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Abstract

We provide a pedagogical introduction to the two main variants of real-space quantum Monte
Carlo methods for electronic-structure calculations: variational Monte Carlo (VMC) and dif-
fusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth
the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate
wave function, discussing details important for applications to electronic systems. We also re-
view in detail the more sophisticated DMC algorithm within the fixed-node approximation,
introduced to avoid the infamous Fermionic sign problem, which allows one to sample a more
accurate approximation to the ground-state wave function. Throughout this review, we discuss
the statistical methods used for evaluating expectation values and statistical uncertainties. In
particular, we show how to estimate nonlinear functions of expectation values and their statis-
tical uncertainties.

Keywords: quantum Monte Carlo, electronic-structure calculations, Metropolis-Hastings algo-
rithm, fixed-node approximation, statistical methods.
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This chapter provides a pedagogical introduction to the two main variants of real-space
quantum Monte Carlo (QMC) methods for electronic-structure calculations: variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC). For more details of these methods, see, e.g.,
Refs. [1, 2, 3, 4, 5, 6]. For reviews on applications of QMC methods in chemistry and condensed-
matter physics, see, e.g., Refs. [7, 8].

1 Variational Monte Carlo

1.1 Basic idea

The idea of the VMC method [9, 10] is simply to calculate the multidimensional integrals ap-
pearing in quantum mechanics using a Monte Carlo numerical integration technique1. The
quantity of greatest interest is the variational energy associated with a Hamiltonian Ĥ and a
wave function Ψ, which can be written as

Ev =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

∫

dRΨ(R)2EL(R)
∫

dRΨ(R)2
=

∫

dR ρ(R)EL(R), (1)

where EL(R) = (HΨ(R))/Ψ(R) is the local energy depending on the 3N coordinates R of
the N electrons, and ρ(R) = Ψ(R)2/

∫

dRΨ(R)2 is the normalized probability density. For
simplicity of notation we have assumed that Ψ(R) is real valued; the extension to complex Ψ(R)
is straightforward. The variational energy can be estimated as the average value of EL(R) on a
sample of M points Rk sampled from the probability density ρ(R),

Ev ≈ EL =
1

M

M
∑

k=1

EL(Rk). (2)

In practice, the points Rk are sampled using the Metropolis-Hastings algorithm [12, 13].

The advantage of this approach is that it does not use an analytical integration involving the
wave function, and thus does not impose severe constraints on the form of the wave function.
The wave functions usually used in QMC are of the Jastrow-Slater form,

Ψ(R) = J(R)Φ(R), (3)

where J(R) is a Jastrow factor and Φ(R) is a Slater determinant or a linear combination of
Slater determinants2. The Jastrow factor is generally of the form J(R) = ef(R). It depends
explicitly on the interparticle distances rij, allowing for an efficient description of the so-called
electron “dynamic” correlation.

In practice, the VMC method has two types of errors:

• a systematic error, due to the use of an approximate wave function (as in other wave-
function methods),

1To the best of our knowledge, the first calculation of multidimensional integrals appearing in quantum me-
chanics by using Monte Carlo methods was done by Conroy [11].

2In QMC, it is convenient to use wave functions in which the values of the spin coordinates have been fixed,
so Ψ is a function of the spatial coordinates R only.
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• a statistical uncertainty, due to the sampling of finite size M (which is specific to Monte
Carlo methods).

Of course, the variational energy is an upper bound of the exact ground-state energy, but
the systematic error is generally unknown, since its determination requires knowing the exact
solution. By contrast, the statistical uncertainty can be easily estimated by the usual statistical
techniques. For this, let us examine more closely the meaning of Eq. (2). The average of the
local energy EL on a finite sample is itself a random variable, taking different values on different
samples. The central limit theorem establishes that, if EL(Rk) are random variables that are
independent (i.e. not correlated) and identically distributed, with finite expected value E[EL] and
finite variance, V[EL] = E[(EL −Ev)

2], then in the large M limit the probability distribution of
the random variable EL converges (in the mathematical sense of convergence in distribution) to
a Gaussian (or normal) distribution of expected value E[EL] and variance V[EL]/M ,

E
[

EL

]

= E[EL] = Ev, (4a)

V
[

EL

]

=
V[EL]

M
. (4b)

This means that EL is an estimator of Ev with a statistical uncertainty which can be defined
by the standard deviation of its Gaussian distribution

σ
[

EL

]

=
√

V
[

EL

]

=

√

V[EL]

M
. (5)

The meaning of this standard deviation is that the desired expected value Ev has a probability of
68.3% of being in the interval

[

EL − σ,EL + σ
]

, a probability of 95.5% of being in the interval
[

EL − 2σ,EL + 2σ
]

, and a probability of 99.7% of being in the interval
[

EL − 3σ,EL + 3σ
]

.
Note that, if the variance V[EL] is infinite but the expected value E[EL] is finite, then the law of
large numbers guarantees the convergence of EL to E[EL] when M → ∞ but with a statistical
uncertainty which is more difficult to estimate and which decreases more slowly than 1/

√
M .

It is important to note that the statistical uncertainty decreases as 1/
√
M independently of

the dimension of the problem. This is in contrast to deterministic numerical integration methods
for which the convergence of the integration error deteriorates with the spatial dimension d. For
example, Simpson’s integration rule converges as 1/M (4/d) (provided the integrand has up to
4th-order derivatives), so that for d > 8 Monte Carlo methods are more efficient for large M .

The statistical uncertainty is reduced if the variance of the local energy V[EL] is small. In
the limit that Ψ is an exact eigenfunction of Ĥ, the local energy EL becomes exact, independent
of R, and thus its variance V[EL] and the statistical uncertainty of EL vanish. This is known
as the zero-variance property. Since the systematic error (or bias) of the variational energy
∆E = Ev − E0 (where E0 is the exact energy) also vanishes in this limit, there is a zero-bias
property as well. For these reasons, a great deal of effort has been expended on developing
robust and efficient wave-function optimization methods.

1.2 Estimation of the statistical uncertainty

In practice, the probability density ρ(R) is sampled with the Metropolis-Hastings algorithm
which provides a sequence of points Rk correctly distributed according to ρ(R) but sequentially
(or serially) correlated (i.e. non independent). This is a consequence of each point being
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sampled from a probability distribution conditional on the previous point. One can define an
autocorrelation time (defined more precisely later) that is roughly speaking the average time for
points to decorrelate. This sequential correlation must be taken into account when using the
central limit theorem for evaluating the statistical uncertainty. This is done using the blocking
technique, which is described next.

