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Abstract: 
One novel approach to improve the apparent toughness of ceramics is to design a multilayer 
architecture with embedded layers having compressive residual stresses. Surface cracks 
propagating during mechanical loading can be deflected within the compressive layers, in 
order to delay the final fracture of the whole structure. The design of high toughness 
laminates requires understanding the effect of residual stresses on the initiation and 
propagation of cracks in the material. 
In this work, a coupled stress-energy criterion is used to predict the initiation and propagation 
of surface cracks in ceramic laminates upon thermo-mechanical loading. Experiments were 
conducted on V-notched alumina-based laminates to show the effect of residual stresses and 
mechanical loading on their fracture behavior. The conditions for crack initiation as predicted 
for notched specimens agreed with the experimental observations. It is shown that the onset of 
cracks from V-notches is associated with (i) the tensile residual stresses in the first surface 
layer and (ii) the depth of the notch. The further propagation of the crack into the first 
embedded compressive layer was also studied. Based upon the coupled criterion, a short 
penetration of the propagating crack into the first compressive is foreseen. If the mechanical 
load is increased, the crack finally deflects within the compressive layer propagating with a 
certain angle which is also predicted with a good accuracy.  
 
1. Introduction 
A limitation for the use of ceramics is their low fracture toughness, which often causes 
spontaneous brittle failure of the component or system. Contrary to metals, crack propagation 
in brittle materials such as ceramics is usually catastrophic, due to the lack of plastic 
deformation. The brittle fracture of ceramics is a consequence of the material defects located 
either within the bulk or especially at the surface, resulting from the processing and/or 
machining procedures (Morrell, 1999; Danzer, 2002). Under external applied stress, the stress 
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concentration associated with such defects is the driving force for crack propagation, causing 
the failure of ceramic components.  
Increasing strength in ceramics can be attained by reducing the size of these critical defects 
(e.g. through colloidal processing) (Lange, 1989), and introducing compressive residual 
stresses at the surface (e.g. strengthening in glass such as Gorilla glass (Corning, 2012)). 
However, significant reduction of strength variability cannot be achieved with these 
approaches. In recent years, a “flaw-tolerant” approach has emerged for building tougher 
ceramics in a “bio-inspired” layered architecture, combining materials with different 
microstructures, or properties similar to those found in nature (Launey and Ritchie, 2009). 
Composite materials using such symmetric multilayer architectures (e.g. ceramic composites 
such as alumina-zirconia and mullite-alumina among others) have been reported to exhibit 
increased fracture toughness, higher energy absorption capability and/or non-catastrophic 
fracture behaviour in comparison to their constituent (monolithic) materials. Among the 
various laminate designs reported in the literature, two main approaches regarding the fracture 
energy of the layer interfaces must be highlighted, i.e. the use of “weak” or “strong” 
interfaces. A particular case of the latter is based on the capability of inducing residual 
stresses in the layers during cooling from sintering, in order to provide a barrier to crack 
propagation and, in some cases, even stop cracks (Rao and Lange, 2002).Then, understanding 
crack propagation in layered ceramic is necessary to optimize their mechanical behaviour. A 
key feature is the contribution of the residual stresses to the fracture toughness of the 
individual layers.  
The experimental evaluation of the crack growth resistance in brittle materials is often 
performed on single edge notched (or V-notched) specimens loaded under bending, so called 
SENB or SEVNB test (Damani et al., 1996). This requires the introduction of a crack (or 
sharp notch), which is in many cases a challenge in brittle materials. The fracture criterion of 
brittle materials is usually described by linear elastic fracture mechanics (LEFM), based on 
the Griffith/Irwin law (Griffith, 1921; Irwin, 1962) but is ineffective in predicting the 
initiation of a new crack, especially emanating from a notch. 
An alternative approach to predict the initiation and propagation of surface cracks in ceramic 
laminates upon thermo-mechanical loading is to use a coupled stress-energy criterion 
(Leguillon, 2002; Leguillon et al., 2015). It was developed over the last decade within a more 
general framework baptized Finite Fracture Mechanics (Leguillon, 2002; Martin and 
Leguillon, 2004; Taylor et al., 2005; Cornetti et al., 2006; Cornetti et al., 2012; Yosibash, 
2012). This criterion states that crack onset occurs if two necessary conditions are fulfilled 
simultaneously: the first one specifies that there is enough available energy to create a crack 
and the second that the tensile stress is greater than the tensile strength all along the expected 
crack path. As a consequence of the energy balance (i.e. the first condition), the crack 
nucleation occurs abruptly, the crack jumps over a given length. This length is not an 
adjustable parameter, but a direct consequence of the two conditions: one providing a lower 
bound for admissible crack lengths and the other giving an upper bound. The compatibility 
between these two bounds is obtained if the load is sufficiently high.  
In this work, the conditions for crack initiation as predicted for notched specimens are studied 
and compared with experimental observations on notched ceramic laminates under thermo-
mechanical loading. Particular attention is put in the description of crack propagation and 
deflection into the first embedded compressive layer. 
 
