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Abstract. Running with compliant curved legs involves the progression of the center

of pressure, the changes of both the leg’s stiffness and effective rest length, and the

shift of the location of the maximum stress point along the leg. These phenomena

are product of the geometric and material properties of these legs, and the rolling

motion produced during stance. We examine these aspects with several reduced-order

dynamical models to relate the leg’s design parameters (such as normalized foot radius,

leg’s effective stiffness, location of the maximum stress point and leg shape) to running

performance (such as robustness and efficiency). By using these models, we show that

running with compliant curved legs can be more efficient, robust with fast recovery

behavior from perturbations than running with compliant straight legs. Moreover, the

running performance can be further improved by tuning these design parameters in

the context of running with rolling. The results shown in this work may serve as a

potential guidance for future compliant curved leg designs that may further improve

the running performance.
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1. Introduction

The natural, elegant and seemingly effortless running motions created by humans and

animals veil the rich dynamics involved in running. When humans and animals run,

their gravitational potential energy fluctuates in phase with the horizontal kinetic energy

[1]. During the first half of stance, as the body decelerates, part of the gravitational

potential and kinetic energies are stored in their leg muscles, tendons and ligaments, as

strain energy. And, during the second half of stance, this energy is returned in part to

the gravitational potential and kinetic energies accelerating the body [2]. Furthermore,

there seems to be a preferred stride frequency (i.e., resonant frequency) as function of

the animals’ size, mass and leg stiffness [3].

These aspects of running can be elegantly captured by reduced-order dynamical

models. The interest in (and the value of) studying the running dynamics through

reduced-order dynamical models does not reside only in the simplicity that makes them

attractive but also in the powerful insight that these models give in capturing the running

behavior of animals of diverse size, weight, and leg numbers [3, 4]. Furthermore, when

the dynamics of running is parameterized using this type of models, the parameters that

describe a locomotive system may be tuned to optimize running performance (such as

efficiency, speed, and robustness) to both explain the relationship of these parameters

to their running performance and, moreover, serve as a guide for reverse-engineering

robotic leg designs.

The simplest and the most general model to describe the dynamics of running is

the spring-loaded-inverted pendulum (SLIP) model [5, 6, 7, 8], and for this reason it has

been accepted as a template [9] (i.e., a minimalistic model) to model animal running [4]

and robot running [10]. However, despite its simplicity and the power that this model

enjoys, it also abstracts many aspects of human and animal running, which may be key

factors for their dynamic richness. First, in the SLIP model, the role of foot design

and the foot contact during stance are lost. Unlike the assumed point contact of the

SLIP model, during running the foot may roll over the ground as its center of pressure

(CoP) progresses from heel to toe (for heel-striking runners) or from mid-foot to toe (for

mid-foot-striking runners) in the sagittal plane [11]. Two major past references on this

aspect include Ringrose’s model of an hopper with a circular foot [12] and McGeer ’s

passive bipedal running model [13]. Ringrose showed that running with a curved foot

has a direct relationship between the foot radius and the rate of recovery from pitch

angle perturbations [12]. But, the increase of the foot radius is upper bounded by the

overcorrection of pitch angle errors resulting in unstable running behavior [12]. On the

other hand, McGeer showed that in running the centrifugal effect in the sagittal plane

has a larger role than gravity, and, as a result, the leg spring is stretched in equilibrium

(i.e., the leg configuration for which its compression becomes null) [13]. The position

of this equilibrium can be controlled by including a curved foot to the leg design and

adjusting its foot radius [13]. In this case, the curved foot seems to moderate the

centrifugal effect and consequently the overall running motion [13].
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Second, the SLIP model assumes the leg to be straight and prismatic, while

humans and animals have segmented legs with joints. The geometric configurations

of the humans’ and animals’ legs depend on their scale and the habitat in which

they live [14]. The SLIP model does not allow us to see the effect of the reduction

of bending moments about the leg joints achieved by large-sized mammalian animals

having upright posture [1, 14] nor to study the price that small animals have to pay by

crouching their legs (in terms of the reduction of effective mechanical advantage) to gain

forward acceleration, which is crucial for their survival [15]. Furthermore, the geometric

configuration of a segmented leg seems to influence the demand for energy production,

structural stability and velocity transmission from muscle groups to the leg tip [15]. To

overcome the shortcomings of the SLIP model along this aspect, dynamical models with

leg segmentation have been proposed to show their influence on running performance

[16, 17, 18, 19]. Leg segmentation seems to enlarge the stability region by capturing

the nonlinearity of the leg’s effective stiffness during stance phase, and a similar pattern

seems to be observable during human running [18].

Finally, the SLIP model assumes a constant leg stiffness, while humans and animals

change their leg stiffness as a function of the payload [3], surface stiffness [20, 21, 22],

desired speed [3, 23, 24] or desired stride frequency [25, 26]. When a model embodies

the possibility to change the leg’s stiffness during stance, then this possibility can allow

a legged system to reduce its peaks of reaction forces with the ground, to increase

stability [27], to augment safety factor in human-robot interaction [28], and to reduce

energy consumption [29]. Recently, Riese and Seyfarth showed the benefit of varying

the leg stiffness and the leg’s rest length for vertical hopping behavior by adding these

adaptions to the SLIP model [30]. They showed that softening stiffness and increasing

rest length are required for stable hopping [30]. Precisely these phenomena can be

obtained in a natural way by running with curved legs. Moreover, both the stiffness

decrease and rest length increase during stance can be achieved with no requirement to

actively change their values as we will explain in detail along the presentation of this

work.

Hence, we observe that the very simplicity that gives power to minimalistic models

(such as the SLIP model) to broaden its applicability range also blinds them at the

same time to capture aspects (such as those mentioned above) which might significantly

influence the dynamics of running, not being able to give further insight for designing

robotic legs.

From a mechanical design perspective, most dynamic running robots have utilized

very small (effectively point) feet [31, 32, 33, 34, 35]. This may partially be due to

a desire for mechanical simplicity or to demonstrate that dynamic stability does not

depend on having a large polygon of support as quasi-static walkers do. One notable

exception to this is the hexapedal robot RHex [36]. Although initially designed with

legs having small footpads, a new set of half-circle legs were designed to facilitate stair

climbing [37]. These legs allowed the robot to roll up steps and other obstacles, but

it was quickly discovered that these legs also gave better performance on level ground
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Figure 1. A bipedal robot with curved legs, attached to a boom that constrains the

motion of running in sagittal plane.

locomotion as well. Subsequent efforts to tune the ‘Buehler-clock ’ based controller [36]

with these legs have allowed the robot to run at speeds up to 2.7 [m/s] and over very

rough terrains [38]. This type of controller uses a periodic function known as the ‘Buehler

clock ’ [36] as the reference trajectory to track the leg motion. This trajectory consists of

a periodic two-piecewise linear function with one flatter slope for the slow stance phase

and the other steeper slope for the fast swing phase [27].

