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Abstract 

Multi‑domain proteins form the majority of proteins in eukaryotes. During their formation by tandem duplication or 
gene fusion, new interactions between domains may arise as a result of the structurally‑forced proximity of domains. 
The proper function of the formed proteins likely required the molecular adjustment of these stress zones by spe‑
cific amino acid replacements, which should be detectable by the molecular signature of selection that governed 
their changes. We used multi‑domain globins from three different invertebrate lineages to investigate the selective 
forces that acted throughout the evolution of these molecules. In the youngest of these molecules [Branchipolynoe 
scaleworm; original duplication ca. 60 million years (Ma)], we were able to detect some amino acids under positive 
selection corresponding to the initial duplication event. In older lineages (didomain globin from bivalve mollusks and 
nematodes), there was no evidence of amino acid positions under positive selection, possibly the result of accumu‑
lated non‑adaptative mutations since the original duplication event (165 and 245 Ma, respectively). Some amino acids 
under positive selection were sometimes detected in later branches, either after speciation events, or after the initial 
duplication event. In Branchipolynoe, the position of the amino acids under positive selection on a 3D model suggests 
some of them are located at the interface between two domains; while others are locate in the heme pocket.
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Background
The increasing number of sequenced genomes has 
revealed that the fraction of proteins with two or more 
domains represents up to 70% of the genes in eukaryotes, 
and tandem repeats in particular represent up to 20% of 
all sequences in multicellular organisms (for reviews, see 
Björklund et al. 2005; Han et al. 2007). Both duplication 
and adaptive evolution have been implicated in the ori-
gin and diversity of multi-domain proteins (Vogel et  al. 
2005). From a limited set of initial domains, the duplica-
tion and shuffling of domains has permitted the emer-
gence of numerous and complex proteins with potentially 
novel functions. Although evolutionary events affecting 

the domains’ active sites are crucial to determine a 
proper functioning of the protein, mutations located on 
the exposed regions of the different domains and at their 
interface might play an equally important role by affect-
ing folding and interactions between domains (Han et al. 
2007). Very few studies have addressed how domains 
interact to produce the most efficient folding of multi-
domain proteins as each domain is usually considered 
independently, except when the active site is located at 
their interface (Han et al. 2007; Bhaskara and Srinivasan 
2011). Proteins comprised of tandem-repeats of well-
known domains could be used to test the mechanisms 
that are involved in multi-domain proteins evolution to 
maintain a proper function.

The globin family is one of the most extensively studied 
protein families, especially in vertebrates. Functional tan-
dem multi-domain globins have so far surprisingly only 
been found in invertebrates and prokaryotes (Weber and 
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Vinogradov 2001). Invertebrate multi-domain globins 
have been the target of numerous studies mostly focused 
on their primary and quaternary structures (Weber and 
Vinogradov 2001). In addition to the determination of 
their structure, studies aimed at understanding the evo-
lutionary mechanisms of the origin of the domain repeti-
tion. They have shown that unequal crossing-over is the 
most common mechanism for globin gene duplication 
(Dewilde et al. 1999; Kato et al. 2001; Naito et al. 1991). 
Among invertebrates, only nematodes, mollusks, crus-
taceans, and annelids possess globin subunits with more 
than one functional protein domain (Weber and Vinogra-
dov 2001) with a great structural diversity.

Nematode hemoglobins (Hbs, i.e. circulating globins) 
can be single-domain or di-domain (see Weber and Vino-
gradov 2001 for a review). These latter ones occur in the 
pseudocoelomic cavity, and assemble into octamers in 
the pig intestinal parasite Ascaris suum (Darawshe et al. 
1987; De Baere et al. 1992). The globin gene diversity in 
nematodes is very large, and intron insertions and gene 
duplications were frequent in the nematode globin evolu-
tionary history (Blaxter 1993; Hoogewijs et al. 2008; Hunt 
et al. 2009). However, di-domain Hbs are only known in 
the gut parasite ascarids A. suum and Pseudoterranova 
decipiens (Darawshe et al. 1987; Dixon et al. 1991).

Mollusks can exhibit both hemocyanins and Hbs, the 
latter being associated with species from hypoxic and 
fresh-water environments. Mollusk multi-domain Hbs 
can be found in bivalves and gastropods (see Weber and 
Vinogradov 2001 for a review). Bivalves of the genus Bar-
batia possess an intracellular di-domain Hb that forms 
high-molecular weight complexes (Grinich and Terwil-
liger 1980; Suzuki and Arita 1995; Suzuki et  al. 1992). 
Other bivalves from the families Astartidae and Carditi-
dae have more complex extracellular multi-domain Hb 
with at least 14–28 domains and gastropods from the 
family Planorbidae can also have multi-domain Hb with 
at least 10 domains (Weber and Vinogradov 2001).

In crustaceans, multi-domain Hbs are known in the 
water fleas Daphnia (Dewilde et  al. 1999), and Moina 
(Kato et al. 2001), as well as in the brine shrimp Artemia 
(Von Brand et  al. 1950), and all are extracellular. Arte-
mia represents another example of multiple duplications 
almost as spectacular as the molluscan multi-domain 
Hbs. This extracellular Hb possesses nine domains (Man-
ning et  al. 1990) and assembles into dimers (Jellie et  al. 
1996; Matthews et al. 1998).

Typical annelid extracellular globins are renowned 
and widely studied because of their amazing quaternary 
structure, which is comprised of a 3.6  MDa hexagonal 
bilayer (HBL) complex of globins and linker chains (see 
Weber and Vinogradov 2001 for a review). Annelid extra-
cellular multi-domain globins have so far only been found 

in Branchipolynoe, a hydrothermal-vent endemic genus 
in the family Polynoidae (Hourdez et  al. 1999a). In this 
genus, the Hb is extracellular, and corresponds to dimers 
and trimers of tetra-domain globins (Hourdez et  al. 
1999a). Based on sequence data, Projecto-Garcia et  al. 
(2010) showed that these globins were closely related to 
single-domain intracellular globins, and were the result 
of successive tandem gene duplications.