2. The tested specimens and the failure mechanisms 
 
The specimens investigated here were made by sequential slip casting (Bermejo et al., 2006; 
Bermejo et al., 2007), consisting of a stacking sequence of 9 alternated layers of two different 
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ceramic materials: 4 thin layers of Al2O3 with 30% monoclinic ZrO2 (referred to as AMZ 
layers), sandwiched between 5 thicker layers of Al2O3 with 5% tetragonal ZrO2 (named ATZ 
layers). Different laminate samples were obtained by varying the volume ratio RV  between 
ATZ and AMZ material, ranging between Vol.(ATZ) / Vol.(AMZ) ≈ 6 to 10. It is worthy 
pointing out that, as a consequence of the processing route employed (i.e. slip casting), 
slightly differences in the thickness of a particular layer material may occur. Tab. 1 shows the 
thicknesses of the ATZ and AMZ layers of four samples selected for this investigation. 
Sample P0 is extracted from previous data (Bermejo et al., 2006; Sevecek et al., 2013) and 
samples P1, P2, P3 belong to a new series of tests dedicated to the present investigation.  
 
Table 1. Thicknesses of the ATZ and AMZ layers in 4 different samples. The volume ratio RV  
is defined as Vol.(ATZ) / Vol.(AMZ). Sample P0 is extracted from previous data (Bermejo et 
al., 2006; Sevecek et al., 2013) and samples P1, P2, P3 belong to a new series of tests.  

 ATZ thicknesses (mm) AMZ thicknesses (mm)  
Sample L1 L3 L5 L7 L9 L2 L4 L6 L8 RV  

P0 0.773 0.616 0.623 0.634 0.819 0.147 0.125 0.142 0.148 6.17 
P1 0.590 0.575 0.578 0.600 0.580 0.100 0.104 0.104 0.109 7.01 
P2 0.680 0.555 0.525 0.523 0.500 0.073 0.075 0.074 0.065 9.70 
P3 0.830 0.654 0.642 0.661 0.668 0.141 0.144 0.141 0.149 6.01 

 
The elastic and fracture parameters of the corresponding ATZ and AMZ layers, measured in 
monolithic samples, are those given in (Ševeček et al., 2013) and are summarized in Tab. 2. 
 
Table 2. E  is the Young modulus, ν  the Poisson ratio, α  the coefficient of thermal 
expansion, IcK  the material toughness and cG  the fracture energy. 
 
Material 

E 
(GPa) 

ν α 
(K-1) 

σc 
(MPa) 

KIc  
(MPa m1/2) 

Gc  
(J m-2) 

ATZ (1) 390 0.22 9.8 10-6 422 3.2 25 
AMZ (2) 280 0.22 8.0 10-6 90 2.6 23 
 
The fracture energy cG  relies on IcK  (Tab. 1) through the Irwin formula (under the plane 
strain assumption) 
  

 
(i)2

(i) (i)2
c Ic(i)

1   i=1,2G K
E
ν−

=   (1) 

 
Here and in the following, the upper index (1) holds for ATZ and (2) for AMZ. It may be noted 
that the relationship (1) allows calling interchangeably (i)

cG  and (i)
IcK  as the toughness of 

material (i). 
 
The geometry used in the modeling is shown in Fig. 1. The ATZ layers thickness was taken as 

1t = 0.7 mm and that of AMZ as 2t = 0.14 mm. It can be noted that the thicknesses in the 
model geometry are averaged from sample P0 and are close to sample P3. 
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Figure 1. The laminated specimen under 4-point bending loading and a detailed view on the 
v-notch. The specimen thickness is 4 mm (not specified in the figure). The layers thicknesses 
are averaged from sample P0 (see Tab. 1). 
 
The sintering of the laminate samples requires firing the green stacks at 1550 °C and then 
cooled down slowly to room temperature (see Bermejo et al., 2006 for more details). Due to 
the change of temperature θ∆  and the mismatch in the coefficients of thermal expansion (i)α , 
in-plane bi-axial residual stresses are induced inside the layers. It is assumed that no plastic 
deformation occurs which is quite likely in this type of material, and the stresses can be easily 
calculated using the following formula 
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  (2) 

 
where the volume ratio RV  equals to 6.25 in the idealized case (illustrated in Fig. 1) and takes 
various values in the tested samples (Tab. 1). This scatter has an influence on the residual 
stresses as illustrated in Tab. 3. 
 
Table 3. Thermal residual stresses in ATZ and AMZ layers for 1000 °Cθ∆ = − . 

RV  6.17 (P0) 7.01 (P1) 9.7 (P2) 6.01 (P3) 6.25 (model) 
(1)
Rσ  (MPa) 94 84 62 96 93 
(2)
Rσ  (MPa) ̶ 579 ̶ 586 ̶ 602 ̶ 577 ̶ 580 

 
Finally a notch with depth d  is machined in the outer ATZ layer (Fig. 1) in order to promote 
crack initiation during the mechanical 4-point bending loading. This is carried out at very low 
loads so that no additional residuals stresses be induced. The actual notch depth values vary: 
d = 0.267 mm (P1), d = 0.289 mm (P5), d = 0.322 mm (P3) and 4 different depths are tested 
in the model: d = 0.1, 0.2, 0.3, 0.4 mm. 
Depending mainly on the notch depth, a crack was observed to initiate at the root of the notch 
either directly after cooling when machining the notch (Fig. 2, specimen P1) or later under the 
4-point bending (4PB) loading (Fig. 3, specimen P3). Specimen P2 is not shown here, it 
exhibits similar results to P3 (i.e. a crack nucleation during the 4PB loading). The 
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corresponding load-displacement curves are plotted in Figs. 4a and 4b for both P1 and P3 
specimens, respectively. 
 

