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The paper focuses on the removal of p-nitrophenol by an adsorption process. A magnetic 

adsorbent was synthesized by encapsulation of magnetic functionalized nanoparticles using 

alginate as a green biopolymer matrix. A cationic surfactant, cetylpyridinium chloride 

(CPyCl), was used to confer a hydrophobic character to the magnetic beads and thus to 

promote their adsorption efficiency. The effect of different parameters such as initial 

concentrations of both PNP and CPyCl, contact time and solution pH value on the adsorption 

of PNP in the presence of CPyCl was investigated. It should be noted that combination of 

magnetic and adsorption properties in a same material is an interesting challenge which could 

overcome the recovery problems of pollutant-loaded adsorbent.  
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Abstract 

The paper focuses on the efficient removal of a weakly ionisable pollutant from water by an 

adsorption process; p-nitrophenol (PNP) was selected as a representative model pollutant. A 

magnetic adsorbent (called magsorbent) was synthesized by encapsulation of magnetic 

functionalized nanoparticles using alginate as a green biopolymer matrix. A cationic 

surfactant, cetylpyridinium chloride (CPyCl), was used to confer a hydrophobic character to 

the magnetic beads and thus to promote their adsorption capacity for non-ionisable or weakly 

ionisable pollutants. The effect of different parameters such as initial concentrations of both 

PNP and CPyCl, contact time and solution pH value on the adsorption of PNP in the presence 

of CPyCl was investigated. The experimental adsorption data showed a maximum sorption 

capacity close to 140 mg/g, which appears satisfactory when compared to literature values. In 

our experimental conditions, kinetic data indicate that 50% of the PNP was removed within 4 

min whereas 90% adsorption was attained within 2 hours. It should be noted that combination 

of magnetic and adsorption properties in a same material is an interesting challenge which 

could overcome the recovery problems of pollutant-loaded adsorbent.  
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1. Introduction 

 Sustainable water supply has become a real challenge. Indeed, in today's world, many 

chemical compounds resulting from human activity are found in water and among them, 

some act as endocrine disruptors. In order to improve the quality of water, and especially 

water for human consumption, various processes are developed. Among them, adsorption is 

widely used for being of low-cost, easy to handle and efficient for the removal of pollutants. 

Today, activated carbon (AC) is one of the most efficient adsorbents used in industrial 

processes of water purification due to its high porosity and very large surface area. Despite its 

efficiency, its use is limited by process engineering difficulties due to its high regeneration 

cost and loss of materials during its recovery. 

To overcome these limitations, cost-effective and environmental friendly materials such as 

natural biopolymers have been extensively studied to remove pollutants from water by an 

adsorption process [1–9]. Moreover, due to the encapsulation ability of these biopolymers, 

advanced materials could be developed to perform adsorption process with subsequent 

separation. In this framework, the entrapment of magnetic nanoparticles in biopolymer matrix 

has received considerable attention in recent years. Indeed, the use of magnetic adsorbents 

(called here magsorbents) is a promising way due to their easy and fast removal from water 

through the application of an external field [10–12]. Several efficient magnetic adsorbents 

have been reported in the literature but most of them are especially effective in the removal of 

cationic or anionic pollutants [13–18]. The difficulty increases for removing of weakly 

ionisable or non-ionic organic pollutants. The use of a surfactant, which confers a 

hydrophobic character to the adsorbent, could be an efficient approach for the removal of 

such pollutants [19–27]. If the effects of surfactants on the sorption of organic compounds 

have been extensively studied for the extraction and preconcentration of various organic 

pollutants, few studies report the removal of hydrophobic compounds by magnetic adsorbents 

modified with a surfactant [28–30] and even less by magnetic biogels.   The purpose of this 
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study was thus to provide a material that has both magnetic properties and efficiency in the 

removal of weakly ionisable organic compounds by using a surfactant; cetylpyridinium 

chloride (CPyCl) was selected as a representative cationic surfactant and alginate beads with 

encapsulated magnetic nanoparticles were used as magsorbent. The effect of the pH solution, 

time contact and initial concentrations of both surfactant CPyCl and pollutant p-nitrophenol 

(PNP) on adsorption by hydrophobically modified alginate beads was investigated and an 

adsorption mechanism was proposed. Regeneration experiments were also carried out. PNP 

was chosen because it is widely used in industries such as high-temperature coal conversion, 

petroleum refining, and resins and plastics manufacturing.  