The rare and sporadic occurrence of multi-domain 
globins in various invertebrate groups indicates multi-
ple origins for these proteins, and suggests a possible 
selective mechanism for their formation under different 
environmental circumstances. These are usually linked 
to the need of organisms to possess complex pigments 
(not excretable) able to bind a maximum of oxygen 
molecules when subjected to hypoxia. Functioning as 
a multi-domain protein potentially requires structural 
modifications, and the knowledge of the globin tertiary 
and quaternary structures makes multi-domain globins 
good candidates to investigate the role of key amino acid 
replacements in the folding and interdomain interfaces of 
the protein. In this paper, we studied the selective pro-
cesses that shaped multi-domain globins, from the ini-
tial duplication event to the present-day molecules and 
which structural modifications these globins underwent 
until today. We used the annelid Branchipolynoe, the 
blood clam Barbatia, and ascarid nematodes, three dis-
tinct taxonomic groups in which comparisons between 
a single-domain and multi-domain genes where possible 
(occurrence in sister species), to determine whether there 
was a common mechanism that shaped their structural 
evolution. These three hemoglobins evolved between 245 
and less than 60 million years (Ma) ago, for the ascarids 
and the polynoids, respectively. Using maximum likeli-
hood approaches, we determined which selective forces 
were acting during the evolution of the multidomain 
state and, in particular, identified amino acid positions 
under positive selection to understand their potential 
function. These amino acids were placed on a 3D model 
of each globin to propose structural interpretation of 
these amino acids.

Results
Only multi-domain globin sequences for some mollusks, 
annelids, and nematodes were retrieved from Genbank. 
Other multidomain globins from invertebrates (arthro-
pods and Biomphalaria glabrata) did not meet the selec-
tion criteria for the Hb sequences (see “Methods” for 
details).

We were particularly interested in detecting a puta-
tive occurrence of codons under positive selection on the 
branches leading to the formation of the first duplication 
of the multi-domain globins, but also in all subsequent 
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branches with ω greater than 1 (for which positive selec-
tion is suspected), where ω is the ratio of nonsynony-
mous to synonymous mutations (dN/dS) (Figure 1).

Selective pressures acting in multi‑domain globin 
evolution
Tetra‑domain extracellular globin in Branchipolynoe: Positive 
selection before duplication
Using the single-domain sequences as outgroup, the 
maximum likelihood tree (Figure  1a, see “Methods” for 
details) for the polynoids corresponded to one of the two 
topologies (topology B) established by Projecto-Garcia 
et  al. (2010). This topology was used as a reference for 
the following maximum likelihood analyses on coding 
sequences using the codon model of substitutions.

The likelihood ratio test (LRT  =  19.05, df  =  16, 
p = 0.25; Table 1) with the branch model indicates that 
the ‘free-ratio’ model did not better fit the data than the 
‘one-ratio’ model, indicating that the selective pressure 
did not differ markedly among branches. Most of the 
evolution of these sequences was characterized by purify-
ing selection (ω = 0.278). This branch model, however, is 
based on the comparison of the average ω ratio over the 
whole sequence and if only a few amino acid positions 
significantly differ, this test may not be able to detect it 
(Yang 2008). Similarly, the site model, that compares all 

positions averaged over all the branches, did not reveal 
any position that had a ω significantly different from the 
others (Table 1). Overall, most of the positions are under 
moderate purifying selection (ω = 0.177), although 21% 
of the positions appear to behave nearly neutrally (ω = 1; 
Table  1). As selective pressures can also greatly vary 
between sites on a specific branch, we proceeded with the 
branch-site model to test individual amino acid position 
along each branch. For the branch that leads to the first 
duplication (branch a, Figure 1a), the likelihood values of 
the M1a and MA showed that this latter model best fit-
ted the sequence data (LRT = 23.86, df = 2, p = 0.001, 
Table  1). To determine if this result was a consequence 
of positive selection or relaxed evolutionary constraints, 
a comparison was made between the likelihood values 
of the MA model with the MAω=1 model. This test indi-
cates that the branch corresponding to the first duplica-
tion displays evidence of positive selection (LRT = 12.68, 
df = 2, p = 0.005). Four amino acid residues were iden-
tified as being under positive selection with BEB (Bayes 
Empirical Bayes) values greater than 0.95 (Table  1). 
Branch b and c exhibited a dN/dS ratio (ω) value close to 
infinity (Figure  1a) but, when tested for positive selec-
tion signatures, MA did not better fit the data than M1a 
(Table  1). This was mainly due to the fact that the two 
internal branches contained very few mutations, most of 

Figure 1 Maximum likelihood trees of the multimeric globin genes from the three groups of metazoans analyzed. a Branchipolynoe hemoglobin 
phylogram; b NEMATODE globins’ phylogram; c Barbatia globins’ phylogram. In all cases GTR was used as the nucleotide substitution model. ω 
values are shown in bold over/under the branches, and N*dN/S*dN ratios are within brackets. Mg myoglobin, SD single‑domain, D1–D4 domains 1 
through 4. Insets (adapted from Weber and Vinogradov 2001) represent the quaternary structure of globins to which the correspondent tree is right 
bellow. Size of the represented assemblies is depicted next to each inset.
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Table 1 Results from the analyses of positive selection (PAML v 4.7, Yang 2007)

Model lnL κ np Model estimates LRT (df) Sites under positive 
selection (BEB >0.95)

Branchipolynoe

 Branch model

  M0 −2,061.60 1.755 19 ω = 0.278

  M1 −2,052.07 1.781 35 0.001 < ω < ∞ 19.05NS (16)

 Site model

  M1a ‘nearly neutral’ −2,050.01 1.842 20 ω0 = 0.177 (79%)
ω1 = 1.000 (21%)

  M2a ‘positive selection’ −2,050.01 1.842 22 ω0 = 0.177 (79%)
ω1 = 1.000 (10.8%)
ω2 = 1.000 (10.2%)

0.00NS (2)

 Branch‑site model

  MA branch a (duplication) −2,038.08 1.851 22 ω0 = 0.154 (65.6%)
ω1 = 1.000 (16.3%)
ω2a = ∞ (14.5%)
ω2b = ∞ (3.6%)

23.86***** (2) 27 V
30A
52Q
65C

  MA branch b (D4 vs D3 D2 D1) −2,049.37 1.845 22 ω0 = 0.167 (0%)
ω1 = 1.000 (0%)
ω2a = 1.076 (78.5%)
ω2b = 1.076 (21.5%)

1.29NS –

  MA_branch c (D2 D1) −2,048.87 1.856 22 ω0 = 0.167 (0%)
ω1 = 1.000 (0%)
ω2a = 2.6 (79.6%)
ω2b = 2.6 (20.4%)

2.28NS –

Nematodes

 Branch model

  M0 −2,153.41 1.455 9 ω = 0.037

  M1 −2146.71 1.313 15 0.029 < ω < ∞ 13.4* (6)

 Site model

  M1a ‘nearly neutral’ −2,141.70 1.476 10 ω0 = 0.071 (87.3%)
ω1 = 1.000 (12.7%)