  

  
Fig. 4a: Load versus cross-head displacement 
of notched specimen (P1) loaded under four-
point bending. A crack is already present in 
the notch due to thermal loading. No pop-in.  

Fig. 4b: Load versus cross-head displacement 
of notched specimen (P3) loaded under four-
point bending. A crack pops-in from the 
notch, causing a small drop in the load.  

       
Figure 2. The sample P1 before (left) and after (right) 4-point bending loading ( F = 80 N). 
A crack is already visible on the left figure (arrow) just after having machined the notch. 
 

         
Figure 3. The sample P3 before (left) and after (right) 4-point bending loading ( F = 80 N). 
No crack appears on the left figure prior to the mechanical loading.  
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It is important to mention that the nucleation of the crack at the notch tip does not cause 
catastrophic failure, as it would be the case in a notched monolithic ceramic. In both cases, 
following this nucleation, the crack penetrates the first compressive layer a short length 
around 0.025 mm, and then is arrested due to the shielding effect of the compressive stresses 
in the AMZ layers (for more details see Bermejo et al., 2006). If the mechanical loading is 
further increased, the crack kinks in the compressive layer at an angle around 16 deg. with 
respect to the horizontal line (Fig. 5). 
In Fig.3, note that a dark line appears in both pictures within the AMZ layer. This is an edge 
crack caused by residual stresses which was analyzed in Chen et al. (2010) and more recently 
in Leguillon et al. (2015). It is shown in (Hbaieb et al., 2007) that if the stress state is such 
that it can cause the onset of an edge crack then it may also be responsible for the crack 
deflection.  
It is a harmless fracture phenomena that does not affect the overall strength of the structure 

for the investigated bending configuration, i.e. the edge crack runs parallel to the direction of 
applied stress. In general, the edge crack depth seems to be smaller or the same order than the 
thickness of the AMZ layer (Leguillon et al., 2015).  
 
3. The coupled criterion 
 
The coupled criterion (Leguillon, 2002) states that the crack nucleation in a brittle material 
occurs abruptly. The crack length jumps from 0 to a given small length a  without any 
equilibrium state in between (note that, at the tip of a pre-existing crack the initiation in the 
strict sense does not take place, the jump is infinitely small, allowing to recover the Griffith 
criterion for the prediction of crack growth). Two conditions must be fulfilled simultaneously, 
the first one specifies that there is enough available energy to create a crack and the second 
that the tensile stress is greater than the tensile strength all along the presupposed crack path 
 

 
P (i)

c
(i)
c

( )
( )   for  0

W a G a
z z a

δ

σ σ

− ≥


≥ ≤ ≤
  (3) 

 
where P ( )W aδ  is the change in potential energy between the cracked and uncracked states. 
Here z  is the space variable in the direction of the future crack. It is assumed in (3) that this 

 
Figure 5. The crack kinking into the AMZ 
layer. 
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new crack lies entirely in material (i) (this will be verified later), otherwise the formulas have 
to be modified accordingly (Leguillon and Martin, 2013). 
Using the incremental energy release rate inc ( )G a  (MPa mm) 
 
 inc P( ) ( ) /G a W a aδ= −   (4) 
                                                               
and pointing out that ( )zσ  is a decreasing function of z , (3) can be rewritten in a simple 
manner 
 

 
inc

(i) (i)
c c

( ) ( )1  and  1G a a
G

σ
σ

≥ ≥   (5) 

 
In this system of inequalities the crack length a  is up to now an unknown, this is the reason 
for the name “incremental” as opposed to “differential” when considering the limit as 0a →  
in (4) leading to the usual definition of the energy release rate G  (MPa mm) 
 

 
P P

0
lim
a

W WG
a a

δ
→

∂
= − = −

∂
  (6) 

 
There are two ways to apply this coupled criterion, either performing full computations by FE 
(the FC approach, (Martin and Leguillon, 2004)), or using matched asymptotic expansions 
(the MA approach, (Leguillon, 2002)). These will be presented in the following section to 
model and predict the crack nucleation at the root of the v-notch. 
 
4. Crack nucleation at the v-notch root – The FC approach 
 
This is the most natural approach, it consists in calculating the tensile stress prior to failure 
and the change of potential energy in (3) using FE computations. But before going further, 
there are some worthwhile reminders. 
The linear constitutive law takes the general form 
 
 ( )in: ( )Uσ ε ε= −C   (7) 
 
The stress tensor is denoted σ , C  is the elasticity operator relying on (i)E  and (i)ν  depending 
on the material, ( )Uε  is the linearized strain tensor, i.e. the symmetric part of the gradient of 

the displacement field U  and inε  is the inelastic part of the strain due to thermal effects. 
Assuming isotropic components, it can be written 

 
              in (i)   i 1,2Iε α θ= ∆ =                          (8) 
 
where I  is the second order identity tensor. 
 