2. Experimental  

2.1. Materials 

Alginate is a natural linear polysaccharide extracted from seaweeds. It is constituted from β-

d-mannuronate (M) and α-l-guluronate (G) units arranged in blocks rich in G units (G-block) 

or M units (M-block) separated by blocks of alternating G and M units (MG-block) [31] . In 

addition, alginate is one of the main encapsulating compounds used in pharmaceutical 

compositions. The weight average molar weight (Mw) and the number average molar weight 

(Mn) of the used sodium alginate, obtained by gel permeation chromatography, are 

respectively equal to 2.07x105 and 1.08x105 g/mol, leading to a polydispersity index (IP) 

equal to 1.91. The amount of carboxylate functions of alginate (pKa = 3.4-4.2 [1][32]) was 

obtained from the dosage of their sodium counter ions ([Na]alg) by atomic absorption 

spectrometry with a Perkin–Elmer Analyst 100 apparatus. It is equal to 4.2 ± 0.1 mmol/galg.  

P-nitrophenol (C6H5NO3 noted PNP) is a weak acid (pKa ≈ 7.2 [33,34]) with a molecular 

weight equal to 139.11 g/mol. In aqueous solution, the molecular form of PNP appears 

colourless whereas its phenolic salt is bright yellow.  

Cetylpyridinium chloride (C21H38ClN.H2O noted CPyCl) is a quaternary ammonium 

surfactant with a pyridine group; its molecular weight is equal to 358 g/mol. The critical 
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micelle concentration (CMC), as determined by surface tension measurements at 25°C by 

[35] is equal to 0.83 mmol/L.  

Calcium solutions were prepared by dissolving a known quantity of CaCl2, 2H2O in distilled 

water.  

The magnetic nanoparticles and magnetic alginate beads (called MagAlgbeads) used in this 

work were the same as that previously used in [36]. Briefly, magnetic material was a 

ferrofluid composed of maghemite (γ-Fe2O3) nanoparticles synthesized according to the 

Massart’s method [37,38] and coated by citrate ions. Citrate is the basic form of citric acid, a 

triacid with pKa values equal to 2.79, 4.30, 5.65) [39]. The stability of the ferrofluid is due to 

the ionisation of adsorbed citrate ions that are deprotonated at the pH value of the ferrofluid 

(pH ≈ 7.5); the particles are then anionic ones with sodium counterions due to the carboxylate 

functions of adsorbed citrate. This magnetic material is a polydisperse system of rocklike 

nanoparticles, which can be described as spheres. Their mean diameter (d0) and 

polydispersity index (σ) obtained by a two-parameter fit of the magnetization curve are equal 

to 7.2nm and 0.35 respectively [40]. The iron concentration of the ferrofluid, obtained by 

atomic absorption spectrometry, is equal to 1.33 mol/L (106.4 gmaghemite/L).  

The magnetic alginate beads were prepared by dropping an alginate/ferrofluid mixture 

(malginate/mmaghemite = 0.5) into a CaCl2 solution and stored in deionized water. Beads appear 

brown due to the ferrofluid encapsulation (maghemite content = 64±2 % w/w dry beads) and 

roughly spherical with a millimetric size (diameter = 3.3±0.2 mm) (Figure 1). The moisture 

content is equal to 94.6 ± 0.1 %. Beads present magnetic properties; all beads are attracted 

when tested with a magnet. After the crosslinking process in the calcium bath, the 

counterions of the carboxylate functions coming from both alginate and citrate coating of the 

nanoparticles are calcium ions. Therefore, the number of negative sites of the beads (noted N) 

was deduced from Ca content obtained by atomic absorption spectrometry (N = 1.5±0.1 
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absorbance: ������ �
���������,���	�	����

