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Abstract. We propose a numerical approach to study the mechanics of a flowing
bubble in a constraint micro channel. Using an open source two phase flow solver (Gerris,
gfs.sourceforge.net) we compute solutions of the bubble dynamics (i.e. shape and terminal
velocity) induced by the interaction between the bubble movement, the Laplace pressure
variation, and the lubrication film near the channel wall. Quantitative and qualitative
results are presented and compared against both theory and experimental data for small
Capillary numbers. We discuss the technical issues of explicit integration methods on
small Capillary numbers computations, and the possibility of adding Van der Walls forces
to give a more precise picture of the Droplet-based microfluidic problem.

1 INTRODUCTION

Droplet-based microfluidics is a very promising tool for performing biochemical or
chemical assays. Droplets are unit systems of controlled volume and content, within which
mixing can be easily achieved. Several physical phenomena (mechanics, thermocapillarity,
solutocapillarity, thermomechanics) either in cumulative or compensative ways appears
when we develop microfluidic setups. It is of prime importance to characterize, under
controlled experimental conditions, within which range each contribution is the dominant
phenomena regarding element migration. Rationalizing these various effects would have
important consequences for lab-on-a-chips, and numerical studies are an interesting way
to understand each contribution separately.
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In microfluidic setups we often have measurements of shape deformations, bubble or
drop velocities, and pressures or flow rates at the input/exit conditions, but the knowledge
local values of these variables are not easily available, because principally of the small
length scales involved in the system. Numerical approaches are then an interesting way for
acceding to small length dynamical fields. The validity of numerical approaches requires
the validation and the confrontation against theories and experimental data. Theoretical
results exist in few academic microfluidic configurations like bubble in cylinders or plates,
and it is then necessary to be able to compare positively these academic configurations
before extend the prediction to more complex situations which are actually common in
microfluidic devices.

In this communication we present an open source two phase flow tool (gfs.sourceforge.net)
for computing solutions of the bubble dynamics (i.e. shape and terminal velocity) in mi-
crofluidic channel and; numerical results are presented and compared, quantitatively and
qualitatively, against both theory and experimental data for small Capillary numbers. We
discuss the possibility of adding Van der Walls forces to give a more precise picture of the
Droplet-based microfluidic problem.

2 EQUATIONS AND NUMERICAL SCHEME

We use the incompressible, two-dimensional variable-density, NavierStokes equations
with surface tension which can be written

p(a—U +UVU) = =Vp+ uV?U + okdi (1)

ot
VU =0

with U = (u,v) the fluid velocity, p = p(z,t) the fluid density, u = pu(z,t) the dynamic
viscosity. The Dirac distribution function ¢ expresses the fact that the surface tension
term is concentrated on the interface; o is the surface tension coefficient, x and n the
curvature and normal to the interface.

For two-phase flows we introduce the volume fraction ¢(z, t) of the first fluid and define
the density and viscosity as a function of ¢, i.e. p = p(c(x,t)) and u = p(c(z,t)). The
advection equation for the density can then be replaced with an equivalent advection
equation for the volume fraction

O +V(Uc) =0

The Navier-Stokes equations are solved using a finite volume approach based into a
projection method. The numerical problem is solved using the open-source package Gerris
[6]. A staggered in time discretisation of the volume-fraction/density and pressure leads
to the a formally second-order accurate time discretisation. The interface between the
different fluids are tracked and followed using a VOF (Volume of Fluid) method. The
spatial discretisation is done using a quad-tree square cells which give a very important
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flexibility allowing dynamical costless grid refinement into user-defined regions. Finally
a powerful discretisation scheme was developed to capture accurately the surface tension
term. More information can be found in reference [1]

3 BUBBLE IN A CHANNEL

The studied configuration is presented in Figure 1: a bubble is pushed into a mi-
crochannel of width H by a mean flow velocity U;. The typical length of the bubble is
larger than the width H, the bubble is then constrained by the channel. In the stationary
regime the velocity bubble is U,. Using the width H as characteristic length and the mean
flow velocity Uy as characteristic velocity the dimensionless Navier-Stokes is then written

H!
Uf Ub

—

'

Figure 1: Microfluid configuration : channel width is H, velocities are Uy the mean flow velocity and
U, the bubble velocity.

ou 1
— +UVU = -Vp+ —V?U
ar " PRV T RG,
where all dynamical variables are dimensionless and we define the Reynolds and Cap-
illary numbers as

KON (2)

R, = pUH7 (3)
]
uwU

@:7i (4)