In the present work, we argue that the good running performance that RHex and

humans with curved prosthetic legs show is partially because these legs bring together

during stance 1) the progression of the center of pressure, 2) variable stiffness, and 3)

change of the leg’s effective rest length. Interestingly, the advantages that Riese and

Seyfarth showed due to the changes of both the variable stiffness and leg’s rest length

[30] can be achieved passively with curved legs with no direct actuation for generating

these changes. This is possible with curved legs mainly because of their geometry and

the involved leg circular motion for running.

With the purpose to capture these three changes, a novel reduced-order dynamical

model is proposed in the present work. Recently, few works have been published that

combine various aspects of RHex running that the SLIP model does not capture. Such

models include the kinematics of rolling contact and the nonlinear compliance of the

leg geometry [39, 40, 41]. Our work differs from these works in the aspects that, by

using an articulated leg model with variable location of the maximum stress point along

the curved leg, our model is able to capture the progression of the center of pressure,

changes in its rest length, the location of its maximum stress point, and the leg stiffness

as the leg rolls over the ground. We refer to our novel model as the Torque-driven and

Damped Half Circle Leg (TD-HCL) model. Finally, we show the benefits of running

with curved legs by comparing it first to running with no change at all on the aspects

that we aforementioned and then to running with each of the changes. For this purpose,
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Table 1. Specifications for the bipedal robot with curved legs shown in Figure 1.

Parameters Symbols Values Units

Body mass mbody 1.026 kg

Body dimension W × L×H 22× 24× 5.5 cm × cm × cm

Leg mass mleg 0.045 kg

Leg length (hip to toe) ζo 11.4 cm

Motor stall torque τs 0.0569 Nm

Motor no load speed ωnls 789.6 rad/s

Gear ratio Gr 24 : 1 -

we use in addition to the novel model the SLIP model [7], a two-segment-leg model

(with a point foot) [18] and a model that consists of a compliant leg with a rolling foot

like the one introduced in [42].

The models that we present in this work are anchored to a bipedal running test

robot with curved legs shown in Figure 1 with the purpose to show the experimental

results of the present simulation work in the future. The specifications for this robot are

shown in Table 1. This robot has been built for testing the performance of running with

curved legs in the sagittal plane, and the design parameters have been carefully chosen

preserving the dynamic similarity of a RHex -like robot known as EduBot [43, 44].

The rest of the present work is organized as follows. In Section 2, we propose the

model that captures the progression of the center of pressure, leg stiffness change, leg

rest length change and the location of the maximum stress point. In Section 3, we study

the influence of rolling on running. In Section 4, we show the influence of the leg shape

and the location of the maximum stress point on running performance. In Section 5, we

compare the running performance obtained from using various reduced-order dynamical

models presented in this work. Finally, we summarize our work and suggest areas of

future research in Section 6.

2. Torque-driven and damped half-circle-leg (TD-HCL) model

In this section, we propose a model that describes the main aspects of running with

curved legs. To the best of our knowledge, Sayginer attempted for the first time to

characterize running with half-circle legs using a modified version of the SLIP model

[39]. We chose to modify the two-segment-leg model instead of modifying the SLIP

model because this allows us 1) to characterize the progression of the center of pressure,

2) to represent the variation of the leg stiffness using the Pseudo-Rigid-Body (PRB)

model [45], and 3) to describe the change in the leg’s effective rest length as well as

the change in the location of the maximum stress point. Notice that the PRB model

employs a compliant cantilever beam (which resembles the two-segment leg model) and

has been often used to characterize the stiffness of actual curved legs [46, 47].

The dynamics of the sagittal-plane running with a half-circle leg can be



Characterization of running with compliant curved legs 6

σ 
γ d=2R 

ζ 

m g 

y 
x 

K 

ζ2 

ζ1 ζ 

β 
legF

ζ
τHip−

B 
R 

Hipτ

-θ 

ψ 

(a)

γ 

R 

ζ2 

ζ1 

R 

-θ 

ψ 

γ R 

R 
γ 

ψ 

ψ 

2γ-θ 
βo 

(b)

Figure 2. (a) The torque-driven and damped half-circle leg (TD-HCL) model, a novel

model proposed to capture the fundamental aspects of running with a half-circle leg

such as the progression of the center of pressure, leg’s stiffness change, leg’s effective

rest length change, and the shift of the maximum stress point along the leg during

stance. The parameters and variables that define the model are described in the text.

(b) A figure indicating various geometric relationships for a half-circle leg, for the case

when the leg is not compressed.

characterized as shown in Figure 2. In this model, the body is represented by a point

mass located at the hip with mass m. The massless curved compliant leg is characterized

by using two segments with a torsional spring located at the intersegmental joint. The

proximal segment (ζ2) is defined between the hip and the joint of the segments with ζo2
as its rest length, while the distal segment (ζ1), between this joint and the contact point

of the curved leg with the ground. The latter segment has ζo1 as its rest length. The

leg intersegmental angle (β) is defined as the angle formed by the two segments and has

value βo at rest. The leg’s effective length (ζ) is defined as the distance between the

position of the center of mass (CoM) and the center of pressure with ζo as its rest length.

Because the curved leg is assumed to be massless, the two leg segments are also assumed

to be massless. The radius of the half-circle leg is represented by R. The position of the

center of mass can be represented either using the Cartesian coordinates (x, y) in the

inertial frame or the polar coordinates (ζ, γ) attached to the body frame. The energetic

losses present in the actual system are modeled using a torsional damper located at the

intersegmental joint with a constant damping coefficient (B). To overcome these losses

a torque actuator is introduced to the model by attaching it to the hip. In the model,

the body is assumed to have an effective infinite inertia. This assumption not only

keeps additional complexity from the model (as has been commonly done in analysis

of torque-driven SLIP models [48]), but it is also a good estimation of the situation

when dealing with multipedal robots that motivated this analysis, where the interaction

of the front, middle, and rear legs removes almost all body pitch from the robot [49].

Therefore, the motion of the center of mass is influenced by the gravitational acceleration

g and the torque actuation (τHip) subject to the interaction of the leg with the ground.

All the angles and hip torque are defined to be positive counterclockwisely. A linear
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torque-speed curve is used as a simple motor model to delimit the available torque for

given angular speed. In the present work, ζ2/ζ1=1 is used, where both ζ1 and ζ2 vary

as function of both the center of pressure and the center of mass.

This model is used to describe the motion of the center of mass of the bipedal

running robot shown in Figure 1. A stride consists of two steps (because the considered

robotic platform has two legs). However, because we are particularly interested in

studying the running behavior (and not walking), we can represent the dynamics of

bipedal running representing only one leg in the model by forcing the duty factor to

be less than 50% from the controller and by assuming that during flight phase the leg

perfectly tracks a given reference trajectory. Therefore, when a leg leaves the stance

phase, we track the second leg which is about to make contact with the ground following

a given trajectory. Notice that the reference trajectory consists of a periodic two-

piecewise linear function with one flatter slope for the slow stance phase and the other

steeper slope for the fast swing phase.