In order to consider the variational formulation of the 
various problems we are interested in, we introduce a 
schematic view of the specimen, the corresponding 2D  

Figure 6. A schematic view of the 
calculation domain. 
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domain is denoted Ω   (Fig. 6). The part 0Γ  of the boundary ∂Ω  is clamped (i.e. 0U = ) and 
applied forces F  are acting on the part 1Γ . The remaining is stress free. Let U  be the space 
of kinematically admissible displacement fields, i.e. vector fields being smooth enough (H1) 
and fulfilling the boundary conditions on 0.Γ  The variational formulations of the pure 
thermal problem (i.e. without mechanical loading 0F = ) and the pure mechanical problem 
(i.e. 0θ∆ = ) are respectively 
 

 
1

th th in

el

Find  such that : ( ) : ( ) d : : ( ) d

Find  such that : ( ) : ( ) d .  del

U U x x

U U x F s

ε ε ϕ ε ε ϕ ϕ

ε ε ϕ ϕ ϕ
Ω Ω

Ω Γ

 ∈ = ∀ ∈


∈ = ∀ ∈

∫ ∫
∫ ∫

C C

C

U U

U U
  (9) 

 
Once discretized by FE, solving these variational equations amounts to solve the linear 
systems 
 
 th th el el   and   = =U B U B    (10) 
 
where   is the stiffness matrix, thU  and  elU  the vectors of nodal unknowns and thB  and elB  
the right hand side members, respectively for the thermal and the elastic problem. 
The thermo-elastic problem is a combination of these two and is obtained summing up the 
two equations in (9). Its potential energy is defined as the strain energy minus the work of 
external forces 
 

 ( )in th elP 1 : ( )  d .  d   with  
2

W U x F U s U U Uσ ε ε
Ω Γ

= − − = +∫ ∫   (11) 

 
Using (7) and (9) and developing (11) yields: 
 

 in th el thP 1 1 with : : ( )d . d . d
2 2

W W W U x F U s F U sδ δ ε ε
Ω Γ Γ

− = = + +∫ ∫ ∫C   (12) 

 
These terms can easily be obtained from the FE computation of thU  and elU  as scalar 
products presumably accessible to any computer code 
 

 th th el el el th1 1. . .
2 2

W = + +B U B U B U   (13) 

 
4.1 The pure thermal problem 0F =   

 
As shown in Fig. 1, we consider for 
simplicity a sharp v-notch. However, if it is 
blunted as observed in Fig. 3 (notch root 
radius 0.02 mm) the predicted loading 
values have to be shifted upward by 12 % 
according to a recent parameter analysis 
and confirmed by Leguillon and Yosibash 
(2003) and Picard et al. (2006). 
  

Figure 7. FE computations are carried out on 
½ of the specimen geometry.  
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For symmetry reasons, the FE computations on the actual geometry are carried out on one 
half of the structure under the plane strain assumption (Fig. 7). Sliding is allowed on the 
supports (rollers), thus the kinematic boundary conditions reduce to 2 0U =  on the support 
and 1 0U =  along the symmetry axis. The tensile stress along this symmetry axis is first 
computed, then  W  in (13) is calculated for various virtual crack lengths from 0a =  (no 
crack) to 1 2a t t d= + −  (step aδ ), i.e. a crack emanating from the notch root, extending 
through the two first layers and impinging on the second interface (AMZ / ATZ). Then, the 
incremental and differential energy release rates (4) and (6) can be calculated respectively by 
 

 inc (0) ( ) ( ) ( )( )   and   ( )W W a W a W a aG a G a
a a

δ
δ

− − +
=    (14) 

 
It is convenient to plot the dimensionless quantities: tensile stress c( ) /aσ σ , incremental 
energy release rate inc

c( ) /G a G  and energy release rate c( ) /G a G  in the same figure as shown 
in Fig. 8 for a pure thermal problem (no mechanical loading) and d = 0.3 mm (keep in mind 
that cσ  and cG  take different values on the two sides of the interface). Obviously, the two 
conditions (5) are fulfilled at point A and only at this point located at 0a = 0.0089 mm for 

θ∆ = − 955 °C (note that in the theoretical parts the temperature is mainly used as a parameter 
which allows varying the residual stresses). For a smaller cooling amplitude, the solid line 
curve is shifted to the left and the dashed one downward (see also Fig. 9 where a detailed 
view around point A is proposed) and there is no longer any point that satisfies both 
conditions (5) simultaneously. 
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Figure 8. The dimensionless: tensile stress (solid line), incremental energy release rate 
(dashed line) and energy release rate (dotted line) for 955 °Cθ∆ = −  (no mechanical loading) 
and d = 0.3 mm. The grey vertical dashed line is the interface ATZ / AMZ. 
 

 
Figure 9. A detailed view around point A in Fig. 8. The crack jump at initiation is estimated to 
be 0a = 0.0089 mm. The marks correspond to the nodes of the strongly refined mesh near the 
notch root (mesh size 0.002  mm). 
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It is possible to plot the cooling amplitude θ−∆  triggering the crack nucleation at the notch 
root while machining the notch (i.e. prior to any mechanical loading), as a function of the 
notch depth d  (Fig. 10). Clearly, this cooling amplitude becomes unrealistic for notch depth 
smaller than 0.2 mm. 
 

