traditionnal covariate analaysis. For exploratory purposes, we restricted our 

analysis to five relevant factors: age, sex, baseline creatinine, number of concomitant 
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prescription and time period between start date of prescription and max creatinine 

level.[20] We choose to test our covariates only for relevent drug pairs in order to avoid 

over-adjustment bias. Moreover, in this first phase of the analysis, a comprehensive 

analysis of all the potential confounding factors would have introduced too much 

complexity for a proper interpretation. 

 

4.5 Acute Kidney Injury and Serum Creatinine Base Definitions: 

We chose to work with the RIFLE classification as it is currently one of the most  

consensual for epidemiologic research.[17,18] These criteria can detect AKI with high 

sensitivity and specificity and are independently associated with morbidity and 

mortality.[19,20] One of the limitations of this classification consists in the definition of 

the baseline serum creatinine level. Few definitions have been proposed in litterature and 

all resulted in misclassifications.[20] Baseline serum creatinine level should be 

representative of the normal renal function; an outpatient serum creatinine level 

measured within the past 3 months have been proposed by Ricci et al. in 2011.[18] We 

chose to work with the nearest outpatient serum creatinine level before the beginning of 

prescription or co-prescription in a 3-month timeframe. The relevance of this choice was 

confirmed by the chart review results, where 98% of the relevant cases had a confirmed 

AKI. 

4.6 Time Period Between the Inclusion and the End  of Follow-up: 

Definition of a timeframe within which the increase of serum creatinine occurs is another 

issue of the RIFLE classification. The Acute Dialysis Quality Initiative (ADQI)[17] have 

chosen a one-week window; but some patients, with slowly progressive AKI, could be 

misidentified with this too short timeframe.[20] The onset time of acute renal failure 
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following a drug prescription is highly variable from one drug to another; it goes from one 

hour for nifedipine – a CCB – to thirty years for lithium – a mood stabilizer 

(http/::www.biourtox.com:Mediquick7:index.cfm). We have retained a thirty-day window 

that seemed a sufficient amount of time to allow acute renal failure to occur and short 

enough to limit various confounding factors. This arbitrary choice should not influenced 

the results since the mediane of the time period between (co-)prescription and the max 

creatinine level was 2.4 days for hydroxyzine or bromazepam and 2.5 days for the 

combination cohort. 

4.7 Patient Selection and Prescription: 

The selection of a particular drug causes the selection of a particular patient.  Hence, 

antihypertensive agents select hypertensive patients, hypoglycemic drugs select diabetics 

and patients on both drugs will be at greater risk to have a diabetic nephropathy and to 

develop an episode of acute renal failure. Thus, our results show that patients receiving 

physiological saline were more at risk to develop an episode of acute renal failure than 

patients receiving folic acid. An assumption could be that patients requiring perfusion are 

weaker than patients who do not and are therefore more likely to develop AKI during 

their hospitalization. Similarly, loperamide, an opioid drug used against diarrhea was 

closed to trigger a signal; hypovolemia caused by gastrointestinal fluid losses could be an 

explanation to this outcome. This selection bias have to be questionned for every pair of 

drugs and it is the problem of any epidemiological study, namely the existence of a causal 

relationship.  

 

5. CONCLUSION  

We developed a new datamining algorithm capable of detecting potential signals 

/(http/::www.biourtox.com:Mediquick7:index.cfm)
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concerning DDIs and AKI by mining data from an electronic health record. Therefore, we 

confirmed a precedently association concerning concomitant prescription of 

clarithromycin and calcium-channel blockers and AKI. This work confirm the EHR’s data 

re-using potential in a pharmacovigilance perspective. 
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