Over this communication we do not discriminate densities and viscosities for liquid and
bubble as long as in the subsequent computations we fix the density and the viscosity ratios
between the fluid and the bubble to one, then pf/p, = 1 and ps/p, = 1. Bretherthon
[2] studied theoretically and experimentally the dynamic of a bubble on a cylindrical
configuration. In the limit of small capillarity number based on the bubble velocity, it is
shown that the ratio between the gap of the thin film of lubrication A (between the wall
and the bubble) and the typical height Hof the channel as well as the ratio between the

bubble and mean fluid velocity scale both as c3 .

hooU,
A Yo 5
H U " (5)



J-M Fullana, Y. Ling, S. Popinet, Ch. Josserand

the proportionality constant depends, at least, on the geometrical configuration (planar,
squared or cylindrical) and on the viscosity ratio. By inspecting the h/H relation and
its dependency into the capillary number C,, it appears that the grid refinement plays
an important role if we want to be able to capture the dynamics of the thin film. The
Bretherton theory stands that thin film is very important as long as is the key point
determining the bubble shape. The Figure 2 (left) present the computed shape for a
capillary number of 0.01, which is in fully agreement with the theory. The Figure 2
(right) shows the detail of the grid refinement at the rear of the bubble where the film is
thinner. We can also note the specific grid refinement along the interface.
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Figure 2: (left) Typical bubble in the stationary state. (right) Grid refinement at the rear of the bubble.

The bubble velocity is evaluated by computing the x position of the center mass of the
| Jsm c(xt) dS
) J5dS

We present now some quantitative and qualitative numerical results on a bubble flowing

on a micro channel. For a bubble between parallel plates the analytical solutions are

bubble along the channe where z is the spatial position of each fraction c.

U
71’ ~140.643 (3C)%3 or ~1+0.51 (3C,)%3 (6)
!

the second relation valid for very viscous drops (liquid-liquid interfaces). In our sim-
ulations we impose a Reynolds number of 0.1 and the only variable parameter is the
capillarity number C,. The Figure 3 shows the log-log scaling of the excess of velocity
g—; — 1 as function of the capillarity number C, up to a capillarity number of 0.5 10~%.
The solid lines shows both limits from the later relations. These results are consistent
with those of reference [3] where capillarity number are indeed greater.

Experimental observations in a microfluidic setup [5] show

e that below a capillarity number of around 10~° the film gap and the bubble velocity
remain constant giving no dependency of the ratios h/H and U, /Uy on the capillarity
number, and

e the bubble lost its Bretherton shape becoming more symmetric, like a pancake.

4
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Figure 3: Log-log scaling : g—; — 1 as function of C,.

This phenomenon appears for h of the order of tens of nanometers, an argument advanced
as explanation is that in this region, near of the wall, the Van der Waals forces are not
negligible pushing away the bubble by the apparition of an equilibrium film of constant
width. The main difficult for including the Wan der Waals forces in this continuum
approach is that’s necessary resolving numerically a lot of scales, from the small, few
nanometers for the equilibrium film, to the large ones, the channel width H. Including
Van der Waals forces in a continuum approach was recently done using Gerris to impose
the macroscopic contact angles from microscopic physics [4], the numerical computations
were done locally and the wide scale range problem was not matter of fact. Starting from
the Lennard-Jones potential of two particles and doing some approximations we can add
to the r.s.h. of the Navier-Stokes momentum equation (equation (2)) the force F(d) per
unit of volume which depends only on the distance d between the bubble interface and

the wall
Pl - % [m (%)m L (%)] @

where K is a constant and h* is the equilibrium film thickness, m = 3 and n = 2. (details
in reference [4]).

To compare qualitatively this approach without resolving all the spatial scales we
impose a large value of h* which is indeed not physical but the mechanism is still the
same, pushing the bubble away from the wall. The Figure 4 present two numerical
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Figure 4: Steady bubble shape and final position including (upped side) or not (lower side) the Van der
Waals forces.

simulations of a bubble flowing into a channel for C;, = 0.01 and Re = 0.1 for the same
final time with (upped side) and with out (lower side) Van der Waals forces from equation
(7). We observe that (i) imposing the Van der Waals forces we found a larger gap h and
consequently a faster bubble velocity Uy, (ii) the bubble shape becomes a pancake like.

4 CONCLUSIONS

We have presented numerical simulations of a bubble into a channel, the well behavior
of the numerical implementation of the Navier-Stokes equations with a surface tension
model was demonstrated by a comparison with Bretherton theory for very small capillary
numbers were the scaling law in C2/3 was validated. The quality of the numerical results
are, in particular, a consequence of the grid refinement approach which allows computing
the very thin films of liquid between the bubble and the wall. We have also implemented
a Van der Waals like force and the imposed minimum gap gives numerical prediction in
according with experimental observations.
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