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A star is a graph in which some node is incident with every edge of the graph, i.e. a
graph of diameter at most 2. A star forest is a graph in which each connected component

is a star. Given a connected graph G in which the edges may be weighted positively. A

spanning star forest of G is a subgraph of G which is a star forest spanning the nodes of
G. The size of a spanning star forest F of G is defined to be the number of edges of F if

G is unweighted and the total weight of all edges of F if G is weighted. We are interested
in the problem of finding a Maximum Weight spanning Star Forest (MWSFP) in G. In

[7], the authors introduced the MWSFP and proved its NP-hardness. They also gave a

polynomial time algorithm for the MWSF problem when G is a tree.
In this paper, we present a linear time algorithm that solves the MSWF problem when

G is a cactus.
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1. Introduction

A star is a graph in which some node is incident with every edge of the graph, i.e.

a graph of diameter at most 2. In particular, an isolated node is also a star. A star

in G is a multiple-node star if it is not an isolated node. For a given multiple-node

star, we designate the center of the star as the node of degree strictly grater than

1 or any of the nodes if the star is an edge. A node in a multiple-node star which is

not the center is a leaf. A star forest is a graph in which each connected component

is a star. Given a connected graph G in which the edges may be weighted positively.

A spanning star forest of G is a subgraph of G which is a star forest spanning the

nodes of G. Note that a spanning star forest can contain isolated nodes. The size

of a spanning star forest F of G is defined to be the number of edges of F if G is

unweighted and the total weight of all edges of F if G is weighted. We are interested

in the problem of finding a maximum weight spanning star forest in G. As we can
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take isolated nodes, any maximum weight star forest can be extended without ad-

ditional weight to a spanning star forest. Hence, without loss of generality, we shall

focus on the problem of finding a Maximum Weight Star Forest (MWSFP) in G.

The MWSFP is NP -hard already for the case G is unweighted. In fact, in this case,

since G is connected, there always exists a maximum size spanning star forest F

of G that does not contain isolated nodes. A dominating set of a graph is a subset

of the nodes such that every other node is adjacent to a node in the dominating

set. Observe that in a maximum star forest which does not contain isolated nodes,

each node is either a center or adjacent to a center. Hence the set of centers form a

dominating set of the graph. Therefore, the size of the maximum star forest is the

number of nodes minus the size of the minimum dominating set. Computing the

maximum star forest of a graph is NP -hard because computing the minimum dom-

inating set is NP -hard. The spanning star forest problem has found applications

in computational biology. Nguyen et al. [7] use the spanning star forest problem to

give an algorithm for the problem of aligning multiple genomic sequences, which

is a basic bioinformatics task in comparative genomics. The spanning star forest

problem and its directed version have found applications in the comparison of phy-

logenetic trees [5] and the diversity problem in the automobile industry [1].

The unweighted version of MWSFP has been investigated intensively in recent years.

Nguyen et al. [7] prove that the problem is APX-hard by presenting an explicit inap-

proximability bound of 259/260 and present a combinatorial 0.6-approximation al-

gorithm. Optimal polynomial-time algorithms are presented for special graph classes

such as planar graphs and trees. Chen et al. [4] present a better algorithm with ap-

proximation ratio 0.71. Later, Athanassopoulos et al. [2] improve this approximation

ratio to 0.803 by using the fact that the problem is a special case of complemen-

tary set cover . Interesting generalizations include node-weighted and edge-weighted

versions of SSF. [7] and [4] present approximation algorithms and APX-hardness

results for these problems as well. Stronger inapproximability results for these prob-

lems recently appeared in [6] and [3].

Contrary to the unweighted version, the only work on the general weighted version

of MWSFP (that we will call shortly the MWSFP from now on) is the paper of

Nguyen et al. [7]. The authors prove that one can solve the MWSFP in linear time

when G is a tree. Based on this results, they design a simple 1
2 -approximation al-

gorithm for MWSFP for the general case.

In this paper, we present a linear time algorithm that solves the MSWF problem

when G is a cactus. The algorithm is a combination of the idea about the values to

be computed at each node of the algorithm for trees in [7] and our idea to establish

an order over the nodes in which one can simulate the construction of any star

forest and to use longest paths computation in acyclic directed graphs for handling

the cycles.