Each step consists of two main phases: a stance phase (SP) and a flight phase (FP).

Furthermore, the stance phase can terminate either during the leg’s rolling motion

(stance-rolling phase (SRP)), or during a compliant-vaulting motion over its tiptoe

(stance-tiptoe phase (STP)). Therefore, there can be two or three phases within a stride

depending on both the leg type and the time instant at which the lift-off event occurs.

Three events separate these phases from each other. The transition from stance to

flight phase occurs when lift-off (LO) event is triggered, while the transition from flight

to stance phase occurs when touch-down (TD) event is detected. Finally, the transition

from stance-rolling to stance-tiptoe phase occurs when rolling-to-tiptoe (R2T) event is

generated. Therefore a stride can consist of only stance-rolling and flight phases or

stance-rolling, stance-tiptoe and flight phases.

The equation of motion for stance-rolling phase (SRP) for running with a curved

leg is obtained using the Lagrangian approach as

M(q)q̈ + N(q, q̇) = Q, (1)

where M, N, and Q are the inertial matrix, (Coriolis, gravitational and spring) force

vector, and external generalized force vector, respectively. The stance-tiptoe phase

(STP) is similar to the original two-segment-leg model shown for instance in [18].

The motion of the center of mass during the flight phase (FP) is modeled using a

simple ballistic model governed only by gravitational acceleration and is given as
ẍ = 0,

ÿ = −g,
γ̈ = 0,

(2)

where x, y, γ and g represent the horizontal position of the body, vertical position

of the body, leg angle with respect to the vertical line and gravitational acceleration,

respectively. During this phase, the leg is assumed to perfectly track a given reference

trajectory because the leg is considered to be massless in the model (therefore, there is

no moment of inertia) and no air drag force is considered in the model.
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The touch-down (TD), lift-off (LO) and rolling-to-tiptoe (R2T) events are triggered

by the conditions (3), (4) and (5), respectively.

ymin ≤ 0, (3)

Fx ≥ µFy, (4)

γ ≤ 0, (5)

where ymin, Fx, Fy, µ, and γ are the distance between the lowest point on the leg and the

ground, the horizontal and vertical ground reaction forces, the coefficient of the ground

friction and the leg angle with respect to the vertical line, respectively (see Figure 2).

In the following subsections, we describe the details on the modifications added

into the two-segment-leg model in order to capture the three main aspects of running

with a half-circle-leg.

2.1. Progression of the center of pressure

First, a half-circle leg rolls over the ground producing a progression of the center of

pressure until the leg lifts off the ground. When the body angle γ becomes negative

while the leg is in contact with the ground, the half-circle leg will not roll anymore but

will tip over using its tiptoe. Let us call this leg as Leg A. We also considered a circular-

shaped leg with an arc length longer than half-circumference. In this case, the leg will

continuously roll even with γ<0. not producing sharp changes in angular velocities due

to changes in motion types. Let us call this leg as Leg B. In both cases, no slippage due

to rolling is allowed in the model. In the present model, two assumptions are made for

simplicity: no deformation occurs between the center of pressure and the tiptoe but a

circular shape with radius R is maintained during stance; and, for the case of Leg B,

the leg can roll as much as it needs until lift-off condition occurs up to a lower limit for

the leg angle.‡ The progression of the center of pressure during stance can be expressed

as

s = 2R(γTD − γ), (6)

where s is the arc length, R is the curvature radius, and (γTD−γ) is the difference

between the initial angular position (γTD) corresponding to the time instant at which

touch-down event occurs and the instantaneous angular position (γ) after the touch-

down event has occurred. The angular position γ is defined positive counterclockwisely.

The distance traveled by the center of pressure is equivalent to the arc length traveled

until the lift-off condition is triggered (Leg B) or until γ becomes zero (Leg A).

‡ A lower limit in γ was necessary to be considered in order to avoid the cases in which the leg’s

effective rest length becomes excessively small.
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2.2. Leg stiffness change

The change in the leg’s effective stiffness is considered in the present model. This change

is caused by the leg’s geometry and the displacement of the contact point during stance.

Sayginer estimated the leg’s instantaneous effective stiffness, as the leg rolls, by using

the Castigliano’s theorem [39]. In the present work, we use the Pseudo-Rigid-Body

(PRB) model instead because the difference between the leg stiffness values computed

using both methods is relatively small [50], and the leg’s instantaneous torsional stiffness

value can be easily estimated from the PRB model by using a look-up table published

for initially-curved cantilever beams [51]. In addition, the change of the leg stiffness

using the PRB model seems to be a natural fit for the TD-HCL model, since the PRB

model employs a compliant cantilever beam to characterize the stiffness variation, which

resembles the two-segment leg model employed in the TD-HCL model. Further, we fitted

the data points shown in this look-up table using polynomial functions to handle cases

that this table does not contemplate.

In the PRB model, the torsional stiffness for an initially-curved cantilever beam

can be computed as

K = ρKΘ
EI

l
, (7)

where K is the torsional stiffness, ρ is the ratio between the length of the pseudo-rigid-

body link and the total length of the initially-curved beam, KΘ is the nondimensional

stiffness coefficient, E is the Young’s modulus of the material from which the leg is

made, I is the second moment of inertia, and l is the total length of the initially-curved

beam. In our dynamical model, the torsional stiffness values are computed using E, I

and l values published in [44]. A more detailed explanation on how to compute torsional

stiffness values using the PRB model can be found in [45].

Intuitively, as the curved leg rolls over the ground the leg becomes softer because the

distance between the leg’s maximum stress point (represented by the leg’s intersegmental

joint in the model) and the center of pressure increases. Therefore, the leg’s stiffness

can be thought as a function of γ as well. We will show later that the results obtained

from our model agree with this hypothesis.
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Figure 3. The leg’s effective rest length (ζo) becomes longer as the leg rolls over the

ground due to how the leg circulates. (a) The effective rest length at touch-down is

ζo=ζoTD
; (b) The effective rest length when γ=0 is ζo=ζomax

; (c) The effective rest

length at lift-off for Leg A is ζo=ζoLO ; and, (d) The effective rest length at lift-off for

Leg B is ζo=ζoLO
.
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Figure 4. One and a half stride of a steady bipedal running shown by integrating the

equations of motion (1) corresponding to the TD-HCL model.

2.3. Changes in the leg rest length and the location of the maximum stress point

As the leg rolls, the leg’s effective rest length varies during stance from the time instant

at which the leg touches the ground until either it lifts off (Leg B) or it compliantly

vaults over its tiptoe (Leg A). Figure 3 shows three representative time instants with

their corresponding effective rest length values (ζoTD
, ζomax , and ζoLO

). These values

represent the effective rest lengths at γ=γTD, γ=0, and γ=γLO, respectively. For both

Leg A and Leg B, the following relationships hold

ζoTD
≤ ζomax ,

ζoLO
≤ ζomax . (8)

As the leg rolls, the leg’s effective rest length (ζo), the lengths of the leg segments (ζ1

and ζ2), and the intersegmental rest angle obey the following equations

ζo = 2R cos γ,

ζ1 =
ζo√

1 + χ2 − 2χ cos βo
,

ζ2 = χζ1,

βo = ψ + 2γ − θ, (9)

where χ is the ratio of the lengths of the leg segments, and ψ and θ are the angles

formed by the each of the two leg segments with respect to the vertical line (see Figure

2).