Let us consider a sequence ofM realizations Xk (sequentially correlated) of a random variable
X of expected value E[X] and of variance V[X]. For example, X could be the local energy EL.
We divide this sequence into Mb successive blocks of Ms steps each. The block average Xb is

Xb =
1

Ms

Ms
∑

k=1

Xk. (6)

The expected value of Xb is also the expected value of X, i.e. E
[

Xb

]

= E[X], but its variance
is not simply V [X]/Ms since the variables Xk are not independent. We can now define the global
average X of the whole sample as the average over all the blocks of the block averages

X =
1

Mb

Mb
∑

b=1

Xb, (7)

where Xb with a math subscript “b” indicates the block average for the bth block (whereas Xb

with a Roman subscript “b” indicates the generic random variable). The global average X is
another random variable with the same expected value as X, i.e. E

[

X
]

= E
[

Xb

]

= E[X]. If
the length of the blocks is large compared to the autocorrelation time then the block averages
Xb can be considered as being independent, and the variance of the global average is simply

V
[

X
]

=
V
[

Xb

]

Mb
, (8)

which leads to the statistical uncertainty of X

σ
[

X
]

=
√

V
[

X
]

=

√

V
[

Xb

]

Mb
. (9)

In practice, the statistical uncertainty on a finite sample is calculated as

σ
[

X
]

≈

√

√

√

√

√

1

Mb − 1





1

Mb

Mb
∑

b=1

Xb
2 −

(

1

Mb

Mb
∑

b=1

Xb

)2


, (10)

where the Mb − 1 term appearing instead of Mb is necessary to have an unbiased estimator of
the standard deviation on the sample (see the appendix). It takes into account the fact that the
computed variance is relative to the sample average rather than the true expected value.

Finally, let us examine the variance V
[

Xb

]

. Since the variables Xk are not independent, the
expansion of V

[

Xb

]

involves the covariances between the variables

V
[

Xb

]

=
1

M2
s

∑

k,l

Cov[Xk,Xl] =
V[X]

Ms
+

2

M2
s

∑

k<l

Cov[Xk,Xl] = Tc
V[X]

Ms
, (11)
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defining the autocorrelation time of X

Tc = 1 +
2

V[X]Ms

∑

k<l

Cov[Xk,Xl]. (12)

The autocorrelation time is equal to 1 in the absence of correlation between the variables, i.e.
Cov[Xk,Xl] = 0 for k 6= l, but can be large in the presence of sequential correlation. It is
instructive to express the statistical uncertainty as a function of Tc

σ
[

X
]

=

√

Tc
V[X]

MsMb
=

√

Tc
V[X]

M
, (13)

where M = MsMb is the total size of the sample. The expression (13) allows one to interpret
Tc as a factor giving the number of effectively independent points in the sample, Meff = M/Tc.
In practice, it is useful to calculate the autocorrelation time as Tc = MsV

[

Xb

]

/V[X] and
check whether the length of the blocks is large enough for a correct estimation of the statistical
uncertainty, e.g. Ms > 100Tc. If Ms is not much greater than Tc, then the statistical uncertainty
σ
[

X
]

and the autocorrelation time Tc will be underestimated.

In the appendix, we further explain how to estimate the statistical uncertainty of nonlinear
functions of expectation values, which often occur in practice.

1.3 Calculation cost

The calculation cost required to reach a given statistical uncertainty σ
[

X
]

is

t = tsM = ts
TcV[X]

σ
[

X
]2 (14)

where ts is the calculation time per iteration. The 1/σ
[

X
]2

dependence implies that decreasing
the statistical uncertainty by a factor of 10 requires to increase the computational time by a
factor of 100. This quadratic dependence directly stems from the central limit theorem and
seems unavoidable3. However, one can play with the three other parameters:

• Tc depends on the sampling algorithm and on the random variable X. For efficient algo-
rithms such as Umrigar’s one [15, 3], the autocorrelation time of the local energy is close
to 1 and little further improvement seems possible;

• ts is usually dominated by the cost of evaluating X. For the local energy, the evaluation
cost depends on the form of the wave function;

• V[X] depends on the choice of the random variable X with its associated probability
distribution, the only constraint being that the expected value E[X] must equal the ex-
pectation value of the observable (otherwise, this is a biased estimator). The choice of
a good probability distribution is usually called importance sampling. Even for a fixed
probability distribution, it is possible to use various estimators for X, some of which have

3Quasi Monte Carlo methods [14] can in some cases achieve a convergence rate of O(ln(M)/M) rather than
O(1/

√
M). However, they have not been used for QMC applications, in part because in QMC the sampled

distributions, for systems with more than a few electrons, are very highly peaked.
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smaller variance than others, since one has the freedom to add any quantity with zero
expectation value. This has been exploited to construct improved estimators for diverse
observables [16, 17, 18, 19, 20]. There is often a compromise to be found between a low
computation time per iteration ts and a low variance V[X].

1.4 Sampling technique

The probability density, ρ(R) = Ψ(R)2/
∫

dRΨ(R)2, is generally complicated and cannot be
sampled by direct methods such as the transformation method or the rejection method. Instead,
the Metropolis-Hastings (or generalized Metropolis) algorithm, which can be used to sample any
known probability density, is used. It employs a stochastic process, more specifically, a Markov
chain.

Stochastic process

A stochastic process represents the evolution – say in “time” – of a random variable. It is
described by a trajectory of successive points R1, R2, ..., RM with an associated probability
distribution P (RM , ...,R2,R1). The idea of evolution in time can be made more explicit by
decomposing the probability of the whole trajectory in products of the conditional probability
of having a particular point knowing that all the previous points have already been realized. For
example, for M = 3, the probability of the trajectory is

P (R3,R2,R1) = P (R3|R2,R1)P (R2|R1)P (R1). (15)

Markov chain

A Markov chain is a stochastic process for which the conditional probability for the transition
to a new point Rk depends only on the previous point Rk−1

P (Rk|Rk−1, ...,R1) = P (Rk|Rk−1), (16)

i.e. the process “forgets” the way it arrived at point Rk−1. The probability of a trajectory can
thus be simply written as, e.g. for M = 3,

P (R3,R2,R1) = P (R3|R2)P (R2|R1)P (R1), (17)

and P (Rf|Ri) is called the transition probability from point Ri to point Rf. Note that, in
general, the transition probability can depend on time (measured by the index k). We will
consider here only the case of a stationary Markov chain for which the transition probability is
time independent.