March 17, 2015 10:4 WSPC/INSTRUCTION FILE submit˙dmaa

The maximum weight spanning star forest problem on cactus graphs 3

2. Linear time algorithm for MWSFP when G is a cactus

In this section, G = (V,E) is a cactus in which the edges are weighted by a vector

c ∈ RE+. A cut node in G is a node whose deletion makes G disconnect. A pendant

node is a node degree 1 in G. A block of a graph is a maximal connected subgraph

of G that has no cut-node. As G is cactus, every block in G is a simple cycle or a

single edge.

2.1. Building a tree of cut nodes, pendant nodes and cycles

The first step of the algorithm is to build a tree τ whose (pseudo)-nodes (we call

them pseudo-nodes in order to distinguish with the nodes in G) correspond to

the cut nodes, the pendant nodes and the cycles in G. We will use the algorithm

specified in [8] for detecting the blocks of G to build τ . The algorithm which runs in

O(|E|), builds a depth-first search tree T of G and discards portions of T as blocks

are identified. Each time a block B of G together with its highest ancestor node w

with respect to T are detected by the algorithm, we create the correspondences of

B and w in τ as follows.

• if B is an edge vw then let us create two singleton pseudo-nodes v and w

in τ with w is the father of v in τ ,

• otherwise, i.e. B is a cycle. Then we create one cycle pseudo-node B and

one singleton pseudo-node w in τ where w is the father of B. Let us set w

as the root node of B. Moreover, for each cut node v in B, let us set B as

the father of v in τ (as T is a depth-first tree, the pseudo node v has been

already in τ but its father have not been determined yet).
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The cut node 2 is removed from τ since it has only one child B2.
B2, B5 and B6 are the cycle pseudo-nodes of τThe graph G

A tree τ for the cycles, pendant and cut nodes of G

Fig. 1. A cactus graph G, one of its tree τ and a subgraph induced from a pseudo-node in τ and
its descendants.
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At the end of the above construction, for each singleton pseudo-node w in τ which

has only one son and the latter is a cycle pseudo-node B, remove w and link the

node B to the the father of w in τ (see Figure 1 for an example of τ). It is easy

to see that these additional works do not change the linear time complexity of the

algorithm in [8].

Let N be a pseudo node in τ , let uN ∈ V be

• the root node of N if N is a cycle pseudo-node in τ ,

• the node N itself, otherwise.

Let HN be the subgraph of G induced by the nodes in G corresponding to the

subtree rooted in N of τ (see Figure 1 for an example). For each pseudo-node N ,

we compute three values:

• Φ(N): The maximum weight of a spanning star forest of HN in which uN
is a center of a multiple-node star.

• Ψ(N): The maximum weight of a spanning star forest of HN in which uN
is a leaf of a multiple-node star.

• Ω(N): The maximum weight of a spanning star forest of HN in which uN
is an isolated node.

We call these values, the elementary values associated to N .

2.2. N is a singleton pseudo-node in τ

Suppose that N corresponds to a node w in G. Let CS(N) be the subset of the

children of N in τ which are singleton pseudo-node. Let CC(N) be the subset of

the children of n in τ which are cycle pseudo-node. For each singleton pseudo-node

v ∈ CS(N), we define a cost c(N, v) which is equal to the cost cwv of the edge

vw ∈ E. We now specify how to compute the values of Φ(N), Ψ(N) and Ω(N)

provided that those of the descendants of N have been computed. Before this, let

us note that there may be some confusion between Φ(N) and Ψ(N). Indeed, when

the star forest contains a star which is exactly some edge wv with v ∈ HN then one

may consider this as a multiple-node star centered either at w or at v. Thus this

case is considered two times, one in the computation of Φ(N) and the other in the

computation of Ψ(N). To avoid this, we consider that this type of star is always

centered at the father with respect to τ , hence at w as it happens. We have the

following proposition which is partly inspired from [7].
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Proposition 2.1. If N is a singleton pseudo-node, we have

Ω(N) =
∑

B∈CC(N)

Ω(B) +
∑

v∈CS(N)

max{Φ(v),Ψ(v),Ω(v)},

Ψ(N) = max[ max
B∈CC(N)