  M2a ‘positive selection’ −2,141.70 1.476 12 ω0 = 0.071 (87.3%)
ω1 = 1.000 (3.0%)
ω2 = 1.000 (9.7%)

0NS

 Branch‑site model

  MA branch a (duplication) −2,133.19 1.565 12 ω0 = 0.074 (51.2%)
ω1 = 1.000 (7.2%)
ω2a = 1.412 (36.4%)
ω2b = 1.412 (5.2%)

17.02***** (2)
MA vs MAω=1

NS
16 sites

  MA branch b (D1) −2,135.16 1.407 12 ω0 = 0.063 (74.2%)
ω1 = 1.000 (10.2%)
ω2a = ∞ (13.7%)
ω2b = ∞ (1.9%)

13.09**** (2) 11A

  MA branch c (D2) −2,128.13 1.373 12 ω0 = 0.061 (79.1%)
ω1 = 1.000 (9.5%)
ω2a = ∞ (10.2%)
ω2b = ∞ (1.2%)

27.14***** (2) –

Barbatia

 Branch model

  M0 −1,989.05 1.398 11 ω = 0.332

  M1 −1,980.29 1.393 19 0.136 < ω < 3.160 17.54** (8)

 Site model

  M1a −1,967.14 1.514 12 ω0 = 0.128 (62%)
ω1 = 1.000 (34%)

  M2a −1,956.20 1.649 14 ω0 = 0.120 (54.9%)
ω1 = 1.000 (43.1%)
ω2 = ∞ (2%)

21.88***** (2)
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them being nonsynonymous mutations (6 and 5 replace-
ments, respectively), and no position had a BEB probabil-
ity >95%.

All other internal branches had quite relaxed ω values 
between 0.255 and 0.33. They were all tested but no sig-
nature of positive selection was found. The ω values for 
the terminal branches were generally characteristic of 
purifying selection (ω ≪ 1). Interestingly, the exceptions 
were all on branches leading to B. symmytilida sequences 
(SD, D3, and D2). The results of LRT for these 3 branches 
showed that M1a model (almost neutral) was systemati-
cally chosen against MA with one to two sites positioned 
in the ω  >  1 class. Although not significant (BEB prob-
ability ranged between 0.51 and 0.74), these replacements 
were all found within B. symmytilida, suggesting that this 
newly formed species might have encountered changing 
conditions since speciation.

Although REL (Random Effects Likelihood, episodic 
diversifying selection) analysis identified branch a as 
exhibiting the strongest signs of positive selection, the 
corrected p value was not significant (p = 0.13), and the 
sites identified as under positive selection with PAML 
were not supported by the MEME analysis.

Di‑domain nematode Hbs: positive selection in one of the 
two domains
Based on earlier work (Blaxter 1993; Blaxter et al. 1994; 
Hunt et  al. 2009) we chose the single-domain globins 
sequences from A. suum to serve as outgroup in our tests 
for selective regimes. In agreement with earlier work 
and our alignment (Additional file 1: Figure S1) with the 
sequences of the hemoglobins from A. suum and P. decip-
iens, the orthologous sequences of each domain indicated 
that the duplication occurred before the separation of the 

two species. We used this unrooted topology (Figure 1b) 
for our analysis of selective pressures during the evolu-
tion of these di-domain globins.

The ‘free-ratio’ model better fits the sequence data than 
the ‘one-ratio’ model (LRT =  15.38, df =  6, p =  0.05), 
indicating that the dN/dS ratios (ω) are heterogeneous 
among branches. In the branch leading to the nematode 
multi-domain hemoglobins (branch a, Figure 1b), ω was 
0.301, with numerous synonymous and non-synonymous 
substitutions. For this branch, the ‘site model’ test indi-
cated that the MA model had a significantly greater like-
lihood value than the M1a model (LRT = 17.02, df = 2, 
p =  0.001), and BEB analyses identified 16 sites under 
positive selection with a probability greater than 95%. 
However, the likelihood for MA was not significantly dif-
ferent from that for MAω=1 (LRT =  0.29, df =  2), indi-
cating that there was no positive selection in the branch 
leading to the multi-domain nematode Hb or that it was 
masked by saturation of the phylogenetic signal (accumu-
lation of a very large number of synonymous mutations).

On the branches corresponding to the duplicated 
domains (branch b for domains D1, and branch c for 
domains D2; Figure 1b), there are more non-synonymous 
mutations per non-synonymous site than synonymous 
mutations per synonymous sites, consistent with the 
expectations for positive selection. For both branches, 
MA (branch-site model) better fits the data than M1a 
(Table  1), indicating heterogeneity of selective pres-
sures among sites. For both of these branches, the LRT 
between MA and MAω=1 was significant (branch b: 
LRT =  8.31, df =  2, p =  0.025; branch c: LRT =  11.51, 
df = 2, p = 0.005), more specifically indicating the action 
of positive selection for some amino acid positions. The 
Bayesian analysis however did not reveal any amino acid 

In the 4 invertebrate groups, the likelihood (ln) values correspond to branches leading to various duplications (see Figure 1a–c) in each phylogram. Selection models 
implemented in the codeml package, its parameters and associated results of likelihood ratio tests (LRT) are shown (significance threshold: p < 0.05).

κ transition/transversion ratio, np number of parameters estimated by the model, model estimates: ω0 estimated ω for the category of sites under purifying selection 
(ω < 1), ω1 estimated ω for sites for the category under neutral evolution (ω ~ 1), ω2a estimated ω for sites under positive selection in the foreground branches against 
background branches under purifying selection, ω2b estimated ω for sites under positive selection in the foreground branches against background branches under 
neutral evolution, df degrees of freedom, NS non significant.

* Significant at 0.05; ** significant at 0.025; *** significant at 0.01; **** significant at 0.005; ***** significant at 0.001; BEB >0.95: sites identified by Bayes Empirical Bayes 
analysis with a posterior probability greater than 95%.

Table 1 continued

Model lnL κ np Model estimates LRT (df) Sites under positive 
selection (BEB >0.95)

 Branch‑site model

  MA branch a (duplication) −1,961.52 1.572 14 ω0 = 0.119 (59.9%)
ω1 = 1.000 (29.5%)
ω2a = ∞ (7.1%)
ω2b = ∞ (3.5%)

11.24*** (2) –

  MA branch b (D1) −1,962.64 1.510 14 ω0 = 0.117 (62.3%)
ω1 = 1.000 (31.5%)
ω2a = ∞ (4.1%)
ω2b = ∞ (2.1%)

9.00** (2) 31G
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position as being significantly under positive selection for 
domain D2 and only the alanine residue at position 11 
was positively selected for D1 (Table 1).