In the following, we will use notation corresponding to the case of states Rk in a continuous
space (“integrals” instead of “sums”), but we will ignore the possibly subtle mathematical dif-
ferences between the continuous and discrete cases, and we will often use the vocabulary of the
discrete case (e.g., “matrix”). The transition probability matrix, P is a stochastic matrix, i.e.,
it has the following two properties:

P (Rf|Ri) ≥ 0 (non negativity), (18a)
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∫

dRf P (Rf|Ri) = 1 (column normalization). (18b)

The second property expresses the fact that the probability that a point Ri is somewhere at the
next step must be 1. The eigenvalues of a stochastic matrix are between 0 and 1, and there is
at least one eigenvalue equal to 1. The latter property is a consequence of the fact that, for a
column-normalized matrix, the vector with all components equal to one is a left eigenvector with
eigenvalue 1. The target probability distribution ρ(R) is sampled by constructing a Markov chain
converging to ρ(R). A necessary condition is that the distribution ρ(R) is a (right) eigenvector
of P (Rf|Ri) with the eigenvalue 1

∫

dRi P (Rf|Ri)ρ(Ri) = ρ(Rf) =

∫

dRi P (Ri|Rf)ρ(Rf) ∀Rf, (19)

where the second equality simply comes from the normalization condition (18b). Eq. (19) is a
stationarity condition for ρ(R). It means that if we start from the target distribution ρ(R) then
we will continue to sample the same distribution by applying the Markov chain. However, we
need more than that. We want that any initial distribution ρini(R), e.g., a delta function at
some initial point, evolves to the target stationary distribution ρ(R) by repeated applications
of the transition matrix

lim
M→∞

∫

dR1 P
M (R|R1)ρini(R1) =

lim
M→∞

∫

dR1dR2...dRM P (R|RM )P (RM |RM−1)...P (R2|R1)ρini(R1) = ρ(R), (20)

i.e. ρ(R) must be the dominant eigenvector of P (the unique eigenvector of largest eigenvalue).
If the stationarity condition (19) is satisfied then this will always be the case except if P has
several eigenvectors with eigenvalue 1. One can show that the matrix P has only one eigenvector
of eigenvalue 1 if P is a primitive matrix, i.e. if there is an integer n ≥ 1 such that all the elements
of the matrix Pn are strictly positive, Pn(Rk|Rl) > 0, ∀ Rk,Rl. This means that it must be
possible to move between any pair of states Rk and Rl in n steps. This ensures that all states
can be visited, and that the Markov chain converges to the unique stationary distribution ρ(R).
The Markov chain is then said to be ergodic.

In practice, instead of imposing the stationarity condition (19), the Markov matrix is con-
structed by imposing the more stringent detailed balance condition,

P (Rf|Ri)ρ(Ri) = P (Ri|Rf)ρ(Rf), (21)

which forces the probability flux between the two states Ri and Rf to be the same in both
directions. This is a sufficient (but not necessary) condition for ρ(R) to be the stationary
distribution. A Markov chain satisfying condition (21) is said to be reversible.

In practice, a Markov chain is realized by a random walk. Starting from an initial point
R1 (or walker) – i.e. a delta-function distribution δ(R −R1) – sample the second point R2 by
drawing from the probability distribution P (R2|R1), then a third point R3 by drawing from
P (R3|R2), and so on. After disregarding a certain number of iterations Meq corresponding
to a transient phase called equilibration, the random walk samples the stationary distribution
ρ(R) in the sense that ρ(R) = E[δ(R−Rk)] ≈ (1/M)

∑M
k=1 δ(R−Rk) and the averages of the

estimators of the observables of interest are calculated. The rate of convergence to the stationary
distribution ρ(R) and the autocorrelation times of the observables are determined by the second
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largest eigenvalue of the matrix P (see, e.g., Ref. [21]). The random walk must be sufficiently
long so as to obtain a representative sample of the states making a non negligible contribution
to the expected values. If the transitions between states belonging to two contributing regions of
the space of states are too improbable, as may happen for example for dissociated atoms, then
there is a risk that the random walk remains stuck in a region of space and seems converged, even
though the true stationary distribution is not yet reached. To avoid this problem, smart choices
for the transition matrix can be crucial in various applications of Monte Carlo methods [22, 23].

Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm [12, 13], one realizes a Markov chain with the following
random walk. Starting from a point Ri, a new point Rf is determined in two steps:

1. a temporary point R′

f is proposed with the probability Pprop(R
′

f|Ri),

2. the point R′

f is accepted (i.e. Rf = R′

f) with probability Pacc(R
′

f|Ri), or rejected (i.e.
Rf = Ri) with probability Prej(R

′

f|Ri) = 1− Pacc(R
′

f|Ri)

The corresponding transition probability can be written as

P (Rf|Ri) =

{

Pacc(Rf|Ri)Pprop(Rf|Ri) if Rf 6= Ri

1−
∫

dR′

f Pacc(R
′

f|Ri)Pprop(R
′

f|Ri) if Rf = Ri

(22)

or, in a single expression,

P (Rf|Ri) = Pacc(Rf|Ri)Pprop(Rf|Ri)+

[

1−
∫

dR′

f Pacc(R
′

f|Ri)Pprop(R
′

f|Ri)

]

δ(Ri−Rf). (23)

The proposal probability Pprop(Rf|Ri) is a stochastic matrix, i.e. Pprop(Rf|Ri) ≥ 0 and
∫

dRfPprop(Rf|Ri) = 1, ensuring that P (Rf|Ri) fulfils the non-negativity condition (18a). The
second term in Eq. (23) with the delta function ensures that P (Rf|Ri) fulfils the normaliza-
tion condition (18b). The acceptance probability is chosen so as to fulfil the detailed balance
condition (21), for Rf 6= Ri,

Pacc(Rf|Ri)

Pacc(Ri|Rf)
=

Pprop(Ri|Rf)ρ(Rf)

Pprop(Rf|Ri)ρ(Ri)
. (24)

Several choices are possibles. The choice of Metropolis et al. [12] maximizes the acceptance
probability

Pacc(Rf|Ri) = min

{

1,
Pprop(Ri|Rf)ρ(Rf)

Pprop(Rf|Ri)ρ(Ri)