 
Figure 10. The cooling amplitude θ−∆  triggering crack nucleation at the notch root prior to 
any mechanical loading, as a function of the notch depth d . Two symbols at the same 
abscissa correspond to two different meshes, a coarse and a refined one. 
 
4.2 The pure mechanical problem 0θ∆ =  
 
A completely analogous analysis can be conducted for a pure mechanical problem with 
figures very similar to Figs. 8 and 9 (see Fig. 11). The crack jump is estimated as previously 
to a = 0.0089 mm.  
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Figure 11. The dimensionless: tensile stress (solid line), incremental energy release rate 
(dashed line) and energy release rate (dotted line) for 209 NF =  (no thermal effect) and d =
0.3 mm. The grey vertical dashed line is the interface ATZ / AMZ. 
 
In parallel to the previous case, it is possible to plot the applied force F  at crack nucleation at 
the root of the v-notch in the absence of thermal residual stresses (Fig. 12). As already 
mentioned in Sect. 4.1, the load value is underestimated by 12 % due to the rounding at the 
root of the notch. 
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Figure 12. The critical applied force F  at crack nucleation at the root of the v-notch in the 
absence of thermal residual stresses, as a function of the notch depth d . Two symbols at the 
same abscissa correspond to two different meshes, a coarse and a refined one.  
 
4.3 The coupled thermo-elastic problem 
 
Reached this stage, it becomes necessary to specify the value of the thermal residual stresses. 
In (Ševeček et al., 2013; Bermejo et al., 2006), it is assumed that the structure is free of 
stresses at 1250 °C, prior to cooling. Then, back at room temperature ( θ∆ = − 1230 °C), the 
thermal residual stresses (calculated using (2)) are (1)

Rσ = 114 MPa, (2)
Rσ = − 713 MPa in the 

present idealized geometry (Fig. 1). Nevertheless, some clues tend to show that these values 
are actually smaller. The indentation tests conducted on the ATZ layers in (Bermejo et al., 
2006) do not allow drawing definitive conclusions but clearly the value 114 MPa, mentioned 
above, is an extreme and is rarely achieved. The scattering is large, it extends roughly from 30 
to 110 MPa. The analysis in (Leguillon et al., 2015) of the onset of and edge crack in the 
compressive layers leads to a similar conclusion, residual stresses are more likely 
corresponding to a cooling lying between  800− °C ( (1)

Rσ = 74 MPa, (2)
Rσ = − 464 MPa) and 

900− °C ( (1)
Rσ = 83 MPa, (2)

Rσ = − 522 MPa). Moreover, these values are consistent with the 
following developments. Within the above temperature range, according to Fig.10, the only 
structure that exhibits a crack prior to any mechanical loading is the one having the deepest 
notch d = 0.4 mm. Using a figure similar to Fig. 9, the applied force triggering the crack onset 
during the 4-point bending test can be determined (Tab. 4).  
 
These values are somewhat similar to those observed on the force/cross-head displacement 
curves recorded during the 4-point bending tests as illustrated in Fig. 5a. However, as already 
explained, it is clear that the variability observed in the geometry of the samples and the 
uncertainty on the residual stresses do not allow a more accurate comparison between the 
theoretical prediction and the measured values. 
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Table 4. The predicted applied force F  triggering crack onset during the 4-point bending test, 
as a function of the notch depth d . 

d  (mm) 0.1 0.2 0.3 0.4 
F  (N) 

θ∆ = − 800 °C 188 82 41 0 

F  (N) 
θ∆ = − 900 °C 167 61 19 0 

 
5. Crack nucleation at the v-notch root – The MA approach 
 
As observed in the previous sections, the jump length 0a  at crack onset is very small, around 
0.009 mm (Fig. 9). This value is consistent with an approach based on asymptotic expansions, 
it is small compared to the layers thicknesses, to the notch depth and to the ATZ ligament 
width (the space between the notch root and the interface). Thus, the solutions to the above 
problems, prior to and following the crack nucleation, can be expressed using two expansions: 
an outer one describing the far field and an inner one giving more details on the near field 
(Leguillon, 2002; Leguillon and Sanchez-Palencia, 1987; Leguillon, 1993). These two 
representations must obviously coincide in an intermediate zone, which gives rise to the 
matching procedure based on the Williams’ series. 
 
5.1 The pure mechanical problem 0θ∆ =   
 
It is the classic case of a reentrant corner in a homogeneous isotropic material (ATZ) under a 
symmetric loading, the Williams series in the vicinity of the notch root takes the very 
simplified form 
 
 el el

1 2( , )  ( ) ...U x x C k r uλ ϕ= + +   (15) 
 

1 2,x x  are the Cartesian coordinates and ,r ϕ  the polar ones originating from the notch root, 
they are mixed in the same relationship without confusion. The function ( )r uλ ϕ  is defined in 
an unbounded domain containing a reentrant corner with opening ω , λ  is the singularity 
exponent and ( )u ϕ  (MPa-1) is its associate mode. These two terms are solutions to an 
eigenvalue problem, they depend only on the notch opening ω  (Fig. 1), here ω = 30 deg. 