2.4. Simulation results obtained using the TD-HCL model

First, Figure 4 shows an example of one stride and a half of a bipedal running gait

using the TD-HCL model. The soft and dark colors are used to distinguish the motion

of the two legs. The legs with grey color indicate various instantiations of undeflected

legs. Blue and yellow colors correspond to the leg segments used in the TD-HCL model.

Red and green curves are generated using a cubic spline function built in MATLAB

to approximate the deflected leg configurations from the positions of the center of
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Figure 5. (a) Change in the leg’s torsional stiffness values and the equivalent leg’s

effective axial stiffness values during stance. The relationship between the leg torsional

stiffness and the effective axial stiffness is given in [18]; (b) Change in the leg’s effective

rest length (ζo) and the distal segment length (ζ1) during stance. ζ2/ζ1=1 is assumed

in the present work, and, therefore, the variation of ζ2 is not shown; (c) Change in

the intersegmental rest angle during stance; and, (d) Progression of center of pressure

(CoP) during stance.

mass, knee and center of pressure. Touch-downs of the first leg occur at x'0 [m] and

x'0.24 [m], and the touch-down of the second leg, at x'0.12 [m]. Lift-off event of the

first leg occurs at x'0.06 [m], and the second leg lifts off at x'0.18 [m].

On the other hand, Figure 5 shows the leg torsional stiffness (K), its effective linear

stiffness (k), leg rest length (ζo), a segment length (ζ1)§, intersegmental rest angle (βo)

and the displacement of the center of pressure against the stance time for a single step,

from the time instant at which the leg touches the ground. Figure 5(a) shows that as the

leg rolls during stance its torsional stiffness reduces from about 3.1 [Nm/rad] to about

2.7 [Nm/rad] (which is equivalent to the effective linear stiffness ranging from about

2.2 [kN/m] to about 0.6 [kN/m]). As we have hypothesized, the leg stiffness becomes

smaller as the leg rolls over the ground because from the time instant at which the leg

touches the ground, the arc length of the leg becomes larger. Here we have shown two

different stiffness values: torsional stiffness and the equivalent effective linear stiffness.

The torsional stiffness value is obtained from the PRB model as explained previously

and shown in (7). The leg’s equivalent effective linear stiffness is computed from the

§ The length of one segment is shown only because in this study we assumed that ζ2/ζ1=1
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torsional stiffness value for the case when the effective leg is compressed 10% of the leg’s

effective rest length as suggested by [18].

Next, Figure 5(b) shows that the leg’s effective rest length increases by about 10 %

and the length of the segments increase by about 33 % (shown only the length of the one

leg segment because of the condition ζ2/ζ1=1 assumed in this study). These increases

are due to the fact that the arc length of the leg increases from the touch-down instant

until γ becomes zero. The intersegmental rest angle (βo) also varies during stance as

shown in Figure 5(c). This angle decreases from about 115 [deg] to about 85 [deg] for

the same reason given previously.

Finally, the displacement of the center of pressure from the time instant of touch-

down until when the leg lifts off is shown in Figure 5(d). These results show that the

center of pressure displaces about 6 [m] as the leg rolls during stance. This can also

be seen in Figure 4. If we focus on the motion of the first leg, we can see that a leg

touch-down occurs at x=0 [m] and that the lift-off occurs at x'0.06 [m].

In the next two sections, the contribution of each of the two main aspects observed

in running with curved legs will be separately studied using a reduced-order dynamical

model for each case. These aspects are the progression of the center of pressure (Section

3), and the leg shape and the location of the maximum stress point (Section 4). The

individual influence of the variations of the leg stiffness and leg rest length on the running

performance are not studied in the present work. A related work (although for hopping)

can be consulted from [30].

3. Influence of rolling on running

In this section, we are interested in studying how rolling influences the running behavior.

We study this by introducing a reduced-order dynamical model called the torque-

driven and damped spring-loaded-inverted-pendulum with rolling foot (TD-SLIP-RF).

This model is inspired from a model that Whittington and Thelen introduced for

characterizing the dynamics of human walking for the energy-conservative case [42].

A clock-driven controller is added to the original model for modeling the dynamics of

running (instead of characterizing walking).

3.1. Model: torque-driven and damped spring-loaded-inverted-pendulum with rolling

foot (TD-SLIP-RF)

The SLIP model is modified by rigidly attaching a non-deformable massless half-circle

shaped rolling foot to a compliant leg, and by incorporating a translational viscous

damper in parallel to the spring and a torque actuator at the center of mass. A linear

torque-speed curve is used as a simple motor model to delimit the available torque for

given angular speed. In this model, during stance the leg exerts force against the ground

generating reaction force directed from the center of pressure, which is the contact point

of the rolling foot with the ground, to the center of mass. As the foot rolls during
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stance, the foot’s contact point progresses in the horizontal direction. This motion can

be described as the expression given in (1), where M, N, and Q now have the following

forms:

M =

[
m mR sin (ψ)

mR sin (ψ) m(ζ2 +R2) + 2mRζ cos (ψ)

]
, (10)

N =

[
−mζψ̇2 + bζ̇ − k(ζo − ζ) +mg cos (ψ)

2m(ζ +R cos (ψ))ζ̇ψ̇ −mRζ sin (ψ)ψ̇2 −mgζ sin (ψ)

]
, (11)

Q =

[
0

τHip

]
, (12)

where m, k, b, R, g, ζo, ζ, ψ and τHip represent body mass, leg stiffness, leg damping

coefficient, foot radius, gravitational acceleration, leg rest length, leg length, leg angle

with respect to vertical, and motor torque at the hip, respectively (see Figure 6). Notice

that when the radius of the rolling foot becomes zero, (1) becomes the equation of motion

corresponding to the torque-driven and damped SLIP (TD-SLIP) model with no rolling

[27]. q and q̇ are generalized coordinates and generalized speeds, respectively, and they

have expressions q=[ζ, ψ]T and q̇=[ζ̇ , ψ̇]T (Figure 6). Once again, the flight phase is

described using the ballistic model shown in (2).

As shown in [42], the ground reaction force defined from the leg-ground contact

point to the center of mass can be expressed in terms of two components (see Figure 6):

the force vector along the direction of the leg axis (Fζ), and the one along the direction

of the unit vector of the leg angle (Fψ). The resulting leg ground reaction force can be

expressed as

Fleg = Fζ êζ + Fψêψ, (13)

ψ 

y 

x 

τHip 
Direction of travel 

ψ 

ϕ 

Fleg Fζ 

Fψ 

CoP 

l
Hipτ

−
ϕ 

R 

lζ 

ζê

ψê

k b 

m 

α 

Figure 6. Torque-driven and damped SLIP model with rolling foot (TD-SLIP-RF).