Again, the search for episodic diversifying selection 
(REL analysis) did highlight branch D1 as well, but the 
corrected value is not significant, and according to this 
method the amino acid alanine in position 11 does not 
appear to be under positive selection.

Di‑domain intracellular blood clam Hbs
The δ globin chain is considered to be the ancestral sin-
gle-domain globin sequence for the di-domain of B. lima 
(Suzuki et al. 1996). Our determination of selective forces 
that acted during the di-domain globin gene evolution 
was performed with this globin sequence as the outgroup 
for the phylogeny (Figure 1c).

The comparison between the ‘one-ratio’ model and 
the ‘free-ratio’ model indicates that ω is not homoge-
nous among branches (M1 vs. M0, LRT = 17.54, df = 8, 
p = 0.025). The MA model best fits the data than M1a for 
branches a and b (branch-site model; Table 1), suggesting 
that some amino acids could be under positive selection 
in these branches. The BEB analysis revealed that residue 
31G (located in the AB corner) was under positive selec-
tion. None of the other branches exhibited amino acid 
positions with signature of positive selection.

The REL analysis did not support the findings of the 
PAML analysis in the blood clam Hbs.

Location of the amino acid sites under positive selection 
in a 3D model
The 3D modeling was only performed for the datasets 
in which we detected potential amino acids under posi-
tive selection and a 3D model of the globin subunit was 
created for only one of the species inside each group of 
invertebrates.

Annelids
The similarity of the four domains, between the 2 species 
of Branchipolynoe ranged between 94 and 97% (Addi-
tional file 2: Table S1). Based on this high level of similar-
ity, we only produced the 3D homology model of domain 
1 from B. symmytilida (Figure 2a). Three templates were 
used to produce the 3D models of the Hb D1 from B. 
symmytilida. The first one was the Hb from the poly-
chaete Glycera dibranchiata [Protein Data Bank (PDB) 
1HBG] as this is one of the closest species with a globin 
crystal. The second corresponds to another annelid spe-
cies, Lumbricus terrestris (PDB 1X9F), and the third tem-
plate was Hb from the cestode Gasterophilus intestinalis 
(PDB 2C0K), the closest sequence automatically chosen 
by the SWISS-MODEL server. Out of the three models, 
the one that we considered the best was the model based 

on the Lumbricus Hb sequence (based on the ANOLEA 
and GROMOS graphics, and by comparing the QMEAN 
descriptors—see details in “Methods”). Although the 
model based on G. intestinalis had a smaller QMEAN 
value (the lower the predicted energy, the better the 
model) the Lumbricus-based model exhibited smaller 
errors in the parts of the quaternary structure where the 
residues under positive selection are located.

The cysteine in position 65 (65C) is located in the far 
end of the heme pocket and is surrounded by a slightly 
hydrophilic and polar cluster (Additional file  3: Figure 
S2). The remaining amino acids identified by BEB analy-
sis under positive selection are located in the B helix (27V 
and 30A), close to the DE corner, and on the E helix (52Q) 
(Figure 2a). The substitutions of histidine for a valine and 
glutamine for an alanine on the B helix from the single-
domain to the tetra-domain produce a more hydrophobic 
exposed surface of the protein in the area. In the vicin-
ity of the DE corner, the replacement of an alanine by a 
glutamine in position 52 (E5), on the contrary, creates a 
more hydrophilic surface. When using L. terrestris crystal 
structure to model the theoretical tetramer based on B. 
symmytilida D1 sequence, it becomes clear that this same 
residue (52Q) occupies a central position in the tetramer 
(Figure 3).

Nematodes
A crystal structure was already available in the PDB for 
Ascaris hemoglobin D1 (1ASH), and this was the cho-
sen template to model D2 (SWISS-MODEL server). We 
identified a single residue in domain D1 as being under 
positive selection (A11) through BEB analysis. This 
amino acid is located on the loop between helices A and 
B (Figure 2c), and points toward the core of the protein, 
suggesting that the substitution could affect the stabil-
ity of helix A. This Ala replaces an Ile and, even though 
both are hydrophobic, the latter is larger and strongly 
hydrophobic. The Ile forms closer interactions with other 
hydrophobic amino acids, in particular on helix E (Leu in 
position 66 for D2 and 69 in D1) and, to a lesser extent, 
with the end of helix G (Leu in position 119 on D1 and 
116 in D2; Figure 2c). Ile13 (in D2) and Val16 (in D1) are 
also likely to participate in this hydrophobic cluster. The 
Ala in position 11 could allow a looser interaction with 
the hydrophobic cluster located in this region, possibly 
resulting in a more flexible region of the protein.

Globin domain of blood clams
The similarity between each hemoglobin domain of B. 
reeveana and B. lima was ~91% for domain 1 and ~88% 
for domain 2 (Additional file 2: Table S1). The high level 
of identity allowed us to only use one of the two domains 
from one species to produce the 3D model. The model 



Page 7 of 14Projecto‑Garcia et al. SpringerPlus  (2015) 4:354 

of D1 from B. reeveana Hb was automatically obtained 
through the homology of the quaternary structure of the 
hemoglobin from Scapharca inaequivalvis (PDB 1SCT), 
the closest sequence with a crystal structure currently 
available. S. inaequivalis is a bivalve from the family 
Arcidae, specialized in anoxic and sulfidic environments 
(de Zwaan et al. 1995). The packing quality of the model 
(ANOLEA) and the empirical force field (GROMOS) 
were overall good (more negative energy values), includ-
ing the area were we found the residue under positive 
selection. The residue 31G, identified as being under 
positive selection by BEB analysis, is located in the cor-
ner between helices A and B (Figure 2b). This uncharged 
weak polar residue is surrounded by a strong hydrophilic 
polar cluster (Additional file 4: Figure S3).