0.502λ =  and ( )u ϕ  is symmetric with respect to the bisector (Leguillon and Sanchez-
Palencia, 1987). 
The coefficient elk  (MPa mm1-λ) is the generalized stress intensity factor (GSIF), it depends 
on the entire geometry of the specimen (and especially on the notch depth) and varies linearly 
with the load intensity ( elκ  is the scaling coefficient) 
 
 el elk Fκ=   (16) 
 
The GSIF is extracted from the FE solution using a path independent integral (Yosibash, 
2012; Leguillon and Sanchez-Palencia, 1987; Leguillon, 1993; Labossiere and Dunn, 1999). It 
is the appropriate parameter to predict the crack onset at the notch root (Dunn et al., 1997). 
The coupled criterion (Leguillon, 2002) allows calculating the jump length 0a′  of the crack at 
onset and the critical GSIF value (1)

ck  from material data. It takes the following form 
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(1) (1)
c

0 (1) 2 (1) 2
c

1(1) (1)
el (1) (1) 2 1 1c

c c(1) 2

1 0.0093 mm
(1 )

41.2 MPa mm
(1 )

E Ga
A

E Gk k
A

λ
λ λ

ν σ

σ
ν

−

− −


′ = = −


  ≥ = =  − 

  (17) 

 
where A  is a geometric dimensionless coefficient depending only on the opening ω , here 
ω = 30 deg. and A = 6.16. The jump length is quite close to the estimated value found using 
the FC approach ( 0a = 0.0089 mm). As evidenced above, its smallness is mainly due to the 
properties of the ATZ layers. 
For the 4 notch depths, the coefficient elκ in (16) (i.e. elk  for F = 1 N) is computed once for 
all, and the critical mechanical load leading to a crack onset in absence of residual stresses can 
be derived from (17). The resulting values never deviate more than 2.4% from the estimated 
ones in the FC approach (Fig. 12). 
 
5.2 The pure thermal problem 0F =  
 
The only additional difficulty which arises in this case comes from the GSIF calculation. The 
integral used previously is path independent only if there is no volume and boundary forces in 
the vicinity of the notch root. This is not the case for a thermo-elastic problem (see the right 
hand side member of the first variational equation in (9)). An extra term should be added to 
the Williams series (15) (Leguillon et al, 2001) 
 

 
(1)

th th (1) (1)
1 2 (1) (1)( , )  ( )  ( ) ...  with  

(1 )(1 2 )
EU x x C k r u rvλ ϕ β θ ϕ β

ν ν
= + − ∆ + =

+ −
  (18) 

 
Just as the leading term, this complementary term ( )rv ϕ  is defined on an unbounded domain 
containing a reentrant corner with opening ω . It must fulfil the equilibrium equation in a 
vicinity of the notch root and the special boundary conditions on the two faces .n nσ =  (no 
other condition is required). It is easily calculated 
 

 
(1) (1)

(1)
(1 )(1 2 )   ;  0rv v

E ϕ
ν ν+ −

= =   (19) 

 
Then the GSIF th thk κ θ= ∆  can be extracted from 
 
 th (1) th

1 2( , )  ( )  ( ) ...U x x rv C k r uλβ θ ϕ ϕ+ ∆ = + +   (20) 
 
which meets all the requirements to compute the path independent integral.  
The cooling amplitude θ∆  triggering crack onset at the root of the v-notch can be derived 
from the condition th (1)

ck k≥ . Again, these values do not deviate more than 2.4% from the 
estimated ones in the FC approach (Fig. 10). 
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5.3 The coupled thermo-elastic problem 
 
The coupled thermo-elastic problem is a combination of the two above situations and the 
actual GSIF k  is simply the sum of the two previous ones 
 
 th elk k k= +   (21) 
 
Then, using (16), the critical load triggering crack onset at the notch root during the 4-point 
bending loading is given by the simple formula 
 

 
(1) th
c

el
k kF

κ
−

=   (22) 

 
These results are compared (Fig. 13) to those obtained by the FC approach (Tab.4), clearly the 
difference is very small. 
  

 
Figure 13. The applied force F  triggering the crack onset at the notch root during the 4-point 
bending test as a function of the notch depth d : θ∆ = − 800 °C, MA approach (diamonds), 
FC approach (solid diamonds), average (solid line); θ∆ = − 900 °C, MA approach (triangles), 
FC approach (solid triangles), average (dashed line). 
 
5.4 Onset from a crack tip – The Griffith criterion 
 
The singular exponent λ  in (15) is very close to 0.5, i.e. to the classic crack tip singularity. 
Thus, we compared the above results with those obtained by neglecting the geometry of the v-
notch and replacing it with a crack of the same depth. The Stress Intensity Factors (SIF) are 
calculated at the crack tip, using the already mentioned path independent integral, for both the 
thermal ( th

IK ) and the elastic problem ( el
IK ). Then they are combined as in (21) 
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 el th

I I IK K K= +   (23) 
 
and IK  is compared to the critical value (1)

IcK  (Tab. 1). This provides another approximate 
method to determine the applied force F  triggering the crack onset at the notch root during 
the 4-point bending test (Fig. 14). No difference can be observed with the average value in 
Fig. 13. 
 