The energetic losses are modeled by a translational damper along the leg axis in parallel

to the leg spring, where b is the damping coefficient. A torque actuator is added at

the hip (τHip) to overcome the energetic losses. τHip is positive counterclockwisely. See

the text for details.



Characterization of running with compliant curved legs 14

where {êζ , êψ} are unit vectors along the directions of the leg length and leg angle,

respectively, and they are attached to the center of mass. Fζ and Fψ can be defined as

Fζ = k (ζo − ζ)− bζ̇, (14)

Fψ = −Fζ tan (ψ − ϕ), (15)

where ϕ is the angle of the leg-ground reaction force with respect to the vertical line, is

positive counterclockwisely, and has the following expression

ϕ = arctan

(
ζ sinψ

R + ζ cosψ

)
. (16)

The transition from stance to flight (lift-off event) occurs when the vertical ground

reaction force becomes less than or equal to zero, or when the following condition is

satisfied

Fx ≥ µFy, (17)

where Fx and Fy have the following expressions

Fx = −Fζ sinψ + Fψ cosψ − τHip

l
cosϕ,

Fy = Fζ cosψ + Fψ sinψ − τHip

l
sinϕ.

(18)

On the other hand, the transition from flight to stance (touch-down event) occurs

when the condition to the below is satisfied

y ≤ ζo sinα +R, (19)

where y is the vertical position of the center of mass, and α is the prescribed leg impact

angle with respect to the horizontal line.

3.2. Results

The influence of rolling on running may be studied by relating the foot radius to the

running performance (where zero radius represents running without rolling, that is, with

a point foot). Two performance measures are considered to show the benefits of rolling:

robustness and efficiency. The gait robustness is studied for the energy-conservative

system (i.e., neither damper nor actuator are considered), while the efficiency is studied

for the actuated system.

3.2.1. Relation between rolling and robustness First, the relation between rolling and

gait robustness is established by considering a two-dimensional domain formed by the

leg impact angle (α) and the leg stiffness for a variety of foot radius (R) values for the

energy-conservative case. We are hereby interested in knowing the range of stable leg

impact angles for a given set of leg design parameter values (such as the leg stiffness

and foot radius) and a given set of initial conditions ((yo, vxo)=(L [m], 2.5 [m/s])) at

leg touch-down, where L=ζo + R. The larger this range is, the more robust running

is, because a legged system can run stably for all the leg impact angles within this

stable range. In this study, a gait is considered as stable when the legged system can
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run forwardly at least N=50 [strides]. The results are shown in Figure 7. The leg

impact angle is shown on the horizontal axis with a precision of 0.1 degree and the

leg stiffness, on the vertical axis with a precision of 10 [N/m]. Each surface shown in

Figure 7 corresponds to each different normalized foot radius value (R/L) considered.

The colored surfaces drawn in each sub-figure represent stable-gait surfaces, while the

white regions represent unstable-gait regions. Finally, the color map employed in the

sub-figures represents the converged forward speed after N strides (N=50).

From the Figure 7 we see that, as the normalized foot radius is increased, the

stability region is enlarged in both directions of leg impact angle and of leg stiffness.

When the running is modeled without rolling (i.e., R/L=0, with pin joint contact), the

minimum required leg stiffness value for stable running is around 700 [N/m] (Figure

7(a)). Whereas, when the running is modeled with rolling, then the minimum leg
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Figure 7. Analysis of gait robustness and running forward speed for various leg

stiffness and leg impact angle values. The results shown hereby correspond to the

energy-conservative case, and, therefore, in the TD-SLIP-RF model, τHip= 0 and b=0

are employed. (a) R/L=0, (b) R/L=0.3, (c) R/L=0.5, and (d) R/L=0.7, where R is

the foot radius, and L is the leg total rest length. The meaning of the labels A and B

used in (d) are explained in the text. For clarity, the plots corresponding to four R/L

values are only shown.
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stiffness value for stable running is found around 400 [N/m] (Figures 7(b) – 7(d)).‖
In addition, as the normalized foot radius is increased from 0.0 to 0.7, the maximum

range of stable leg impact angles increases from about 7 degrees to about 25 degrees.

Furthermore, as the normalized foot radius is increased, the stable-gait surface, while

becoming larger, originates two separate surfaces (see Figure 7(c) and Figure 7(d)).

These stable-gait surfaces represent two different families of running gaits. The first

family corresponds to running gaits with higher running speed, lower apex height and

larger leg impact angle (represented as family A in Figure 7(c) and Figure 7(d)). The

second family corresponds to running gaits with lower running speed, higher apex height

and smaller leg impact angle (represented as family B in Figure 7(c) and Figure 7(d)).

The size of the stability surface of the gait family B becomes much larger than that of

the gait family A as the normalized foot radius is increased, and the separation of the

two regions becomes more obvious. In addition, the speed of the gaits of the family A is

almost constant for all stable impact angles and leg stiffness values, while for the gaits

of the family B, the running speed is increased as both the leg impact angle and the leg

stiffness are decreased.

‖ A similar effect is observed with the leg segmentation. A legged system is able to run at lower leg

stiffness as the intersegmental rest angle is increased [18].
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Figure 8. (a) The values of the specific resistance weighted with the forward speed

and the maximum Floquet multiplier (i.e., P |λmax|/(mgv3)) corresponding to various

normalized foot radii are shown. The normalized foot radius (R/L) is defined as

the ratio of the foot radius (R) to the leg total rest length (L). Each cost value is

obtained after optimizing the controller parameters independently. Ten R/L values are

considered ranging from 0.0 to 0.9. (b) The vertical and horizontal ground reaction

forces are represented against time for various R/L values. For clarity, the plots

corresponding to four R/L values are only shown.
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3.2.2. Relation between rolling and efficiency For the actuated system, the influence of

rolling on running is shown by relating the foot radius to the efficiency. For each value of

the normalized foot radius (R/L), the controller parameters are optimized with respect

to a speed-weighted version of the specific resistance weighted [52] with the maximum

Floquet multiplier [53]) (i.e., P |λmax|/(mgv3)) using the Nelder-Mead algorithm [54]. In

this study, we considered ten values of normalized foot radius ranging from R/L=0.0 and

R/L=0.9, with the leg stiffness and damping coefficient fixed to be respectively 1, 100

N/m and 32.25 Ns/m (which corresponds to 0.16, as of the damping ratio coefficient).

This stiffness value is computed by using the dynamic similarity condition from a small

version of the RHex -like robot [44], while the damping ratio coefficient has been chosen

heuristically. As of the friction coefficient, µ=1.0 is employed. While this is not

the only possible objective function or optimization scheme, the resulting gaits seem

representative.