}

. (25)

The acceptance probability is not a stochastic matrix, even though both the proposal and the
total Markov matrices are stochastic. Since only the ratio ρ(Rf)/ρ(Ri) is involved in Eq. (25),
it is not necessary to calculate the normalization constant of the probability density ρ(R). It is
clear that the acceptance probability of Eq. (25) is optimal, but there is considerable scope for
ingenuity in choosing a proposal probability Pprop(Rf|Ri) that leads to a small autocorrelation
time.
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Choice of the proposal probability

The original paper of Metropolis et al. [12] employed a symmetric proposal matrix, in which
case the proposal matrix drops out of the formula for the acceptance. The advantage of having
a nonsymmetric proposal matrix was pointed out by Hastings [13]. One has a lot of freedom in
the choice of the proposal probability Pprop(Rf|Ri). The only constraints are that Pprop(Rf|Ri)
must be a stochastic matrix leading to an ergodic Markov chain and that it must be possible
to efficiently sample Pprop(Rf|Ri) with a direct sampling method. The proposal probability
determines the average size of the proposed moves Ri → Rf and the average acceptance rate
of these moves. In order to reduce sequential correlation, one has to make moves as large as
possible but with a high acceptance rate. In practice, for a given form of the proposal matrix,
there is a compromise to be found between the average size of the proposed moves and the
average acceptance rate.

The simplest choice for Pprop(Rf|Ri) is a distribution that is uniform inside a small cube
Ω(Ri) centered in Ri and of side length ∆ and zero outside

Pprop(Rf|Ri) =

{

1
∆3N if Rf ∈ Ω(Ri)

0 elsewhere .
(26)

In practice, a move according to Eq. (26) is proposed,

Rf = Ri +
∆

2
χ, (27)

where χ is a vector of 3N random numbers drawn from the uniform distribution between −1
and 1. The size of the cube ∆ can be adjusted so as to minimize the autocorrelation time of the
local energy, but the latter remains large and the sampling is inefficient.

Clever choices use information from the distribution ρ(R), in particular its local gradient,
to guide the sampling. A choice for Pprop(Rf|Ri) which would lead to large moves with an
acceptance probability equal to 1 would be Pprop(Rf|Ri) = ρ(Rf), independently from Ri, but
we would then be back to the initial problem of sampling a complicated distribution ρ(R). A
good choice for Pprop(Rf|Ri) is the Green function of the Fokker-Planck equation in the short-
time approximation

Pprop(Rf|Ri) =
1

(2πτ)3N/2
e−

(Rf−Ri−v(Ri)τ)
2

2τ , (28)

where v(R) = ∇Ψ(R)/Ψ(R) is called the drift velocity of the wave function and τ is the time
step which can be adjusted so as to minimize the autocorrelation time of the local energy. In
practice, a move according to Eq. (28) is proposed

Rf = Ri + v(Ri)τ + η, (29)

where η is a vector of 3N random numbers drawn from the Gaussian distribution of average 0
and standard deviation

√
τ . The term η describes an isotropic Gaussian diffusion process (or

Wiener process). The term v(Ri)τ is a drift term which moves the random walk in the direction
of increasing |Ψ(R)|.

The optimal size of the move is smaller in regions where v(R) is changing rapidly. For
example, v(R) has a discontinuity at the nuclear positions. Hence, it is more efficient to make
smaller moves for electrons in the core than for electrons in the valence regions. In doing this,
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care must be taken to ensure the detailed balance condition. An elegant solution is provided in
the VMC algorithm of Refs. [15, 3] where the electron moves are made in spherical coordinates
centered on the nearest nucleus and the size of radial moves is proportional to the distance to
the nearest nucleus. In addition, the size of the angular moves gets larger as one approaches
a nucleus. This algorithm allows one to achieve, in many cases, an autocorrelation time of the
local energy close to 1.

Expectation values

The expectation value of an operator Ô can be computed by averaging the corresponding local
value O(Rf) = 〈Rf|Ô|Ψ〉/Ψ(Rf) at the Monte Carlo points Rf after the accept/reject step. A
somewhat smaller statistical error can be achieved by instead averaging

Pacc(Rf|Ri) O(Rf) + (1− Pacc(Rf|Ri)) O(Ri), (30)

regardless of whether the proposed move is accepted or rejected.

Moving the electrons all at once or one by one?

So far we have assumed that, for a many-electron system, all the electrons are moved and then
this move is accepted or rejected in a single step. In fact, it is also possible to move the electrons
one by one, i.e. move the first electron, accept or reject this move, then move the second electron,
accept or reject this move, and so on. In this case, the transition probability for N electrons
can be formally decomposed as

P (Rf|Ri) = P (r1,fr2,f...rN,f|r1,fr2,f...rN,i)×
...× P (r1,fr2,f...rN,i|r1,fr2,i...rN,i)× P (r1,fr2,i...rN,i|r1,ir2,i...rN,i), (31)

where each one-electron transition probability (knowing that the other electrons are fixed) is
made of a proposal probability and an acceptance probability just as before. If each one-
electron transition probability satisfies the stationary condition (19), then the global transition
probability satisfies it as well.

Moving the N electrons one by one requires more calculation time than moving the electrons
all at once, since the wave function must be recalculated after each move to calculate the
acceptance probability. The calculation time does not increase by a factor of N as one may
naively think but typically by a factor of 2 if the value of the wave function is recalculated in
a clever way after an one-electron move. For example, for Slater determinants, one can use
the matrix determinant lemma in conjunction with the Sherman-Morrison formula (see, e.g.,
Ref. [24]) to efficiently recalculate the values of the determinants when only one row or column
has been changed. In spite of the increase in the calculation time, it has been repeatedly shown in
the literature (see, e.g., Refs. [10, 15, 25, 26]) that, for systems with many electrons, moving the
electrons one by one leads to a more efficient algorithm: larger moves can be made for the same
average acceptance, so the points Rk are less sequentially correlated and the autocorrelation
time of the local energy is smaller (by a factor larger than the one necessary for compensating
the increase of the calculation time per iteration).
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2 Diffusion Monte Carlo

2.1 Basic idea

While the VMC method is limited by the use of an approximate wave function Ψ, the idea of
the DMC method [27, 28, 29, 5, 30] is to sample from the exact wave function Ψ0 of the ground
state of the system. If we have this exact wave function Ψ0, then the associated exact energy
E0 can be obtained from the mixed expectation value using the trial wave function Ψ,

E0 =
〈Ψ0|Ĥ|Ψ〉
〈Ψ0|Ψ〉 =

∫

dRΨ0(R)Ψ(R)EL(R)
∫

dRΨ0(R)Ψ(R)
, (32)

since Ψ0 is an eigenfunction of the Hamiltonian Ĥ. The advantage of the mixed expectation
value (32) is that it does not require calculating the action of Ĥ on Ψ0. The integral in Eq. (32)
involves the local energy of the trial wave function, EL(R) = (HΨ(R))/Ψ(R), and can be
estimated in a similar way as in VMC by calculating the average of EL(R) on a sample of points
Rk representing the mixed distribution Ψ0(R)Ψ(R)/

∫

dRΨ0(R)Ψ(R).