Discussion
The basic tertiary structure of globins—the globin 
fold—is highly conserved in all domains of life (Weber 

and Vinogradov 2001). Although vertebrate circulat-
ing hemoglobins always exhibit a tetrameric structure 
involving two types of subunits (the iconic α2β2 struc-
ture), invertebrate hemoglobins have a great diversity 
of quaternary structures, from dimers to a staggering 
180-subunit assemblage (Weber and Vinogradov 2001; 
Royer et al. 2005). Despite this great structural diversity, 
all invertebrate allosteric hemoglobins possess a similar 
basic dimeric unit, termed “EF dimers” because of the 
extensive implication of amino acid residues from helices 
E and F at the interface between the two subunits (Royer 
et al. 2001). Further assembly of subunits is obtained by 
interaction of these basic EF dimers. The high level of 
conservation of the basic globin folding and inter-subu-
nit interactions allows us to make predictions about the 
role that the amino acids under positive selection could 
play. This study of three very diverse taxonomic lineages 
allowed us to test whether the predicted structural con-
straints produced similar selective response (adaptive 

Figure 2 3D models of the globins found in the different species studied, with their heme group. a The B. symmytilida model was obtained based 
on L. terrestris Hb structure; residues under positive selection are labeled in white (27V, 30A, 52Q and 65C). b The B. reveeana model is based on the 
tertiary structure of S. inaequivalis Hb; the residue under positive selection is shown (31G). c Ascaris D2 model was built based on the di‑domain, 
D1 crystal (1ash); residue under positive selection on D1 is depicted (11A), name of the residues with possible interactions with amino acid in posi‑
tion 11 are shown in grey. A comparative scenario is presented for Ascaris D1 and D2 with the interacting residues being in equivalent positions in 
the protein tertiary structure. Helices are represented in a color spectrum depicting helix A in blue all through helix H in red. Depicted residues are 
colored by element; OH: red; NH: blue: C: helix color. Heme group is shown in light grey. See “Methods” and “Results” sections for detailed information.
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structural convergence) when facing challenging envi-
ronmental conditions (in this case hypoxia). Positive 
selection could also affect the function of each domain 
differentially, leading to domains with different, special-
ized characteristics (neofunctionalization).

In all our analyses, the findings of the PAML analyses 
were not significantly supported by the REL analyses, 
although the branches identified by the former were also 
the ones exhibiting the strongest signal of episodic diver-
sifying selection in the latter type of analyses. The follow-
ing discussion is therefore centered on the PAML results. 
Although care should be taken when using dN/dS analy-
ses and BEB determination of amino acids under posi-
tive selection (Zhang et al. 2005), the identified residues 
occupy positions for which structural and/or functional 
predictions can be made (inter- and intra-subunit inter-
actions, affinity for oxygen).

Annelida: a recent and special multi‑domain Hb
Multi-domains Hbs in annelids are so far only known 
in species of the genus Branchipolynoe, that lives com-
mensally with mussels from hydrothermal vents and cold 
seeps (Hourdez et al. 1999a). These hemoglobins evolved 
recently (ca. 60 Ma ago) in this group of scaleworms, and 
were obtained by tandem duplication of a single-domain 
gene coding for a myoglobin-like protein (Projecto-Gar-
cia et  al. 2010). We detected that diversifying selection 
has impacted the primary structure of the Branchipoly-
noe Hbs domains before the duplication process, and this 
dN/dS heterogeneity was due to positive selection that 

acted in the branch corresponding to the initial duplica-
tion event. This suggests that amino acid changes were 
important for the formation of the multi-domain globin, 
for structural and/or functional reasons. The other inter-
nal branches of the domains’ phylogeny all had ω ≪  1, 
suggesting that after the positive selection at the first 
duplication event, purifying selection acted to conserve 
the modified amino acids, and that no further modifica-
tion was necessary to allow the functioning of the glo-
bin with more than two domains. Some of the terminal 
branches for B. symmytilida also display high ω values. 
This could indicate specialization of this species tetra-
domain Hb to slightly different environmental conditions. 
In the evolution of the Branchipolynoe species the Pacific 
B. symmytilida, living around vents, seems to derive from 
a cold seep ancestor, morphologically close to the Atlan-
tic B. seepensis, whose actual ‘cold seep’ intermediates 
are presently located on both parts of the Panama Isth-
mus. Alternately, there are two types of hemoglobins in 
Branchipolynoe, one forms dimers and the second trim-
ers (Hourdez et  al. 1999a). It is possible the sequences 
used here are paralogs rather than orthologs. If this is 
the case, our results could be indicative of subfunction-
alization after tetra-domain gene duplication. The BEB 
test did not detect specific amino acids under positive 
selection on the terminal branches. However, the branch-
site model and BEB analysis are probably not powerful 
enough when the number of nucleotide substitutions in 
the foreground branch is small (Nozawa et al. 2009).

Duplication events are common in eukaryote lineages, 
producing gene families, with paralogs either carrying 
on the function of the parent gene or giving rise to novel 
functions (by neofunctionalization or subfunctionaliza-
tion; Britten and Kohne 1968; Duboule and Wilkins 1998; 
Voordeckers et  al. 2012). Assuming an intracellular glo-
bin gene as the parental gene for the tetra-domain lineage 
(Projecto-Garcia et  al. 2010), the paralogs seem to have 
functions similar to that of their ancestor. Branchipolynoe 
tetra-domain globins possess high oxygen affinity and a 
low cooperativity (Hourdez et  al. 1999b), both charac-
teristics reminiscent of myoglobin function, suggesting 
that the amino acid changes affect the structure rather 
than the function of the multi-domain hemoglobin. 
Branchipolynoe extracellular hemoglobins also form mul-
timers (Hourdez et al. 1999a) while myoglobins are usu-
ally monomeric. The observed changes could then be 
related to this capacity to form oligomers.

Some of the amino acids under positive selection 
are located in the B helix (27  V and 30A), close to the 
DE corner (Figure  2a). Because of their position and 
their hydrophobicity these amino acids are likely to be 
involved in the interface between two domains. In multi-
domain proteins the residues found in interface regions 

Figure 3 Theoretical 3D model of an annelid tetramer based on 
B. symmytilida D1 sequence and the crystal structure of Lumbricus 
terrestris (1X9F). Amino acids identified as potentially under positive 
selection are highlighted. 52Q appears to be in an area where it could 
participate to the formation of an oligomer. Depicted residues are 
colored by element; OH: red; NH: blue: C: helix color. Heme group is 
shown in grey. Model constructed with Modeller (Mod9v13, Eswar 
et al. 2006).
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are mostly non-polar to allow stable interaction regions 
(Bhaskara and Srinivasan 2011) and in both positions, 
27 and 30, polar residues were substituted by non-polar 
derived amino acids, H →  V and Q →  A, respectively 
(Additional file  3: Figure S2). The glutamine in position 
52 (52Q) is in the E helix, and could be involved in the 
formation of oligomers (Figure 3), which usually involves 
the interaction of the helices E and F between subunits 
(Royer et  al. 2005). In this position the ancestral non-
polar residue, an alanine, was substituted by a glutamine, 
a polar amino acid. This could be advantageous as, based 
on the probable configuration of the multi-domain fold-
ing (Figure  3), this glutamine can establish a hydrogen 
bond with the polar serine (located early in the F helix). 
The 65C is located in the far end of the heme pocket, 
but the distance to the distal heme is too large to affect 
oxygen-binding properties. This cysteine is particularly 
interesting as it is under positive selection in some extra-
cellular globins from other annelids that live in sulfidic 
environments (Bailly et al. 2003). This amino acid, located 
at the exact same position, was thought to be involved in 
the reversible binding of sulfide in Riftia (Zal et al. 1998) 
but this mechanism of sulfide binding has since been 
challenged (Flores et al. 2005; Flores and Hourdez 2006). 
Its occurrence in a lineage of extracellular globins distinct 
from the typical HBL-Hb globins (and its absence in the 
single-domain intracellular globins) suggests that it is 
the result of convergent evolution. Its function remains 
unclear but its presence in an extracellular hemoglobin 
from a species that lives under sulfidic conditions points 
towards a possible function in protecting the heme from 
reacting with sulfide (which would form sulfhemoglobin, 
no longer capable of reversibly binding oxygen).