 
Figure 14. The applied force F  triggering the crack onset at the notch root during the 4-point 
bending test as a function of the notch depth d  calculated using the Griffith criterion: θ∆ = −
800 °C (diamonds), previous average (solid line); θ∆ = − 900 °C (triangles), previous average 
(dashed line). 
 
These results clearly make the MA approach very beneficial either under the coupled criterion 
or the Griffith form. Only a single elastic computation on the whole specimen, but without 
any crack extension, is required to calculate either the GSIF k  or the SIF IK  which value is 
compared to (1)

ck  or (1)
IcK , whereas the FC approach needs a large number of computations in 

order to test various crack lengths and draw the curves shown in Figs. 8, 9, 11, etc.  
Note that, in the present case the MA approach and the Griffith criterion give similar results 
but one has to keep in mind that the Griffith criterion is applied through a geometric 
simplification which validity becomes less and less appropriate as the opening ω  increases 
(Leguillon, 2002). 
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6. Crack kinking in the compressive AMZ layer. 
 
6.1 The crack growth 
 
Before studying the crack deflection we must first analyze the crack propagation in ATZ, the 
penetration in the AMZ layer and the crack arrest. Obviously, this cannot be achieved by the 
MA approach which aims only at predicting the very beginning of the failure process, i.e. the 
crack nucleation. 
The dimensionless tensile stress c/σ σ , incremental energy release rate inc

c/G G  and energy 
release rate c/G G , deriving from the FC approach, are plotted in the same graph for d = 0.3 
mm, θ∆ = − 800 °C, F = 34 N (Fig. 15). It can be observed (as in Figs. 8 and 11) that the 
energy release rate G  tends to infinity when the crack tip approaches the interface and then 
decreases rapidly beyond the interface. It is the consequence of a strong singularity when the 
crack impinges on the interface (Leguillon and Sanchez-Palencia, 1992; Leguillon et al., 
2000). 
 

 
Figure 15. The dimensionless: tensile stress (solid line), incremental energy release rate 
(dashed line) and energy release rate (dotted line) for 800 °Cθ∆ = − , 41 NF =  and d = 0.3 
mm. The grey vertical dashed line is the interface ATZ / AMZ. 
 
Once the crack is initiated, the conventional tool for fracture mechanics, i.e. the Griffith 
criterion based on the energy release rate G , can be used to predict the further growth and 
arrest. At point A the coupled criterion (5) is fulfilled: (1)

c/ 1σ σ =  and inc (1)
c/ 1G G = , the 

energy release rate G  is larger than (1)
cG  (this would be more easily visible on a detailed view 

as in Fig. 9) and increases. Thus, after nucleation the crack continues to grow and reaches the 
interface where G  is theoretically infinite. Then the crack penetrates the next layer (the crack 
deflection along a weak interface is excluded here) at least up to point B1 where G  drops 
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below (2)
cG . At B1, the extension length in AMZ is around 1b = 0.010 mm, this length 

decreases as the notch depth increases. But it is clear that there is a significant amount of 
excess energy, G  is far above (1)

cG  between A and the interface and then above (2)
cG  between 

the interface and B1. The whole or only a part of this energy may be consumed to propagate 
the crack beyond point B1 without going further than point B2, where the crack is closed and 

0.G =  At B2 the extension length is 2b = 0.033 mm, slightly larger than observed (Fig. 4) but 
again the geometric variability and the uncertainty on the level of residual stresses make it 
impossible to conclude to an overestimate. For 900 °Cθ∆ = − , it comes 1b = 0.009 mm and 

2b = 0.027 mm. It may be also noted that in the absence of mechanical loading, under the sole 
effect of the temperature this length is 2b = 0.025 mm. 
 
6.2 The crack deflection 
 

For simplicity, we neglect the notch shape 
(its role is negligible now that the crack 
developed) and assume that a crack extends 
from the stress free bottom edge to its actual 
tip located, as observed in Fig. 4, at 2b =
0.025 mm (Fig. 16). At this crack tip the SIF 

IK  vanishes (see Sect. 6.1). Then the load 
can be increased without any crack 
propagation until (2)

I IcK K=  (Tab. 1), i.e. an 
additional load F∆ = 129 N, except if 
conditions for crack kinking are met 
(Leguillon and Murer, 2008). This is what we 

are now interested in. The analysis will be conducted using the FC approach. It will be seen 
later that contrary to the crack nucleation at the notch root, the MA approach does not work in 
the present case because the crack jump cannot be considered as small with respect to other 
characteristic lengths of the structure and especially the penetration length 2b . 
 
The FC procedure is the same as in Sect. 4 by varying now the length l  of the crack branch 
(Fig. 17) instead of the crack length a . However, the situation is much different from the 
previous one because the incremental energy release rate is no longer a monotonically 
increasing function. Clearly, at point C1 (Fig. 17), if F < 133 MPa then  inc (2)

1 c( )G l G<  and 
the coupled criterion is not fulfilled because of the energy condition whereas the stress 
condition is largely satisfied. At this point, for F = 133 MPa, 1l = 0.042 mm, (2)

1 c( )G l G=  and 
( )G l  is a decreasing function of the crack length l  (it can be shown that if inc ( ) / 0G l l∂ ∂ =  at 

a point then inc( ) ( )G l G l=  at this point). As a consequence the point under consideration is an 
arrest point. The load must be increased in order to grow the crack. 
In addition, it must be immediately pointed out that 1l  is larger than the penetration length 2b  
thus forbidding the use of the asymptotic approach (MA). 
 