Figure 8(a) shows the effect of rolling-related leg design parameter on the running

efficiency. First, R/L=0.0 corresponds to the case of pin-joint contact where there is no

rolling during stance, and we see that its cost value is higher than for any non-zero value

of R/L. This result shows that rolling improves this type of cost function. Furthermore,

we see that, as the normalized foot radius (R/L) is increased, the cost value diminishes

monotonically reaching its minimum value at R/L=0.7. When R/L is further increased,

the foot slips.

In addition, the dynamics of running with differently-sized rolling foot can be

studied by looking at their respective ground reaction forces. Figure 8(b) shows the

vertical and horizontal ground reaction forces against the stance time. For clarity,

the plots corresponding to four R/L values are shown. As the normalized foot radius is

increased, the legged system runs with a shallower leg impact angle (because of the foot’s

geometric constraint), and, when R/L= {0.8, 0.9}, the horizontal normal force becomes

more significant than the vertical ground reaction force causing the foot slippage.

4. Influence of the leg shape and the location of the maximum-stress point

on running

In this section, we are interested in studying the influence of the leg shape and the

location of the maximum-stress point on running performance such as gait robustness

and efficiency. In this study, we do not allow the leg to roll in order to eliminate

its influence on the performance (instead we assume a pin joint contact model). We

evaluate the influence of leg shape by using a reduced-order dynamical model called the

torque-driven and damped two-segment-leg (TD-TSL) model. This is a version of the

two-segment leg model presented by Rummel and Seyfarth [18] modified by adding the

clock-driven controller employed by RHex-like robots [27].
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4.1. Model

As shown in Figure 9, in the TD-TSL model a legged system is modeled as a point-

mass body with mass m, with two massless leg segments that have length ζ1 (for the

distal segment) and ζ2 (for the proximal segment), the intersegmental angle (β, an angle

formed by the two leg segments), and a torsional spring (K) at the joint between the

two segments (which models the compliance of the leg). In addition, a torsional damper

(B) is considered at the intersegmental joint to model the energy loss, and a torque

actuator (τHip) to supply the required energy for a steady locomotion.

In this model, both the leg shape and the location of the maximum stress point can

be characterized by two leg design parameters: the leg’s intersegmental rest angle (βo)

and the ratio of the lengths of the leg segments (ζ2/ζ1) with fixed effective rest length,

respectively.¶
Two sets of equations of motion govern the dynamics of this system for the two

phases that comprise a stride: stance and flight phases. During stance, the system

has two degrees of freedom and can be described with two-dimensional generalized

coordinates q= [ψ, θ]T , and two-dimensional generalized speeds, q̇=
[
ψ̇, θ̇

]T
. The motion

of the body during stance can again be described using the equation given in (1), where

M, N, and Q have the following expressions

M =

[
mζ2

1 mζ1ζ2 cos (ψ − θ)
mζ1ζ2 cos (ψ − θ) mζ2

2

]
, (20)

N =

[
mζ1ζ2 sin (ψ − θ)θ̇2 +B(ψ̇ − θ̇)−mgζ1 sin (ψ) +K(βo − π + ψ − θ)
−mζ1ζ2 sin (ψ − θ)ψ̇2 −B(ψ̇ − θ̇)−mgζ2 sin (θ)−K(βo − π + ψ − θ)

]
,(21)

¶ The leg’s effective rest length is defined as the distance between the center of mass and the tip of the

leg at rest.
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Figure 9. Torque-driven and damped two-segment-leg (TD-TSL) model. A torque

actuator (τHip) is added at the hip to model the motor that actuates a curved leg,

and a torsional damper (B) is incorporated at the intersegmental joint to model the

energetic losses of the leg.
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Q =

[
0

τHip

]
. (22)

The contact force between the leg and the ground defined from the contact point

to the robot’s center of mass has as magnitude

Fleg =
ζ

ζ1ζ2

K(βo − β)−Bβ̇
sin β

, (23)

where β=π − ψ + θ and β̇=− ψ̇ + θ̇.

The flight phase is described using the ballistic model introduced in (2). The

transition from flight to stance (touch-down event) occurs when the condition y≤ζo sinα

is triggered, where α is some predefined leg impact angle with respect to the horizontal

line, and y is the height of the center of mass measured from the ground. To trigger

the transition from stance to flight (the lift-off event), the Coulomb friction model is

employed, as has been done in [48]. That is, the lift-off event occurs when the condition

µFy − Fx≤0 is triggered, where µ is the coefficient of static friction, and Fx and Fy are

the horizontal and vertical ground reaction forces, respectively.

4.2. Results

The influence of the leg shape and the location of the maximum-stress point on running

may be studied by relating the intersegmental rest angle and the ratio of the lengths

of the leg segments to running performance such as the gait robustness and efficiency.

As in the previous section, the gait robustness is studied for the energy-conservative

case (i.e., neither damper nor actuator are considered), while efficiency is studied for

the actuated system.

4.2.1. Influence of the leg shape and the location of the maximum-stress point on gait

robustness

The effect of the leg shape and the location of the maximum stress point along the

leg on running is studied by relating the intersegmental rest angle (βo) and the ratio

of the lengths of the leg segments (ζ2/ζ1) to the gait robustness for various leg stiffness

values for the energy-conservative case. The search for an optimal set of leg design

parameters is performed by relating each set of design parameter values to the range of

Table 2. Design parameters and initial conditions

Parameters Values

ζ2/ζ1 {(0.15 : 0.05 : 1), (1/0.95 : 1/0.05 : 1/0.15)}
βo [90o : 2o : 170o]

k10% {1100, 1900, 2700, 3500} [N/m]

yapex
o {ζo, 1.2ζo} [m]

vapex
xo {1.5, 2, 2.5} [m/s]
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Figure 10. The range of stable leg impact angles (∆α) is represented for various

(ζ2/ζ1,βo) values, for four leg reference stiffness, for three initial forward velocities and

for yo=ζo.
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Figure 11. The range of stable leg impact angles(∆α) is represented for various

(ζ2/ζ1,βo) values, for four leg reference stiffness, for three initial forward velocities and

for yo=1.2ζo.
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leg impact angles for which the running gaits are stable. The larger the range of stable

leg impact angles is, the more robust running is. A running gait is considered here to

be stable by using the strides-to-fall method. That is, a gait is considered stable if the

legged system is able to run N strides (N=50) without falling.

As for the leg stiffness, we relate the leg torsional stiffness to the equivalent

translational stiffness as Rummel and Seyfarth established in [18]. A constant

relationship is assumed between the two stiffness values by considering the case when

the equivalent translational spring is compressed 10% of the leg’s effective rest length.

This value has been chosen because the effective leg is compressed about this percentage

in average human running [18]. The translational leg stiffness at 10% compression can

be computed as k10%=F10%/∆ζ10%, where ∆ζ10% is a reference leg compression at 10%

of the effective rest length (i.e., 0.1ζo), and F10% is the leg force at the reference leg

compression.