Nematode Hb
Nematode globins have a very rich evolutionary history 
(Blaxter 1993; Hoogewijs et  al. 2008; Hunt et  al. 2009). 
The duplication of this multi-domain Hb gene most 
likely happened in the common ancestor of Ascaris and 
Pseudoterranova, because each domain clusters together 
(Blaxter 1993). In both species the di-domain Hbs exhibit 
a high oxygen affinity, and share amino acid residues in 
the heme pocket that are thought to be responsible for 
the slow release of oxygen from the heme (Gibson et al. 
1993).

These are the highest oxygen affinities measured in ani-
mal globins, and we therefore expected to find signatures 
of positive selection in the lineage leading to the dupli-
cated nematode Hb gene. The fact that we did not find 
positive selection in the branch between the single- and 
the di-domain globins could be due to two reasons: (1) 
the time of the duplication (by unequal crossing-over) is 
estimated to be 245 Ma in P. decipiens (Dixon et al.1992) 

(and we can assume the same time for A. suum Hb gene 
duplication based on their orthology), a time probably 
sufficient to erase signatures of selection because of the 
accumulation of synonymous substitutions (Yang 2008); 
and (2) the fact that the residues (B10Y and E7Q) that are 
thought to be responsible for the high oxygen affinity in 
the di-domains (De Baere et al. 1994) are also present in 
the myoglobin of A. suum (Blaxter et  al. 1994), used in 
these study as an outgroup for our topology. However, 
Blaxter et al. (1994) suggest that these residues may not 
be the only requirement for high oxygen affinity, other 
amino acids possibly affecting the distance between 
the B10Y residue and the di-oxygen bound to the heme 
might be also responsible.

As in annelids, it seems that the amino acid we iden-
tified as being under positive selection more likely has a 
structural rather than functional effect. The residue 11A 
could be responsible for a greater flexibility of the pro-
tein, in particular by affecting the stability of the E-helix. 
This amino acid could indeed form weaker hydrophobic 
bonds with residues on the A–B corner and the E-helix. 
This could also be important during O2 association/dis-
sociation processes and, according to Kloek (1993), D1 
does exhibit a faster O2 dissociation rate than D2.

It is possible that the most important difference 
between a single-domain and a di-domain Hb, in Ascaris, 
is the fact that the di-domain Hb can form octamers 
(Darawshe et  al. 1987; De Baere et  al. 1992). In Ascaris 
lumbricoides, the octameric structure is obtained by the 
interaction of a highly charged C-terminus tail that acts 
as an intra-molecular chaperone, and the interaction 
is then stabilized by interactions between globin folds, 
especially by the leucine residue in position 15 (Minning 
and Goldberg 1998).

Molluskan Hbs
Mollusks have remarkable multi-domain Hbs. Not 
only are their genes made of more that one domain, 
the number of repeats of these domains is of a magni-
tude only found in other protein families in vertebrates 
(Björklund et al. 2005). The di-domain Hb from Barba-
tia did not reach a spectacular state of duplication, it 
is, however, an intracellular Hb, and in this category its 
molecular weight (~430 kDa, result of ~35 kDa subunits 
assemblage in dodecamers) remains unrivaled (Grin-
ich and Terwilliger 1980; Grinich et  al. 1986). The D1 
lineage from Barbatia exhibits a ω greater than 1, in 
sharp contrast with the D2 lineage with an ω ~ 0, high-
lighting structural (and possibly functional) changes 
on D1, while D2 experiences slight purifying selection 
(ω = 0.354). The residue 31G (AB corner) was identified 
as being under positive selection in the D1 lineage. This 
corner, in particular, is extensively involved in contacts 
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used to assemble the dimers of HbII into tetramers in 
Scapharca, another arcid clam (Royer et  al. 1995). In 
Barbatia, it is mainly a hydrophilic region (Additional 
file  4: Figure S3): the residue occupying this position 
is a glycine (weakly polar) in D1 and a lysine (polar) in 
D2. The very different size of the side chains is likely to 
affect the oligomerization of these subunits, and glycine 
would probably have a stabilizing effect in this inter-
action region through its lower hydrophilic charac-
ter. Lysine in this position is found not only in the D2 
of B. lima and B. reveeana, but also with the outgroup 
sequences, Hb δ from B. lima and HbII from B. vires-
cens, supporting its importance in comparison with the 
same site in D1. The presence of a short interdomain 
peptide (termed ‘linker’) in Barbatia (Naito et al. 1991) 
may also allow a greater flexibility between the two 
domains, and thereby relax the pressure that the too-
close setting of the tandem duplication represents. Only 
the crystallization of the native 430 kDa component of 
Barbatia hemoglobin or its 220 kDa dissociation prod-
uct (Grinich and Terwilliger 1980) could shed light of 
the amino acids involved in actual interactions, and the 
potential effect of the linker.

Conclusion
Multi‑domain proteins: selection and folding
Our analyses on all three datasets of multi-domain pro-
teins showed that most amino acid positions are under 
moderate purifying selection (ω  <  1), some appear to 
behave neutrally (ω = 1), and very few have been under 
positive selection. These latter however seem to be 
mainly located in positions where they can affect the 
structure rather than the function of the proteins.