But how to access to the exact wave function Ψ0? Let us consider the action of the imaginary-
time evolution operator (t → −it) on an arbitrary wave function such as the trial wave function
Ψ

|Ψ(t)〉 = e−(Ĥ−ET)t|Ψ〉, (33)

where ET is for now an undetermined trial energy. Using the spectral decomposition of the
evolution operator (written with the eigenstates Ψi and the eigenenergies Ei of Ĥ), we see that
the limit of an infinite propagation time is dominated by the state Ψ0 with the lowest energy
having a nonzero overlap with Ψ

lim
t→∞

|Ψ(t)〉 = lim
t→∞

∑

i

e−(Ei−ET)t|Ψi〉〈Ψi|Ψ〉 = lim
t→∞

e−(E0−ET)t|Ψ0〉〈Ψ0|Ψ〉, (34)

since all the other states of energies Ei > E0 decay exponentially faster. The exponential
e−(E0−ET)t can be eliminated by adjusting ET to E0, and we then obtain that Ψ(t) becomes
proportional to Ψ0

lim
t→∞

|Ψ(t)〉 ∝ |Ψ0〉. (35)

In position representation, Eq. (33) is written as

Ψ(Rf, t) =

∫

dRi G(Rf|Ri; t)Ψ(Ri), (36)

where G(Rf|Ri; t) = 〈Rf|e−(Ĥ−ET)t|Ri〉 is called the Green function (or the imaginary-time
propagator from Ri to Rf). Multiplying and dividing by Ψ(Rf) and Ψ(Ri), we obtain the
evolution equation of the mixed distribution f(R, t) = Ψ(R, t)Ψ(R)

f(Rf, t) =

∫

dRi G̃(Rf|Ri; t)Ψ(Ri)
2, (37)

where G̃(Rf|Ri; t) is the importance-sampling Green function,

G̃(Rf|Ri; t) = Ψ(Rf)G(Rf|Ri; t)
1

Ψ(Ri)
, (38)

12



i.e. G̃(Rf|Ri; t) is G(Rf|Ri; t) similarity transformed by the diagonal matrix that has the values
of Ψ along the diagonal. In the limit of infinite time, the mixed distribution becomes proportional
to the target stationary distribution: f(R) = limt→∞ f(R, t) ∝ Ψ0(R)Ψ(R).

In practice, an analytical expression of the Green function is known only in the limit of a
short propagation time, G̃(Rf|Ri; τ), where τ is a small time step, and one must thus iterate to
obtain the stationary distribution

f(R) = lim
M→∞

∫

dR1dR2...dRM G̃(R|RM ; τ)G̃(RM |RM−1; τ)...G̃(R2|R1; τ)Ψ(R1)
2. (39)

A short-time approximation to the Green function is obtained by applying the Trotter-Suzuki

formula, e−(T̂+V̂ )τ = e−V̂ τ/2e−T̂ τe−V̂ τ/2 + O(τ3), where T̂ and V̂ are the kinetic and potential
energy operators. In position representation, this approximation leads to the following expression

G(Rf|Ri; τ) ≈
1

(2πτ)3N/2
e−

(Rf−Ri)
2

2τ e
−

(

V (Rf)+V (Ri)

2
−ET

)

τ
, (40)

where V (R) is the potential energy. Similarly, assuming for now that the trial wave function
is of the same sign in Ri and Rf, i.e. Ψ(Rf)/Ψ(Ri) > 0, a short-time approximation to the
importance-sampling Green function is [5, 31]

G̃(Rf|Ri; τ) ≈
1

(2πτ)3N/2
e−

(Rf−Ri−v(Ri)τ)
2

2τ e
−

(

EL(Rf)+EL(Ri)

2
−ET

)

τ
, (41)

where the drift velocity v(R) = ∇Ψ(R)/Ψ(R) and the local energy EL(R) were assumed
constant between Ri and Rf. This short-time approximation implies a finite time-step error in
the calculation of all observables, which should in principle be eliminated by extrapolating the
results to τ = 0 (see Refs. [32, 33, 34] for proofs that the time-step error vanishes in the τ → 0
limit).

2.2 Stochastic realization

The stochastic realization of Eq. (39) is less trivial than for VMC. The Green function G̃(Rf|Ri; τ)
is generally not a stochastic matrix, since it does not conserve the normalization of the probabil-
ity density:

∫

dRf G̃(Rf|Ri; τ) 6= 1. We can nevertheless write the elements of G̃ as the product
of the corresponding elements of a stochastic matrix P and a weight matrix W ,

G̃(Rf|Ri; τ) = P (Rf|Ri)W (Rf|Ri), (42)

where, in the short-time approximation, P (Rf|Ri) = (2πτ)−3N/2 e−(Rf−Ri−v(Ri)τ)
2/2τ and

W (Rf|Ri) = e−((EL(Rf)+EL(Ri))/2−ET)τ . Note that G̃ reduces to a stochastic matrix in the limit
Ψ → Ψ0. The stochastic realization is then a weighted random walk. Start from a walker at
an initial position R1 with a weight w1 = 1, i.e., a distribution w1δ(R − R1). Sample the
position R2 of the walker at the next iteration from the probability distribution P (R2|R1)
[according to Eq. (29)] and give it weight w2 = W (R2|R1) × w1, sample the third position R3

from the probability distribution P (R3|R2) and give it weight w3 = W (R3|R2) × w2, and so
on. After an equilibration phase, the random walk should sample the stationary distribution
f(R) ∝ E[wkδ(R − Rk)] ≈ (1/M)

∑M
k=1wkδ(R − Rk). In reality, this procedure is terribly

inefficient. Because the weights wk are products of a large number of random variables, they
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can become very large at some iterations and very small at other iterations. Consequently, the
averages are dominated by a few points with large weights, even though the calculation of any
point of the Markov chain takes the same computational time regardless of its weight. This
problem can be alleviated by keeping the product of the weights for only a finite number n of
consecutive iterations [35]

wk =

k
∏

l=k−n+1

W (Rl|Rl−1). (43)

However, using a finite n introduces a bias in the sampled stationary distribution. In practice,
for an n large enough to have a reasonably small bias, this procedure still remains inefficient.