Hence, our problem reduces to relate the leg design parameters (k10%, ζ2/ζ1, βo) for

given initial conditions (yapex
o , vapex

xo ) to the range of stable leg impact angles (∆α). In

order to solve this problem, the values shown in Table 2 have been considered.

Figure 10 and Figure 11 show the range of stable leg impact angles (∆α),

represented by a colormap, for the considered design parameters and initial conditions at

apex. The 2D-domain on which each surface is depicted is formed by the leg segments’

ratios (i.e., the ratio of the length of the proximal segment (ζ2) to the length of the

distal segment (ζ1)) and the leg intersegmental rest angles (βo). The horizontal axis

(ζ2/ζ1) is in logarithmic scale while the vertical axis (βo) is in linear scale. Note that

the white color regions present in some of the plots correspond to the cases of unstable

gaits. In these figures, the surfaces of each column correspond to the results obtained

for a given leg reference stiffness. Four different leg reference stiffness values have been

considered. The surfaces of each row are the results obtained for a given initial forward

velocity. The three rows of both Figure 10 and Figure 11 correspond to the considered

three initial forward velocities of the center of mass: (vapex
xo ∈ {1.5, 2, 2.5} [m/s]) with the

initial height of the center of mass at yapex
o =ζo at apex (Figure 10) and at yapex

o =1.2ζo
at apex (Figure 11). For each surface, the considered leg impact angles (α) range from

30o to 90o with a precision of 0.1o.

Both Figure 10 and Figure 11 show that the largest range of stable leg impact

angles (∆α) occurs when ζ2/ζ1=1 for all the considered leg intersegmental rest angles,

leg reference stiffness values and initial conditions. The stability region expands in both

directions of the 2D-domain formed by the ratio of the lengths of the leg segments (ζ2/ζ1)

and the leg intersegmental rest angle (βo) with the leg reference stiffness increase for all

the initial conditions considered. For the lowest leg reference stiffness value considered,

stable gaits exist only for low leg intersegmental rest angles (see the surfaces of the first

column of both Figure 10 and Figure 11).

In general, the range of stable leg impact angles (∆α) increases with both the leg

reference stiffness increase and the initial forward velocity increase. For instance, for

(yo, vxo)=(ζo, 2 [m/s]), ∆αmax increases from about 6o to about 20o when k10% is increased
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from 1, 100 [N/m] to 3, 500 [N/m]. On the other hand, for yo=ζo and k10%=1, 100 [N/m],

∆αmax increases from about 4o to about 9o as vxo is increased from 1.5 [m/s] to 2.5 [m/s].

In addition, the maximum range of stable leg impact angles (∆αmax, the peak of

each surface) shifts from low leg intersegmental rest angle to a larger intersegmental

rest angle as the leg reference stiffness value is increased for all the initial conditions

considered. For instance, for (yo, vxo)=(1.2ζo, 2.5 [m/s]), the location of ∆αmax shifts

from βo≈90o to βo≈170o as k10% is increased from 1, 100 [N/m] to 3, 500 [N/m].

Further, the rate of this shift becomes smaller as the initial forward speed of the

center of mass increases, for the considered initial height values. Also, running with

lower height of the center of mass (the graphs of the first three rows) is in general more

stable than running at higher height (the graphs of the last three rows). We observe

this phenomenon by realizing that both the size of the stability region and the range of

stable leg impact angles are larger for low initial height of the center of mass.

Moreover, the results shown in both Figure 10 and Figure 11 suggest that it is

desirable to change the leg’s stiffness and intersegmental rest angle in order to run

optimally at various forward velocities. This result is in accordance with the results

that Rummel and Seyfarth showed in [18].

Based on these results, it is desirable to design legs with the same lengths of the

proximal and distal segments, that is ζ2/ζ1=1. However, ζ2/ζ1=1 may require the design

of stronger legs because the distance between the maximum stress point and the effective

leg axis can be significant as β becomes small, reducing the mechanical advantage [14].

Finally, the two-segment-leg model predicts that for a given leg reference stiffness

there exists a leg intersegmental rest angle βo for which the range of stable leg impact

angles (∆α) is maximized. And, this range (∆α) increases with the leg intersegmental

rest angle when ζ2/ζ1=1. Therefore, large leg intersegmental rest angle is desirable for

robustness optimality (with the appropriate leg reference stiffness).

4.2.2. Influence of the leg shape and the location of the maximum-stress point on

efficiency For the actuated system, we have studied the influence of the leg shape

and and the location of the maximum-stress point on running efficiency. Three legs are

chosen from Figure 10. As shown in Figure 12, the first leg is the one that represents a

half-circle leg with unity-ratio of leg segments (i.e. βo=90o and ζ2/ζ1=1) (Leg I). The

second leg is the one that has the same ratio of leg segments but with an ellipsoidal

shape (i.e. βo=150o and ζ2/ζ1=1) (Leg II). Finally, the third leg is the one that has

the shape of a half-circle leg but with a ratio of leg segments different from unity (i.e.

βo=90o and ζ2/ζ1=0.35) (Leg III). As far as the leg stiffness, the value that maximizes

the range of stable impact angles is chosen for yo=ζo and vx=2.5 [m/s]. Therefore,

k10%=1, 100 [N/m], k10%=2, 700 [N/m], and k10%=1, 100 [N/m] are chosen for Leg I, Leg

II and Leg III, respectively.

For each leg, the parameters of the clock-based controller [27] are optimized for

the specific resistance [55], and the results are shown in Table 3. The results indicate

that the most efficient gait is obtained by running with Leg I, and the least efficient
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(a) (b) (c)

Figure 12. Compliant curved legs with: (a) βo=90o, ζ2/ζ1=1, k10%=1, 100 [N/m]

(Leg I); (b) βo=150o, ζ2/ζ1=1, k10%=2, 700 [N/m] (Leg II); (c) βo=90o, ζ2/ζ1=0.35,

k10%=1, 100 [N/m] (Leg III).

Table 3. Simulation results by running with

the controller parameters optimized for specific

resistance

Leg |λmax| vx [m/s] Mechanical Power [W] SR

I 0.9769 1.1447 5.0909 0.4419

II 0.9419 0.8412 4.3179 0.5100

III 0.8937 1.2757 6.7539 0.5260

one by running with Leg III. Knowing that running with Leg II is more robust than

running with Leg I in the energy-conservative case, depending on the leg shape one

can achieve a more robust running gait or a more efficient running gait (for the chosen

robotic platform shown in Figure 1).

5. Comparison between the considered reduced-order dynamical models for

running

In this section, we compare the running performance obtained from various models.

These models are shown in Figure 13. In total five different types of legs are considered

(Table 4): TD-HCL with tiptoe (Leg A), TD-HCL without tiptoe (Leg B), TD-TSL (Leg

C), TD-SLIP-RF (Leg D), and TD-SLIP (Leg E). The TD-SLIP model is described in

[27]. For all the models, m=1.026 [kg] and ζo=0.114 [m] are used. For TD-SLIP and TD-

SLIP-RF, k=1, 100 [N/m] is used, while for TD-TSL, torsional stiffness corresponding

to this k is computed as in [18].