����,��	�
	�

 

with A259, the absorbance of the mixture at 259 

nm; l (cm), the length of the cuvette; ε259,PNP=3073 Lcm-1mol-1 (the molar extinction 

coefficient of PNP at 259 nm was obtained from a calibration curve of pure PNP at 259 nm) 

and CPNP, the concentration of PNP in the mixture obtained from the absorbance at 400 nm 

(PNP adsorbs alone at this wavelength). The amounts of adsorbed CPyCl or PNP (QCPyCl and 

QPNP expressed in millimoles per gram of dry MagAlgbeads) were calculated from the 

difference between the initial and the final concentrations in the aqueous phase: �
 �

���,�����	


�

, i being CPyCl or PNP. The amount of calcium ions remaining in the beads was 

deduced from the amount of calcium ions in the solution, obtained by atomic absorption 

spectrometry. Results of blank experiments without PNP were taken into the reference [36]. 

2.3. Desorption experiments 

Desorption of PNP from magnetic beads was investigated. For the adsorption step, 7 identical 

samples were prepared by adding PNP (C0,PNP=0.124 mmol/g) to a solution containing 

1.075g magnetic alginate beads and CPyCl  (C0,CPyCl=1.28 mmol/g), pH solution was close to 

6.9. After 3 days shaking, the beads were magnetically separated from the solution and the 

adsorbed amounts of PNP and CPyCl were determined as previously. The beads were then 

added to 10 mL of a mixture ethanol/water at various compositions. At suitable time 

intervals, a magnet was used to collect the magnetic beads and the desorbed amounts of PNP 

and CPyCl were determined using UV-Visible Spectrophotometry. 

3. Results and discussion 

3.1. Influence of CPyCl concentration on PNP adsorption 

The experimental data of the PNP removal by magnetic alginate beads in presence of 

increasing initial amounts of CPyCl (C0,CPyCl) obtained at pH 6.6 and at 72h from the initial 

stage are shown in Figure 2, the initial concentration of PNP was fixed to 0.76 mmo/L. 

Without surfactant, the removal efficiency of PNP by the beads is about 12%. The removal of 
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PNP then increases with the increase of CPyCl amount and the removal is found to be 

maximal for a CPyCl dose of 1.8 mmol/g. At this stage, 90% PNP removal is achieved. A 

further increase of CPyCl concentration leads to a decrease of the amount of adsorbed PNP. 

The amount of CPyCl remaining in the solution (CCPyCl) is also reported in Figure 2. It could 

be noticed that the decrease of PNP adsorption occurs when the CPyCl concentration in 

solution is higher than the CMC of the surfactant (0.83 mmol/L). In this case, PNP desorption 

occurs when micellar solubilisation is preferred over adsorption by the beads.  

 

Figure 2: Influence of initial CPyCl concentration on PNP adsorption. % adsorption PNP (�, left scale), 

amount of CPyCl remaining in the solution (�, right scale); t=72h; V=20mL, mb≈2.15 g; pH=6.6±0.3; 

C0,PNP=0.76±0.09 mmol/L (0.123±0.005 mmol/g). 

The adsorption isotherm of CPyCl by alginate beads in presence of 0.76 mg/L PNP is shown 

on Figure 3; the amount of adsorbed CPyCl (QCPyCl) is reported as a function of the amount 

of remaining CPyCl in the solution (CCPyCl). The plateau of isotherm corresponds to 2.7 

mmol/g. Figure 3 reports also the variation of calcium ions remaining within the beads (noted 

[Ca]b). As it was shown previously [36], surfactant adsorption occurs through the conjugated 

effects of electrostatic and hydrophobic interactions. The electrostatic forces occur between 

the positive charges of the surfactant molecules and the negative charges of the beads and 
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surfactant replace the calcium counterions, which move outside the beads. On the other hand, 

surfactant aggregates appear in the beads due to hydrophobic interactions between their long 

alkyl chains. The removal of PNP by the beads is then due to its adsolubilisation within the 

adsorbed surfactant aggregates. 