(Ψ(B) +
∑

B′∈CC(N)\{B}

Ω(B′) +
∑

v∈CS(N)

max{Φ(x),Ψ(x),Ω(x)}),

max
v∈CS(N)

(c(N, v) + Φ(v) +
∑

B∈CC(N)

Ω(B) +
∑

x∈CS(N)\{v}

max{Φ(x),Ψ(x),Ω(x)})],

Φ(N) = max[ max
B∈CC(N)

(Φ(B) +
∑

B′∈CC(N)\B

max(Φ(B′),Ω(B′)) +
∑

v∈CS(N)

∆(v)),

∑
B∈CC(N)

Ω(B) +
∑

v∈CS(N)

∆(v)− min
v∈CS(N)

(∆(v)− Ω(v)− c(N, v))],

where ∆(v) = max{Φ(v),Ψ(v),Ω(v) + c(N, v)}.

Proof. We can see easily the validity of the formulas for Ω(N). A maximum weight

star forest in HN where N is an isolated node is composed by maximum weight star

forests in HB where uB (note that uB = N) is an isolated node for all B ∈ CC(N)

plus maximum weight star forests in Hv for all v ∈ CS(N) (note that v 6= N).

The formula for Ψ(N) takes into account two possible cases:

• N is a leaf of a star centered at a node in HB for some cycle B with N as

root node,

• N is a leaf of a star centered at a cut node v. In this case, one must include

the edge Nv in the star forest.

We can see that there are two possible cases for a star centered at N :

• there exists a cycle B in CC(N) such that there is a (sub)star centered at

uB = N in HB ,

• otherwise, i.e. there exists a v ∈ CS(N) such that the star contains the

edge Nv.

The two cases are considered respectively in first and second parts of the formula

for Φ(N). Note that for the second case, one can remark that the star forest in HN

corresponding to the value Φ(N) contains necessarily the edge uNv and the subset

of edges associated to Ω(v) for v = argminv∈C(N)(∆(v)− Ω(v)− c(N, v)).

By a careful implementation of these formulas, we can compute these values in

O(|CC(N)|+ |CS(N)|).

When computing each of the three above values, we also keep in memory a subset

of edges associated with them which is the union of the subset of edges associated

with the elementary values (of the children) and possibly the edge Nv for some

v ∈ C(N) if these elementary values and c(N, v) involves in the exact computation

of the value in question.
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2.3. N is a cycle pseudo-node in τ

Let us consider the case when N is a cycle pseudo-node. Let C denote the cycle

in G corresponding to N and the nodes in C are numbered from 1 to n with

n = uN , the root node of N . For each node i 6= n in C, if i is a cut node, i.e.

i is in τ , we have computed the values Φ(i), Ψ(i) and Ω(i). Otherwise, let us set

Φ(i) = Ψ(i) = Ω(i) = 0. Let ei with ci as weight denote the edge between the node

i and the node i+1 for i = 1, . . . , n−1. In particular, the edge en with cn as weight

denotes the edge between n and 1. For a node i ∈ C \ {n}, let H1,i be the subgraph

induced by the nodes 1, . . . ,i and their descendants. For the node n, let H1,n be the

subgraph induced by the nodes 1, . . . ,n and their descendants except the edge en.

We build a graph G′C from C as follows. For every i ∈ C, we create in G′C three

nodes i0, i1 and i2 called the clones of i. The indexes in these nodes simulates the

possible choices for any star forest S provided that the part of this star forest in the

subgraph of G induced by the descendants of B has been determined. We check the

edges of C in the order e1, e2, . . . , en−1 (the edge en will be considered later) and

examine all the possibilities of include or do not include each of them in S. We can

see that by this order of choices, the choice of including or not ei−1 in S depend

on the choices already done for the subgraph H1,i−1 and on the fact that i is an

isolated node, a center or a leaf in S ∩H1,i. Hence, the clone i0 represents the cases

in which i is an isolated node in S ∩H1,i . The clone i1 represents the case when i

is a center of a multiple-node star in S ∩H1,i. At last, the clone i2 represents the

case when i is a leaf of a multiple-node star in S ∩H1,i. Note that when i belong to

a star in S ∩H1,i which is an edge ik where k is a descendant of i or the node i− 1,

we consider that i is always the center and k is the leaf. Hence, more precisely, the

clone i2 represents the case when i is a leaf of a multiple-node star which has at

least two leaves in S ∩H1,i. The arcs in G′C are created as follows: for the clones of

every node 2 ≤ i ≤ n in G,

• we create three arcs ((i− 1)0, (i)0), ((i− 1)1, (i)0), ((i− 1)2, (i)0) with cost

Ω(i). This represents the cases when i is an isolated node in S ∩H1,i.