Based on genome comparisons (from prokaryotes 
and eukaryotes), it seems that the occurrence of a sin-
gle duplication event is much more common (giving 
rise to di-domains) in protein genes than several dupli-
cation events (Apic et  al. 2001; Björklund et  al. 2005), 
except for protein genes that were already multi-domain. 
In this case the replication of several domains at once is 
usually the norm, producing domain repeats (Björklund 
et  al. 2005). As for other metazoans, the domain dupli-
cation in Branchipolynoe could be an internal response 
to a specific environmental constraint (Apic et  al. 
2001). In Branchipolynoe’s case, the low levels of oxy-
gen (hypoxia) that result from the mixing of the anoxic 
hydrothermal vent fluid with the deep-sea water could 
be the environmental constraint that favored the appear-
ance of the multi-domain hemoglobin (Hourdez et  al. 
1999b). Hypoxia may also be the constraint responsi-
ble for the multi-domain hemoglobin evolution for the 
two other taxa: the two nematodes are gut parasites 

of vertebrates, and the bivalve is found in low oxygen 
marine environments.

All the discussed multi-domain Hbs have different evo-
lutionary single-domain points of origin, the first dupli-
cation occurred at very different times: estimated to be 
about 245 Ma ago for the nematodes (Dixon et al. 1992), 
before the speciation process that led to the emergence 
of Barbatia species about 165 Ma ago (Plazzi and Passa-
monti 2010, and less than 60 Ma ago for Branchipolynoe, 
as the duplication event occurred after the scale-worm 
radiation (Projecto-Garcia et al. 2010). This will undoubt-
edly have a profound blurring effect on the signal of 
selective pressures in the deeper branches of the gene 
phylogenies, as more synonymous substitutions will have 
accumulated in the older lineages and the positive selec-
tion signal attenuated.

The proper folding of multi-domain proteins (and in 
particular tandem duplicated ones) can be problematic if 
the contact areas are not sufficiently different (Han et al. 
2007). As a result, contact areas in multi-domain proteins 
usually consist of less similar domains (Han et al. 2007). 
The residues in Branchipolynoe Hb, near the DE corner, 
in the B and E helices are serious candidates to achieve a 
proper folding of the tetra-domain Hb, as well as polym-
erization to form the dimers and trimers of tetra-domain 
globins found in Branchipolynoe (Hourdez et al. 1999a). 
To date, there are no known interactions of these Hbs 
with other proteins and the observed changes are unlikely 
to correspond to intermolecular coevolution. However, 
this possibility cannot be ignored for other multi-domain 
proteins.

In invertebrate multi-domain globins, the polymeriza-
tion and cooperativity depend mostly on the E–F dimer 
structure (interactions between E and F helices from dif-
ferent subunits) (Royer et  al. 2001; Riggs 1998). Bigger 
structures, opposed to a myoglobin or single-domain Hb, 
may be important to avoid their accidental elimination or 
to maintain a low oncotic pressure while increasing oxy-
gen carrying capacity.

Support of predictive models of interdomain interactions
These observations raise the interesting possibility that 
this approach could be used as a method that points 
towards amino acids found at the interface between 
two domains of a protein. In particular, it could be used 
in support of predictive models for intermolecular con-
tacts. It is indeed sometimes difficult to obtain crystals 
of multidomain proteins, and research must rely on iso-
lated domains structures. The approach we used could be 
used in virtually all mutidomain proteins, and help iden-
tify interaction areas if these are not known from crystal 
structures.
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Methods
Sequence retrieval
Multi-domain globin sequences for mollusks, annelids, 
and nematodes were retrieved from Genbank. The selec-
tion criteria for the Hb sequences were to find a phylo-
genetic group where one could find a multi-domain Hb, 
and that has a single-domain globin (or a closely related 
taxon with this single-domain globin) for comparison. 
For arthropods, as well as for some mollusks, this was not 
possible. As a result, we only used globin sequences from 
Barbatia reveeana (M73328), B. lima (delta chain Hb: 
D63932, alpha chain Hb: D63933, beta chain Hb: D63934, 
di-domain Hb: D58417), B. virescens (chain II Hb: 
D58416). Although sequences for the snail Biomphalaria 
glabrata are available, a reconstruction of the phylogeny 
of the 13 globin domains yielded very low confidence val-
ues for most of the deep branches (data not shown). This 
could greatly affect our confidence in the reconstruc-
tion of ancestral sequences, and this dataset was there-
fore cast aside. For nematodes: we retrieved sequences 
from Ascaris suum (myoglobin: U17337, di-domain Hb: 
L03351), Pseudoterranova decipiens (di-domain Hb: 
M63298) and the single-domain globins from Caeno-
rhabditis elegans (Z18264) and Trichostrongylus colubri-
formis (M63263). For annelids we used sequences from 
two species of the scale-worm genus Branchipolynoe; 
B. symmytilida and B. seepensis (tetra-domain globins 
GQ360749–GQ360756, and their single-domain globins 
GQ360757–GQ360758, respectively).

Phylogenetic analyses
For all sequence datasets, multiple nucleotide and amino 
acid sequence alignments were performed with the mul-
tiple sequence alignment algorithm MUSCLE (Edgar 
2004, part of software Geneious Pro 5.3.6, created by Bio-
matters). During sequence alignment optimization, we 
aimed at minimizing the number of indels, and because 
we were dealing with coding sequences, the nucleotide 
alignment was constrained by the amino acid sequences 
alignment. Although the number of sequences was small 
in each taxonomic group, we compared the alignments 
obtained with MUSCLE and submitted the raw amino 
acid sequences to the GUIDANCE filter (Penn et  al. 
2010), using the alignment algorithm MAFFT (Katoh 
et al. 2005). MUSCLE and MAFFT produced very similar 
outputs and we therefore chose the alignments produced 
by the former (Additional file  1: Figure S1, Additional 
file 3: Figure S2, Additional file 4: Figure S3). GUIDANCE 
provided us alignment scores and regions of the align-
ments that were not well supported (Additional file  1: 
Figure S1, Additional file  3: Figure S2, Additional file  4: 

Figure S3). These regions were removed from further cal-
culations in the PAML software.

Tree topologies
For each group of invertebrate we aimed at testing the 
evolutionary mechanism underlying the transition from 
single- to multi-domain proteins. Although phylogenies 
including the sequences we studied have been published 
earlier (Barbatia: Suzuki et  al. 1996, nematodes: Blax-
ter et  al. 1994), these often included numerous other 
sequences. Our topologies only included the orthologs 
of the multi-domain Hb from each group and, for com-
parison, the nearest single-domain globin sequence avail-
able for one of the genera that had a multi-domain Hb. 
Working topologies were generated by maximum likeli-
hood (1,000 bootstrap replications), using MEGA 5 (Nei 
and Kumar 2000; Tamura et al. 2011) for each of the lim-
ited datasets. The best substitution model for each data-
set was determined beforehand with jModelTest (Posada 
2008) and in all cases the GTR model was selected.