 

Figure 3: Adsorption isotherm of CPyCl in presence of PNP (�, left scale) and amount of calcium ions 

remaining within the beads (�, right scale) ; t=72h; V=20mL, mb≈2.15 g; pH=6.6±0.3; C0,PNP=0.76±0.09 

mmol/L (0.123±0.005 mmol/g). 

In the following, the amount of added CPyCl will be equal to about 1.2 mmol/g to have a 

high removal of PNP and to limit the quantity of free surfactant within the solution. 

3.2. Adsorption isotherm of PNP 

Adsorption was built at pH around 6 in presence of a fixed amount of CPyCl (C0,CPyCl=1.16 

mmol.g-1) (Figure 4, left). The maximum amount of adsorbed PNP (Qmax,PNP), close to 1 

mmol/g (140 mg/g), is comparable to that of other adsorbents reported in the literature where 

only activated carbon present a higher adsorption ([8,41–47]). 
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adsorbed CPyCl remains constant between pH 3.3 and pH 5.6, the amount of adsorbed PNP 

is also almost constant in this pH range (0.088 ± 0.003 mmol/g i.e. 72% of the initial 

concentration), adsorption is due to hydrophobic bonds between neutral form of PNP and the 

carbon chains of the surfactant; (iii) beyond pH 5.6, an increase of PNP adsorption occurs 

before to reach a constant value equal to 0.109 ± 0.003 mmol/g (90% adsorption) between pH 

7 and 12. The pKa value of PNP being equal to 7.2, its phenolate form is predominant in this 

pH range. The adsorption excess of PNP in alkaline medium may be due to electrostatic 

attraction between the negatively charged PNP and the surfactant molecules adsorbed by 

hydrophobic bonds and whose positive charges are not compensated by the carboxylate 

functions of the beads. The amount of hydrophobically adsorbed surfactant (0.19 mmol/g), 

obtained from the calcium ions remaining in the beads, corresponds to the number of 

available positive charges for adsorption of the phenolate form of PNP. It is quite sufficient to 

explain the additional adsorption of PNP (0.109 - 0.088 = 0.021 mmol/g; i.e. 19.3% of total 

adsorbed PNP) at pH above 7. The determination of the calcium ions concentration in the 

beads proves to be a convenient and easy way to understand the adsorption mechanisms of 

PNP in this pH range where the PNP adsorption is monitored by both hydrophobic and 

electrostatic interactions. To confirm our results, the same measurements were carried out 

with another cationic surfactant, cetyltrimetylammonium bromide (CTAB). As expected, the 

two curves reported on the Figure 5 (right) are well superimposed. This result is in 

accordance with a study of the adsorption of PNP by an anionic sediment in presence of 

CPyCl that showed that PNP was better adsorbed in its phenolate form [53]. In the same way, 

by using a zeolite modified with a cationic surfactant, the adsorption of non ionisable organic 

pollutants is not pH-dependent while ionisable phenolic compounds are better adsorbed in 

basic medium due to positive charge of the adsorbent provided by the aggregates of 

surfactants [20]. 
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PNP. This confirms that the ionic exchange between the surfactant and the calcium ions of 

the beads is not modified in presence of PNP. 

Method  Compound  

C0  

 

Qeq  

(mmol/g)  

t50  

  

t90  

  

[Ca]b,eq  

(mmol/g)  
(mmol/g)  (mmol/L) 

Without PNP [36] CPyCl  1.15±0.01  6.74±0.01 1.13±0.01  2.8h  25h  0.28±0.03  

1  
CPyCl  1.18±0.01   6.91±0.01 1.17±0,01  2h  22h  

0.31±0.01  
PNP  0.122±0.001 0.715±0.01 0.103±0.003  5h  24h  

2  
CPyCl  1.28±0.01  7.41±0.01 1.27±0.01  -  -  

0.25±0.01  
PNP  0.123±0.001 0.712±0.001 0.103±0.001  4 min 2h  

Table 1: Kinetics parameters  

Figure 6 (right) and Table 1 show the results of kinetics study for both PNP and CPyCl. As 

for CPyCl, the rate of adsorption of PNP is rapid initially and then gradually increased before 

to reach a constant value after 24h. If the two curves have the same shape, the kinetics of the 