• we create an arc ((i − 1)0, i1) with cost ci−1 + max(Φ(i),Ω(i)). This rep-

resents the cases when i − 1 is an isolated in S ∩H1,i−1 and i is a center

of a star containing the edge ei−1 in S ∩ H1,i. We create also two arcs

((i − 1)1, i1) and ((i − 1)2, (i)1) with cost Φ(i). This represents the cases

when i is a center of a star not containing the edge ei−1 in S ∩H1,i. Since

we look for a maximum weight star forest, in these cases, (i − 1) can not

be an isolated node in S ∩H1,i−1 (since ei−1 should be in S otherwise).

• an arc ((i − 1)1, i2) with cost ci−1 + Ω(i). This represents the cases when

i is a leaf of a star in S ∩ H1,i whose center is i − 1. We create also two

arcs ((i − 1)0, i2) and ((i − 1)1, (i)2) ((i − 1)2, (i)2) with cost Ψ(i). This

represents the cases when i is a leaf of a star in S ∩ H1,i which does not

contain the edge ei−1.
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Remark 2.2. The graph G′C is acyclic and the number of nodes and edges in G′C
is O(|C|).

In G′C , we compute the costs Cpq of the nine longest paths (in term of cost c) from

1p to nq respectively for p, q = 0, 1, 2. By Remark 2.2, these computations can be

done in O(|C|).
Let H be the subgraph of G induced by the node 1 without its descendants and

all the nodes 2, 3, . . . , n and their descendants, except the edge en. Let H1 be the

subgraph induced by the descendants of 1.

Lemma 2.3. Given any maximum star forest S of G, Cpq is the maximum cost

that S can take in H under the hypothesis that

H1 If p = 0, the node 1 is an isolated node in H1 ∩ S. If p = 1 the node 1 is an

center of a star in H1∩S. If p = 2, the node 1 is a leaf of a star in H1∩S.
H2 If q = 0 then the node n is an isolated node in H ∩S. If q = 1 the node n is an

center of a star in H ∩ S. If q = 2, the node n is a leaf of a star in H ∩ S.

Proof. The graph G′C is built to simulate the construction of a star forest S in H

under the hypothesis that the values Ω(i), Φ(i) and Ψ(i) are known for all 1 ≤ i ≤ n.

We decide which edges in C will belong to S. Precisely, for the moment, we want

to decide which edges in C except en will belong to S. The arcs from (i − 1)p to

iq simulate all the possibilities of taking or not the edge ei into S in the order of

e1, e2, . . . , en−1. Thus there is an one-one correspondence between any star forest S

in H and a path from 1p to nq in G′C . For example, if the cost of an arc chosen is one

of the values Ω(i+ 1), Φ(i+ 1) and Ψ(i+ 1) then the arc ei will not be included in

S and on the contrary, the star forest in the subgraph induced by the descendants

of (i+ 1) having the same value is included in S. If the cost of the arc is ci + one

of the values Ω(i + 1) and Φ(i + 1) then the arc ei will be included in S and the

star forest in the subgraph induced by the descendants of (i + 1) having the same

value is also included in S. It is thus obvious that the longest path correspond to

the maximum star forest.

It remains now to include the choices for en and the elementary values Φ(1),

Ψ(1) and Ω(1) in the computation for Ω(B), Φ(B) and Ψ(B), the elementary values

associated with the pseudo-node B in τ .

Proposition 2.4.