The solution is to use at each iteration k a population of Mk walkers, with positions Rk,α and
weights wk,α (where α = 1, 2, ...,Mk), performing random walks with a branching or birth-death
process designed to make the weights wk,α vary in only a small range from walker to walker in
a given iteration, and from iteration to iteration, while still sampling the correct distribution
f(R) ∝ E[

∑Mk
α=1wk,αδ(R − Rk,α)] ≈ (1/M)

∑M
k=1

∑Mk
α=1 wk,αδ(R − Rk,α). Various unbiased

variants are possible, characterized by a population size Mk that either varies or is constant
from iteration to iteration, and by weights wk,α that can either be equal or different for each
walker.

The simplest variant uses a varying population sizeMk and weights all equal to one, wk,α = 1.
At each iteration k, each walker α is replaced by mk,α unit-weight copies of itself, where mk,α

is an integer equal on average to what should be the current weight Wk,α = W (Rk,α|Rk−1,α).
For example, if the walker α should have the weight Wk,α = 2.7 at iteration k, this walker is
replaced by mk,α = 3 copies of itself with a probability 0.7 or replaced by mk,α = 2 copies
of itself with a probability 0.3. More generally, mk,α = ⌊Wk,α⌋ + 1 with probability Wk,α −
⌊Wk,α⌋ and mk,α = ⌊Wk,α⌋ otherwise, where ⌊Wk,α⌋ is the nearest integer smaller than Wk,α.
If mk,α = 0 the walker is terminated. This procedure does not change the sampled stationary
distribution 4. This variant has the disadvantage that the integerization of the weights results
in unnecessary duplications of walkers, leading to more correlated walkers and thus to a smaller
number of statistically independent points in the sample. Another disadvantage is that it leads
to unnecessary fluctuations in the sum of the weights, a quantity that is relevant for computing
the growth estimator of the energy.

A better solution is the split-join algorithm [6] which limits the duplication of walkers by
keeping residual noninteger weights wk,α. At each iteration k, after updating the weights ac-
cording to wk,α = W (Rk,α|Rk−1,α)×wk−1,α, each walker α with a weight wk,α > 2 is split into
⌊wk,α⌋ walkers, each being attributed the weight wk,α/⌊wk,α⌋. If walkers α and β each have
weight < 1/2, keep walker α with probability wk,α/(wk,α + wβ,k) and walker β otherwise. In
either case, the surviving walker gets weight, wk,α+wβ,k. This algorithm has the advantage that

it conserves the total weight of the population of walkers Wk =
∑Mk

α=1wk,α for a given iteration.
Yet another possibility is the stochastic reconfiguration algorithm [36, 37], which uses a fixed
population size Mk, and walkers of equal noninteger weights within each iteration, though the
weights of the walkers fluctuate from one iteration to the next.

To avoid the explosion or extinction of the population of walkers (or their weights if Mk

is kept fixed), the value of ET can be adjusted during the iterations. For example, a choice

4One can write: E
[

∑Mk

α=1 Wk,αδ(R−Rk,α)
]

= E
[

∑Mk

α=1 mk,αδ(R−Rk,α)
]

= E
[

∑Mk+1

α=1 δ(R−Rk+1,α)
]

,

where Rk+1,α are the positions of the Mk+1 =
∑Mk

α=1 mk,α walkers used for the next iteration k+1 obtained after
making mk,α copies of the αth walker.
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for ET at iteration k + 1 is ET(k + 1) = Eest
0 (k) − C log(Wk/W0) where Eest

0 (k) is an estimate
of E0 at iteration k, C is a constant, Wk is the total weight of the population of walkers and
W0 is the target total weight. Because of fluctuations, ET thus slightly varies with respect to
E0 during the iterations, which introduces a systematic bias on the weights and thus on the
stationary distribution f(R). The adjustment of ET makes f(R) too small in regions where
EL(R) < E0 and too large in regions where EL(R) > E0. Both of these have the effect of
raising the energy. This is called population-control error. This error is generally small and
decreases with increasing number of walkers as 1/Mk [6]. Besides, it is possible to eliminate
almost completely this error by undoing the modification of weights introduced by the variation
of ET for the last several iterations [38, 6].

In the limit of an infinitesimal time step, the transition matrix P (Rf|Ri) has a stationary
distribution Ψ(R)2, and the weight term W (Rf|Ri) converts this distribution into the mixed
distribution Ψ0(R)Ψ(R). One can get rid of the finite time-step error in the transition matrix
P (Rf|Ri) by introducing an accept/reject step as in the Metropolis-Hastings algorithm [5]. For
this, the transition matrix is redefined as P (Rf|Ri) = Pacc(Rf|Ri)Pprop(Rf|Ri), for Ri 6= Rf,
with the proposal probability

Pprop(Rf|Ri) =
1

(2πτ)3N/2
e−

(Rf−Ri−v(Ri)τ)
2

2τ , (44)

and the acceptance probability

Pacc(Rf|Ri) = min

{

1,
Pprop(Ri|Rf)Ψ(Rf)

2

Pprop(Rf|Ri)Ψ(Ri)2

}

. (45)

With this modification, P (Rf|Ri) has the stationary distribution Ψ(R)2 even for a finite time
step. Of course, the finite time-step error persists in the term W (Rf|Ri). Since certain moves
are rejected, P (Rf|Ri) corresponds now to a process of diffusion with drift with an effective time
step τeff < τ . This effective time step can be estimated during the calculation from the average
acceptance rate and it is consistent to use it in the term W (Rf|Ri) in place of τ . In practice, just
as in VMC, it is also more efficient in DMC to move the electrons one by one, i.e. to decompose
P (Rf|Ri) according to Eq. (31). We then arrive at a DMC algorithm very similar to the VMC
algorithm, with weights in addition. Note, however, that since a relatively small time step must
be used in DMC, the average moves are smaller than in VMC and the autocorrelation time of
the local energy is larger than in VMC.