PNP adsorption is slower than that of CpyCl; 50% of PNP removal took place within 5h 

against 2h for CPyCl. With the method 1, the time required to adsorb PNP is too long to use 

our magsorbent in a water treatment plant. To make our system more efficient, PNP is added 

to the system MagAlgbeads/CPyCl equilibrated within 3 days (method 2). In this way, we 

can observe the real adsorption kinetics of PNP. Initially, it was verified that equilibrium was 

well achieved in the case of CPyCl. Its concentration was measured in the samples and the 

obtained values were plotted against time in Figure 7 (left), remaining amounts of calcium 

ions in the beads were also reported. As expected, the concentrations of adsorbed CPyCl and 

remaining calcium ions in the beads are constant with time and equal to the values obtained 

without PNP, the ionic exchange took place and the equilibrium was reached for the 

surfactant sorption. 
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introduced in 10 mL of pure ethanol for variable periods of time. The results reported in the 

Table 2 show that 1 min shaking in pure ethanol is sufficient to remove about 50% of PNP. 

Ethanol is then a good way for beads regeneration. 

Ethanol/water (v/v) t (min) PNPdesorbed CPyCldesorbed 

20/80 360 41 % 1 % 

50/50 360 91% 7 % 

Pure ethanol 360 94 % 14 % 

Pure ethanol 5.0 70 % 7 % 

Pure ethanol 1.0 47 % 5 % 

Pure ethanol 0.5 27 % 3 % 

Table 2: PNP desorption in ethanol/water mixtures; C0,PNP=0.719±0.001mmol/L (0.124±0.001mmol/g) , 

C0,CPyCl=7.2±0.3mmol/L (1.25±0.05 mmol/g),  mb≈1.08g, pHadsorption=6.9, tadsorption=3 days, V=10mL. 

4. Conclusion 

This study showed that the presence of a surfactant significantly enhances the adsorption of a 

weakly ionisable pollutant, p-nitrophenol, by magnetic alginate beads. The maximum 

adsorption capacity of the beads, equal to 140 mg/g, appears satisfactory when compared to 

literature values. Moreover, the removal of 50% p-nitrophenol takes place within 4 min. It 

has been also demonstrated that the pH value of the solution plays a crucial role in p-

nitrophenol adsorption. In addition, regeneration tests in ethanol were successfully carried 

out. A major challenge in the field of adsorption is to identify the mechanisms by which 

adsorption process occurs. The fact that surfactant, p-nitrophenol and calcium were 

quantified allows supporting the mechanistic conclusions, which are developed. We showed 

that the ionic exchange between the cationic surfactant and the calcium ions of the beads was 

not modified by p-nitrophenol. Hydrophobicity thus acquired by the beads thanks to the 

surfactant is responsible of their efficiency for p-nitrophenol adsorption. If adsorption is 

mainly monitored by hydrophobic interactions with the surfactant, for pH values close to the 
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pKa of p-nitrophenol, additional electrostatic forces occur between the negative charges of p-

nitrophenol and positive charges of the surfactant adsorbed via hydrophobic interactions with 

the first molecules of surfactant fixed on the carboxylate functions of the beads; p-

nitrophenol is then better adsorbed in its phenolate form. This had already been shown in the 

literature ([20][53]) but we quantified the proportion of each kind of interaction. In addition, 

if the adsolubilisation phenomena have already been widely described in the case of simple 

systems, few studies have been conducted with complex systems formed by a gel of 

biopolymer associated with nanoparticles and a surfactant. This experimental work may be 

useful in future studies of such complex systems. On the other hand, it may contribute to the 

removal of weakly ionisable or non-ionic pollutant from water because most of the 

adsorbents currently under development are used to extract ionic pollutants. That could be 

useful in treatment of emerging pollutants in wastewater [54]. In addition, magnetic 

biopolymer composites are emerging materials and their use in water treatment could result 

in markedly improved performances features over conventional adsorption methods [55]. The 

magnetic beads could be quickly separated and recovered using an external magnetic field 

reducing costs, extraction time and secondary pollution. 
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