Ω(B) = max(C00 + Ω(1), C10 + Φ(1), C20 + Ψ(1)),

Φ(B) = max(C01 + Ω(1), C11 + Φ(1), C21 + Ψ(1), C00 + cn + Ω(1), C01 + cn + Ω(1)

Ψ(B) = max(C02 + Ω(1), C12 + Φ(1), C22 + Ψ(1), C10 + cn + Φ(1))
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Proof. Let HB be the subgraph induced by B and its descendants. The value of

the maximum star forest in HB in which uB is an isolated node is Ω(B). Such a

star forest in HB is clearly composed by a star forest in H (defined before Lemma

2.3) containing no edge incident to the node n and and an appropriate edge subset

associated with one of the elementary values Ω(1), Φ(1) and Ψ(1). Hence, by Lemma

2.3 the value of this star forest is represented by one of the values of a path from

a node 1p with p = 0, 1, 2 to the destination n0 + an appropriate value taken from

the values Ω(1), Φ(1) and Ψ(1). Hence, this justifies the formula:

Ω(B) = max(C00 + Ω(1), C10 + Φ(1), C20 + Ψ(1)),

Note that in this formula, the edge en is not included in the star forest, this guar-

antees that uB is an isolated node.

The value of the maximum star forest in HB in which uB is a center of a multiple-

node star is Φ(B). Any star forest in HB in which uB is a center of a multiple-node

star is represented by one of the following cases:

• the multiple-node star does not contain en. The value of such a star is the

value of a path from a node 1p with p = 0, 1, 2 to the destination n1 (see

Lemma 2.3)+ an appropriate value taken from the values Ω(1), Φ(1).

• the multiple-node star contains en. The value of such a star by the value

of a path from the node 10 to the destination n0 or n1 (see Lemma 2.3) +

Ω(1)+ cn.

Hence, we have Φ(B) = max(C01+Ω(1), C11+Φ(1), C21+Ψ(1), C00+cn+Ω(1), C01+

cn + Ω(1)). The value of the maximum star forest in HB in which uB is a leaf of

multiple-node star is Ψ(uB). Any star forest of this type is clearly represented by

• either the value a path from a node 1p with p = 0, 1, 2 to the destination n2
(see Lemma 2.3) + an appropriate value taken from the values Ω(1), Φ(1),

and Ψ(1).

• or the value of a path from a node 11 to n0 (see Lemma 2.3) + Φ(1) + cn.

Hence, we have Ψ(B) = max(C02 + Ω(1), C12 + Φ(1), C22 + Ψ(1), C10 + cn + Φ(1)).

The subset associated with each elementary value is the union of the edges of

the cycle C taken by the longest path and the subsets of edges associated with the

elementary values involving in the exact computation of the elementary value in

question.

2.4. Algorithm

We are now ready to state the algorithm.

Step 1. Building the tree τ as specified in Section 2.1. Set r be the root pseudo-

node of τ .
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Step 2. Evaluate the elementary values Φ(v), Ψ(v) and Ω(v) for all pseudo-nodes

v ∈ τ in left-right and bottom-up order. If the current pseudo-node v cor-

respond to a singleton in G, evaluate the elementary values as specified

in Section 2.2. Otherwise, i.e. v correspond to a cycle in G, evaluate the

elementary values as specified in Section 2.3. In all the cases, memorize the

selected edges.

Step 3. Set S ← max{Φ(r),Ψ(r),Ω(r)} and output the subset of edges as associ-

ated with S as the maximum star forest.

Theorem 2.5. The algorithm gives a maximum weight star forest in O(|E|) time

when G is a cactus.

Proof. Propositions 2.1 and 2.4 show the validity of the elementary values

Φ(r),Ψ(r),Ω(r). Since any star forest in G can be reconstructed by a simula-

tion (represented maximally by the elementary values) in the pseudo-nodes of

τ in some left-right and bottom-up mode with respect to the root r, by taking

S ← max{Φ(r),Ψ(r),Ω(r)}, the algorithm output a maximum weight star forest.

As we explain above, Step 1. could be performed in O(|E|) time. The computa-

tion time of the elementary values associated to each pseudo-node B in τ is either

O(|CC(B)|+ |CS(B)|) if the pseudo-node is a singleton and O(|C|) if B is a cycle

C. Hence, overall the time complexity of the algorithm is O(|E|).

Concluding remarks

We have presented a linear time algorithm for the maximum weight star forest for

cactus graphs. This was made possible by establishing an order over the nodes in

which one can simulate the construction of any star forest. One may hope to extend

the algorithm in this paper for graphs which owns a certain natural order on the

nodes, e.g. triangulated graphs.
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