 Figure 16. The crack extension 2b  in 
AMZ and the double deflection at an 
angle γ . 
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Figure 17. The dimensionless: tensile stress (solid line), incremental energy release rate 
(dashed line) and energy release rate (dotted line) for 800 °Cθ∆ = − , F = 133 N. 
 
If the load increases from F = 133 MPa to F = 172 MPa there is a stable crack growth 
between C1 and C2 following the load increments (Fig. 18). Then at C2, 2l = 0.189 mm, 

(2)
2 c( )G l G=  and the energy release rate becomes again an increasing function of the load, thus 

the crack growth becomes unstable.  
The analysis of the crack extension beyond the point of instability C2 is outside the scope of 
this study.  
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Figure 18. The dimensionless: tensile stress (solid line), incremental energy release rate 
(dashed line) and energy release rate (dotted line) for 800 °Cθ∆ = − , F = 172 N.  
 
During the 4-point bending test, the applied force to trigger a crack deflection at a given angle 
γ = 5, 10, 16, 20, 30 deg. (Fig. 19) can be computed. The minimum is found at γ = 16 deg., 
showing that this direction is such that the conditions of the coupled criterion (5) are met first 
in a monotonic loading, it is in a surprisingly perfect agreement with the experimental 
observations (Fig. 4). 
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Figure 19. The applied load F   triggering crack kinking in the compressive layer, function of 
the kink angle γ  with 2b = 0.025 mm, for θ∆ = − 800 °C (diamonds and solid line) and 

θ∆ = − 900 °C (triangles and dashed line). 
 
Note that the angle measured experimentally was around 16 deg. (Fig. 16) for that particular 
sample and it is checked that it satisfactorily corresponds to a minimum in the simulations 
(Fig. 19). In future work, different laminates with different AMZ thicknesses and compressive 
stresses will be analysed and compared with the predictions of this stress-energy criterion. 
 
6.3 A complete scenario for failure of the v-notched specimen 
 
By grouping all these results, we can reconstruct a complete scenario of the SENB test based 
on a force / displacement curve (Fig. 20). The correction due to the blunt notch (Sect. 4.1) has 
been taken into account, it slightly shifts upward the pop-in location (point 1 in Fig. 20).  
A comparison between Fig. 4b (specimen P3) and Fig. 20 can be carried out at least on the 
first stages of the bending test. Of course, the horizontal axis in Fig. 20 is the displacement h  
measured (computed) at the loading points, not the meaningless cross-head displacement in 
Fig. 4b. One can observe a good agreement on the pop-in location: it occurs for F =  52 N in 
the experimental curve whereas it is predicted at F =  46 N in the simulation. The difference 
is acceptable taking into account the geometric simplifications that have been made in the 
simulation. 
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Figure 20. Complete simulation of the SENB test, applied force F  vs. loading point 
displacement h . (i) from the origin to point 1: elastic loading of the v-notched structure, (ii) 
at point 1: the crack initiates at the v-notch root and jumps to point B2 (Fig. 15), (iii) from 
point 1 to point 2: elastic reloading of the cracked structure without crack growing or kinking, 
(iv) at point 2: the crack kinks and jumps to point C1 (Fig. 17), (v) from point 2 to point 3: 
stable crack growth from C1 to C2 (Figs. 17 and 18), (vi) at point 3: beginning of the unstable 
crack growth. 
 
7. Summary and conclusion 
 
The coupled criterion has proved its ability to predict the crack nucleation and its further 
propagation in the SENB experiments. The results coincide with the Griffith criterion thanks 
to a geometric approximation valid here but not anymore when the notch aperture increases. 
The Griffith criterion becomes ineffective whereas the coupled criterion still operates. This 
latter criterion allows also modelling other mechanisms that occur abruptly, like the crack 
penetration in the compressive layer and its deflection, without going through complex 
dynamic computations.  
The asymptotic approach (MA) of the coupled criterion can be used successfully for the 
prediction of the crack nucleation at the v-notch root, but it cannot be employed in the other 
situations where it is difficult to identify a parameter being small compared to any other 
characteristic length of the structure. Then the full computation (FC) method, using FE 
calculations, becomes unavoidable. Of course a more thorough comparison with experiments 
is difficult because of the simplifications in the modelling, the variability of the geometry 
(Tab. 1) and the uncertainties on the measured parameters (Tab. 2). Moreover it would require 
knowing better the residual stresses after fabrication of the laminated ceramic plates and cut 
of the specimens.  
Parametric analyses taking into account these uncertainties are in progress and dedicated 
measures will be carried out to determine the stress state before starting the tests. This will be 
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the topic of upcoming papers with, in particular, the aim to put in parallel the complete 
experimental and simulated load/displacement curves, up to the final failure (Fig. 20).  
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