Analyses of selection regimes
The determination of the selection regimes that acted 
in the evolution of the multi-domain globins was per-
formed by maximum likelihood analyses on the coding 
sequences, using the software PAML 4.7 (Yang 1997, 
2007). These analyses were also performed with the 
MEME and REL methods (Murrell et  al. 2012), imple-
mented on the Datamonkey.org webserver, to confirm 
the identification of the sites under selection. Only the 
PAML method is detailed here, but the methods in Data-
monkey also use maximum likelihood algorithms.

The PAML approach uses the codon model of substi-
tutions developed by Goldman and Yang (1994) imple-
mented in Codeml (Nielsen and Yang 1998; Yang 1998; 
Yang and Nielsen 2002). When using codeml, we chose 
the mode ‘clean data =  1’ allowing us to remove all the 
sites with ambiguous characters and alignment gaps 
(Yang 1997).

Unrooted tree topologies were used with the condition 
that single-domain globins or myoglobins form a recip-
rocal monophyly with respect to the multi-domain glo-
bin sequences. At first two branch models, a ‘one-ratio’ 
and a ‘free-ratio’ models, were compared with a likeli-
hood ratio test (LRT), to test whether ω was homoge-
nous among all lineages (H0 =  ‘one-ratio’ model best fits 
the data, H1 =  ‘free-ratio’ model best fits the data). The 
LRT is expected to have a χ2 distribution, and the result 
can then be evaluated in a χ2 table, with the number of 
degrees of freedom equal to the difference in the number 
of parameters between the models (Yang 1998). When H0 
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was rejected (i.e. ω not homogenous amongst lineages), 
we used a branch-site model (Yang and Nielsen 2002; 
Zhang et al. 2005), where ω can vary among codon sites 
in a foreground lineage when compared to the whole tree 
(background sites), allowing the identification of amino 
acid sites under positive selection in that specific branch 
(Yang and Nielsen 2002). H0 then corresponds to the fit-
ting of the dataset to a nearly-neutral evolution model 
(M1a in which ω can be classified into 2 classes: 0 < ω < 1 
or ω = 1), and H1 to the fitting to a model that assumes 
positive selection among sites of the foreground lineage 
(Model A (MA) in which ω can be classified into 3 classes: 
0 < ω < 1, ω = 1 and ω > 1). These two models were com-
pared by LRT and when the MA best fitted the data, we 
proceeded to one additional comparison; between MA 
and MAω=1 (where ω is forced to be 1 in the third class) 
to distinguish relaxed selective constraints from posi-
tive selection (Yang and Nielsen 2002; Wong et al. 2004). 
When this LRT was significant, suggesting the presence of 
sites under positive selection, the identification of these 
sites was done by Bayesian analysis, and only sites with 
a posterior probability greater than 95% were conserved 
(Yang 2008). We used the Bayes Empirical Bayes (BEB) 
analysis preformed by the Codeml package. That method 
accounts for the sampling errors in maximum likelihood 
estimates of model parameters (compared to the Naive 
Empirical Bayes analysis), which could be important in 
small datasets like ours (Yang et al. 2005).

Sequence‑based protein 3D modeling
The 3D protein models were obtained through the auto-
mated protein structure homology-modeling server 
SWISS-MODEL (Arnold et  al. 2006; Kiefer et  al. 2009; 
Peitsch 1995). The quality of the models was assessed 
through the values of the atomic empirical mean force 
potential or packing quality of the model (ANOLEA, 
Melo and Feytmans 1998) and the empirical force field 
(GROMOS, Eisenberg et  al. 1997). These tools measure 
the goodness of fit between the quaternary structure of 
the amino acid sequence of interest and the crystal refer-
ence used as template. In both cases the more negative 
the energy values, the more favorable the energy environ-
ment. A QMEAN (Benkert et al. 2008) was also used to 
judge the fitness of the model. This mean is a composite 
scoring function that accounts at least for the error of res-
idue allocation, comparison with other known 3D mod-
els and hypothetical performance of the model through 
X-ray analyses (cf. SWISS-PROT website). MacPyMOL 
(PyMol Version 1.3 2010) was used to visualize and edit 
the produced model, in particular to highlight amino acid 
residues of interest.
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Additional files

Additional file 1: Figure S1. Alignment of the single‑domain and the 
di‑domain globin sequences from the two nematode species. Overall 
sequence identity (red = low identity, green = high identity, the height of 
blocks is proportional to the percentage of identity) is represented above 
the sequences. Please refer to the legend in Figure 1 for the color codes 
in nucleotide identity and residue hydrophobicity. These sequences were 
generated from mRNA and for this reason exon limits are not depicted. 
Alignments were obtained by MUSCLE and submitted to the GUIDANCE 
filter (more details in the “Methods” section). The regions of the alignments 
that were not well supported by the filter were removed (shaded areas) 
from further phylogenetic analyses. Asuum: Ascaris suum, Pdec: Pseudoter-
ranova decipiens, Mg: myoglobin, D: domain. 

Additional file 2: Table S1. Identity between orthologs domains 
(amino acid sequences) from the three analyzed groups of multidomain 
invertebrate Hbs.

Additional file 3: Figure S2. Alignment of the single and tetra‑domain 
globin sequences from the two Polynoidae species. The initial methionine 
was removed. Overall sequence identity (red = low identity, green = high 
identity, the height of blocks is proportional to the percentage of identity) 
is represented above the sequences. The limits of the exons are indicated 
by the grey bars. Alignments were obtained by MUSCLE and submitted to 
the GUIDANCE filter (more details in the “Methods” section). The regions of 
the alignments that were not well supported by the filter were removed 
(shaded areas) from further phylogenetic analyses. Bsy: Branchipolynoe 
symmytilida, Bse: B. seepensis, D: domain, SD: single‑domain.

Additional file 4: Figure S3. Alignment of the single‑domain and the 
di‑domain globin sequences from the mollusk species. Overall sequence 
identity (red = low identity, green = high identity, the height of blocks 
is proportional to the percentage of identity) is represented above the 
sequences. Please refer to the legend in Figure 1 for the color codes in 
nucleotide identity and residue hydrophobicity. These sequences were 
generated from mRNA and for this reason exon limits are not depicted. 
Alignments were obtained by MUSCLE and submitted to the GUIDANCE 
filter (more details in the “Methods” section). The regions of the alignments 
that were not well supported by the filter were removed (shaded areas) 
from further phylogenetic analyses. Bvire: Barbatia virecens, Blima: Barbatia 
lima, Brev: B. reveeana, Hb: hemoglobin, D: domain.
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