The energy is calculated as the average of the local energy over the distribution f(R)/
∫

dRf(R).
For M iterations (after the equilibration phase) and Mk walkers, we have

E0 ≈ EL =

∑M
k=1

∑Mk
α=1 wk,αEL(Rk,α)

∑M
k=1

∑Mk
α=1 wk,α

. (46)

Just as in VMC, there is a zero-variance principle on the energy in DMC. In the limit that the
trial wave function Ψ is an exact eigenfunction of the Hamiltonian, EL is independent of R, the
weights reduce to 1, and the variance on EL vanishes.

Note that for an observable Ô that does not commute with the Hamiltonian, the average
OL over the mixed DMC distribution is an estimator of 〈Ψ0|Ô|Ψ〉/〈Ψ0|Ψ〉 which is only an
approximation to the exact expectation value 〈Ψ0|Ô|Ψ0〉/〈Ψ0|Ψ0〉 with an O(||Ψ − Ψ0||) error.
Since the average OL over the VMC distribution also has an error that is linear in ||Ψ − Ψ0||

15



but with a prefactor that is twice as large, an O(||Ψ−Ψ0||2) approximation is provided by twice
the average of OL over the mixed DMC distribution minus the average of OL over the VMC
distribution [39]. For a recent survey of exact methods for sampling the pure distribution Ψ2

0,
see Ref. [40], and for a discussion of the techniques used for calculating pure expectation values
of various classes of operators see Ref. [2].

2.3 Fermionic sign problem

In Eq. (41), we have assumed that the trial wave function Ψ(R) is always of the same sign,
i.e. that it does not have any nodes (points R so that Ψ(R) = 0). This is the case for the
ground-state wave function of a Bosonic system, and for a few simple electronic systems (two
electrons in a spin-singlet state, such as the ground state of the He atom or of the H2 molecule).
In this case, the algorithm presented above allows one to obtain the exact energy of the system,
after elimination of the finite time-step error and the population-control error. If the wave
function of the Fermionic ground state has nodes, then there is always at least one Bosonic state
of lower energy, and the true ground state of the Hamiltonian is a Bosonic state for which the
wave function ΨB(R) can be chosen strictly positive. If one applied the Green function exactly,
starting from the distribution Ψ(R)2 the distribution would correctly converge to Ψ0(R)Ψ(R)
since the trial wave function is antisymmetric (with respect to the exchange of two electrons)
and has a zero overlap with all the Bosonic states which are symmetric. However, in reality
one applies the Green function using a finite sampling in position space which does not allow
one to impose the antisymmetry. Starting from an antisymmetric wave function Ψ, a small
component of ΨB can thus appear, and it grows and eventually dominates. The distribution
tends to ΨB(R)Ψ(R) and the energy formula in Eq. (46) only gives 0/0 (the positive and negative
weights cancel out) with statistical noise. Even if one imposed antisymmetry and eliminated the
Bosonic states, e.g. by considering all electron permutations in each walker, the problem persists
because different paths between the same points in this antisymmetrized space can contribute
with opposite sign. Since Ψ0 and −Ψ0 are equally good solutions of the Schrödinger equation,
the algorithm would sample each with approximately equal probability, leading again to the
cancellation of positive and negative weight contributions. These are different manifestations of
the infamous Fermionic sign problem.

2.4 Fixed-node approximation

To avoid the sign problem in DMC, the fixed-node approximation (FN) [28, 41, 29] is introduced.
The idea is to force the convergence to a wave function approximating the Fermionic ground
state by fixing its nodes to be the same as those of the trial wave function Ψ(R). Formally, one
can define the FN Hamiltonian, ĤFN, by adding to the true Hamiltonian Ĥ infinite potential
barriers at the location of the nodes of Ψ(R) [42]. The ground-state wave function of this
Hamiltonian is called the FN wave function ΨFN and its energy is the FN energy EFN,

ĤFN|ΨFN〉 = EFN|ΨFN〉. (47)

In the 3N -dimensional space of positionsR, the nodes of Ψ(R) define hypersurfaces of dimension
3N − 1. The position space is then partitioned in nodal pockets of Ψ(R), delimited by nodal
surfaces, in which the wave function has a fixed sign. In each nodal pocket, the FN wave function
is the solution to the Schrödinger equation satisfying vanishing boundary conditions on the nodal
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surface. The FN Green function corresponding to the Hamiltonian ĤFN is

GFN(Rf|Ri; t) = 〈Rf|e−(ĤFN−ET)t|Ri〉, (48)

and only permits moves Ri → Rf inside a nodal pocket. The importance-sampling FN Green
function,

G̃FN(Rf|Ri; t) = Ψ(Rf) GFN(Rf|Ri; t)
1

Ψ(Ri)
, (49)

also confines the moves inside a nodal pocket, and it is thus always greater or equal to zero.
A short-time approximation to G̃FN(Rf|Ri; t) is then again given by Eq. (41). The stochastic
algorithm previously described can thus be applied directly. Thanks to the FN approximation,
the weights always remain positive, and the stationary mixed distribution f(R) is proportional
to ΨFN(R)Ψ(R).

The largest contributions to the finite time-step error come from singularities of the drift
velocity v(R) = ∇Ψ(R)/Ψ(R) and of the local energy EL(R) in the Green function of Eq. (41).
Since the gradient of the trial wave function ∇Ψ(R) (and of the exact wave function) does not
generally vanish at the location of the nodes, the drift velocity v(R) diverges at the nodes, which
leads to too large moves near the nodes for finite time steps. The drift velocity has discontinuities
also at particle coalescences (both electron-nucleus and electron-electron). Similarly, for an
approximate trial wave function Ψ(R), the local energy EL(R) also diverges at the nodes and at
particle coalescences (unless the Kato cusp conditions [43, 44] are imposed). The finite time-step
error can be greatly reduced by replacing v(R) and EL(R) in the Green function by approximate
integrals of these quantities over the time step τ [6].

If importance sampling is not used, it is necessary to kill walkers that cross the nodes of Ψ
to impose the FN boundary condition. In practice importance sampling is almost always used.
In that case, it is better to reject the moves of walkers crossing the nodes, which is consistent
with the FN approximation, but even this is not necessary since the number of walkers that
cross the node per unit time goes to zero as τ → 0 [6]5. For a finite time step, there are node
crossing events, but these are just part of the finite time-step error and in practice essentially
the same time-step error is obtained whether the walkers are allowed to cross nodes or not.