In addition, for TD-TSL, ζ2/ζ1=1 and βo=90o are used, and for TD-SLIP-RF,

R=0.5L+ is used (see Figure 13 to identify these parameters). To be able to compare the

results obtained from using different models, the controller parameters are independently

+ R = 0.5L is considered for the TD-SLIP-RF model because the considered leg is a half-circle leg.
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Table 4. Definition of legs under

study

Leg type Description

Leg A TD-HCL model with tiptoe

Leg B TD-HCL model with no tiptoe

Leg C TD-TSL model

Leg D TD-SLIP-RF model

Leg E TD-SLIP model

optimized using a direct search method, the Nelder-Mead algorithm [54]. In order

to avoid local minima in the optimization process, various initial simplexes are used

for each leg model. In addition, for a chosen initial simplex, multiple descents have

been performed by spreading out the converged simplex points to search for a better

convergence. The considered cost functions are the specific resistance (SR) and a speed-

weighted version of the specific resistance (SR/v2). The former objective function

measures running efficiency, while the latter one takes into account both running

efficiency and forward speed. Details of how the controller parameters are optimized for

an objective function using this algorithm are given in [27].

5.1. Results

The comparison results are shown in Figure 14. The horizontal axis for all four plots

represents the considered five leg types. Figure 14(a) and Figure 14(c) show the specific

resistance and the absolute value of the maximum Floquet multiplier when the controller

parameters are optimized for specific resistance. On the other hand, Figure 14(b) and

Figure 14(d) represent the specific resistance and the absolute value of the maximum
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Figure 13. (a) Leg A: Torque-driven and damped half-circle-leg (TD-HCL) model

with tiptoe and ζ2/ζ1=1; (b) Leg B: Torque-driven and damped half-circle-leg (TD-

HCL) model with no tiptoe and ζ2/ζ1=1; (c) Leg C: Torque-driven and damped two-

segment-leg (TD-TSL) model with ζ2/ζ1=1 and βo=90o; (d) Leg D: Torque-driven and

damped spring-loaded-inverted-pendulum with a rolling foot (TD-SLIP-RF) model

with R=L/2, where L is the total leg rest length; and, (e) Leg E: Torque-driven and

damped SLIP (TD-SLIP) model described in [27].
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Floquet multiplier when the controller parameters are optimized for the speed-weighted

version of the specific resistance.

Figures 14(a) and 14(b) show that in general running with Leg A, Leg B or Leg D

seem to be more efficient (low SR values) than running with Leg C or Leg E (higher

SR values). Running with Leg A, Leg B or Leg D involve rolling, while running with

Leg C or Leg E, pin-joint contact. These results indicate that more efficient running is

possible for legs with rolling contact. Furthermore, we observe from Figure 14(a) that

running with Leg D is the most efficient. This is mainly because of low mechanical

power requirement compared to running with other legs. In general, the mechanical

power consumption with legs that involve rolling (i.e., Leg A, Leg B and Leg D) was

lower than running with legs with point foot. Although running with Leg D is more

efficient in simulation, this leg is stiff along the orthogonal direction to the leg axis, and,

when the leg impacts the ground, the reaction force along this direction can be large

(especially with a torque actuator) with possible damage to the leg. On the other hand,

running with Leg A or Leg B this impact is less severe since these legs are compliant in
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Figure 14. (a) Specific resistance (SR) values for when the considered cost function is

precisely SR; (b) Specific resistance (SR) values for when the considered cost function

is SR/v2; (c) Values of 2-norm of the maximum Floquet multiplier for when SR is the

cost function; and, (d) Values of 2-norm of the maximum Floquet multiplier for when

SR/v2 is the cost function.
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both axial and radial directions in the sagittal-plane.

Figures 14(c) and 14(d) show that in general the maximum Floquet multiplier is

the smallest for the cases of running with either Leg A or Leg B. This indicates that

when a perturbation is applied to a steady gait, running with compliant curved legs can

recover from the perturbation requiring the smallest amount of time than running with

other types of legs.

6. Conclusion

A novel reduced-order dynamical model, called the torque-driven and damped half-

circle leg (TD-HCL) model, is proposed to show the benefits of running with compliant

curved legs. This model captures three main aspects of running with such legs: 1) the

progression of the center of pressure, 2) variation of the leg stiffness, 3) change in the

leg’s rest length (and the associated shift of the location of the maximum stress point).

The performance of running with a curved compliant leg (represented by the TD-HCL

model) is compared to that of running with a straight compliant leg (represented by

the TD-SLIP model). The comparison results show that curved compliant legs offer a

running gait that is more efficient and that allows the legged system a faster recovery

from perturbations than straight compliant legs do.

In addition, some of the characteristics of running with curved compliant legs are

individually analyzed with dedicate reduced-order dynamical models. The progression

of the center of pressure is captured using the torque-driven and damped spring-loaded-

inverted pendulum with a rolling foot (TD-SLIP-RF) model and is parameterized with

the radius of the rolling foot. As the foot radius increases, the running is more robust and

more efficient, and the variation of the vertical ground reaction force becomes smoother.

But, the increase of the foot radius is limited by the foot slippage because as the foot

radius increases the desired touch-down angle flattens more increasing in this way the

horizontal ground reaction force.

Further, the leg shape and the location of the maximum stress point along the

leg also affects the performance of running. These aspects are studied using the

torque-driven and damped two-segment leg (TD-TSL) model. In this model, the leg

is characterized with two segments. The leg shape is described with a model parameter

known as the intersegmental joint angle (β), and the location of the maximum stress

point is represented by the ratio between the lengths of the two segments (ζ2/ζ1). For

all the considered leg shapes and leg stiffness values, the maximum robustness is always

achieved when the maximum stress point is on the middle of the effective leg (i.e.,

ζ2/ζ1=1). On the other hand, the robustness increases as the leg shape becomes more

open (i.e., larger β) or the leg stiffness increases. In addition, a running gait is more

efficient when the maximum stress point is on the middle of the effective leg and the leg

shape is circular.

Moreover, the proposed reduced-order dynamical model (TD-HCL) is not only

limited to describe half-circle legs but it can easily represent other curved leg shapes by
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simply changing both the intersegmental rest angle and the ratio between the lengths

of the two segments. We believe that this model can also be useful for characterizing

and improving the design of curved prosthetic limbs which are often used for running

or jogging.

As future work, other running performance measures than the largest Floquet

multiplier, specific resistance or a speed-weighted version of the specific resistance

considered in this work may be interesting such as the gait sensitivity norm [56] for

improving the system’s ability to reject disturbances. On the other hand, in the present

work we have employed the clock-based controller known as the ‘Buehler clock’ controller

[27], but we are also interested in considering other types of control schemes such as state-

based controllers as well as hybrid controllers for a smooth and stable gait transition,

with the aim to test new leg designs and novel controllers on the platform shown in

Figure 1.
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