We may wonder whether the walkers have to sample all the nodal pockets. The tiling
theorem [45] establishes that all the nodal pockets of the ground-state wave function of a many-
electron Hamiltonian with a reasonable local potential are equivalent, i.e., the permutations of
any nodal pocket are sufficient to cover the entire space. This means that, for ground-state
calculations, the distribution of the walkers over the nodal pockets is irrelevant.

By applying the variational principle, it is easy to show that the FN energy is an upper
bound to the exact energy

EFN =
〈ΨFN|ĤFN|ΨFN〉

〈ΨFN|ΨFN〉
=

〈ΨFN|Ĥ |ΨFN〉
〈ΨFN|ΨFN〉

≥ E0, (50)

the second equality coming from the fact that the infinite potential barriers in ĤFN do not
contribute to the expectation value since ΨFN is zero on the nodal surface. Since the wave

5The drift velocity moves electrons away from the nodal surface, but for small τ the diffusion term dominates
and can cause walkers to cross nodes. The density of walkers goes quadratically to zero near nodes and walkers
that are roughly within a distance

√
τ can cross. Hence the number that cross per Monte Carlo step goes as

∫

√
τ

0
x2dx ∼ τ 3/2, and so the number that cross per unit time goes to zero as

√
τ .
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function ΨFN is an eigenfunction of ĤFN, the FN energy can also be expressed using the mixed
expectation value

EFN =
〈ΨFN|ĤFN|Ψ〉

〈ΨFN|Ψ〉 =
〈ΨFN|Ĥ |Ψ〉
〈ΨFN|Ψ〉 , (51)

where the Hamiltonian ĤFN has been replaced by Ĥ for essentially the same reason as before,
viz., both Ψ and ΨFN are zero where ĤFN is infinite. In practice, the FN energy is thus obtained
by the same energy formula (46).

The accuracy of the DMC results with the FN approximation thus depends on the quality
of the nodal surface of the trial wave function. For a trial wave function with a single Slater
determinant, the error due to the FN approximation can often be large, even for energy dif-
ferences. For example, for the C2 molecule, the FN error for a single-determinant trial wave
function is 1.6 eV for the total energy and 0.8 eV for the dissociation energy [46]. In order
to reduce this error, one can use several Slater determinants and optimize the parameters of
the wave function (Jastrow parameters, coefficients of determinants, coefficients that express
the orbitals in terms of the basis functions, and exponents of the basis functions) in VMC
(see Refs. [47, 48, 49, 50, 51, 52, 53, 46]). This allows one to reach near chemical accuracy
(∼ 1 kcal/mol) in DMC for calculations of energy differences such as molecular atomization
energies [54].

18



Appendix: Statistical estimator of nonlinear functions of expec-

tation values

We often need to estimate nonlinear functions of expectation values. The simplest example is
the variance,

V[X] = E[X2]− E[X]2, (52)

which is a quadratic function of the expectation values of two random variables X2 and X.
Another example is the calculation of the energy in DMC using weights [see Eq. (46)], with
simplified notation,

E0 =
E[wEL]

E[w]
, (53)

involving a ratio of two expectation values.

Consider a nonlinear function, f(E[X],E[Y ]), of two expectation values, E[X] and E[Y ]. The
usual simple estimator of f(E[X],E[Y ]) is f(X,Y ) where

X =
1

Mb

Mb
∑

b=1

Xb, (54)

and

Y =
1

Mb

Mb
∑

b=1

Y b, (55)

are averages over a finite number of blocks Mb, and Xb and Y b are the block averages of X
and Y , respectively [see Eq. (6)]. As discussed before, each block average is itself an average
over a sufficiently large number of steps, Ms, so that the block averages can be assumed to be
independent of each other. The simple estimator can be justified as follows. (i) When the law of
large numbers holds, X and Y converge, with increasing Mb, almost surely to E[X] and E[Y ],
respectively. (ii) Hence, f(X,Y ) converges to f(E[X],E[Y ]) provided that f is continuous at
the point (E[X],E[Y ]). However, because f is nonlinear, f(X,Y ) has a systematic error, i.e.
E[f(X,Y )] 6= f(E[X],E[Y ]), that vanishes only in the limit of infinite sample size, Mb → ∞.
Though not necessary, in the following, for the sake of simplicity, we assume that f(X,Y ) has
a finite expectation value and a finite variance6.

Systematic error

Let us first consider the case of a nonlinear function f(x) of a single variable. By definition,
the systematic error of the estimator f(X) is E[f(X)] − f(E[X]). The systematic error can be
evaluated using a second-order Taylor expansion of the function f(X) around E[X] (assuming
that f is at least a C2 function in the neighborhood of E[X])

f(X) = f(E[X]) +

(

df

dx

)

(X − E[X]) +
1

2

(

d2f

dx2

)

(X − E[X])2 + · · · , (56)

6E[f(X,Y )] can be undefined when f has a point at which it diverges, e.g., f(x, y) = x/y. In this case, this
definition of the systematic error does not have a strict meaning. In practice, this is not a problem for this f
provided that the absolute value of the expectation value of Y over a block is larger than a few times the square

root of its variance, say, |E[Yb]| > 5
√

V [Yb].
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where the derivatives of f are evaluated at E[X]. If we take the expectation value of this
expression, the linear term vanishes

E[f(X)] = f(E[X]) +
1

2

(

d2f

dx2

)

E
[

(X − E[X])2
]

+ · · · . (57)

Assuming the random variable X has a finite variance and that the higher-order terms can be
neglected, the systematic error is thus

E[f(X)]− f(E[X]) =
1

2

(

d2f

dx2

)

V[X] + · · · =
1

2

(

d2f

dx2

)

V[Xb]

Mb
+ · · · . (58)

Hence, the estimator f(X) has a systematic error with a leading term proportional to 1/Mb.
Note that if the hypotheses (especially the finite variance) are not satisfied, the systematic error
can decrease more slowly than 1/Mb. Equation (58) can easily be generalized to a function of
several variables. For example, for two variables, the systematic error is

E[f(X,Y )]− f(E[X],E[Y ]) =
1

2

(

∂2f

∂x2

)

V[Xb]

Mb
+

1

2

(

∂2f

∂y2

)

V[Y b]

Mb

+

(

∂2f

∂x∂y

)

Cov[Xb, Y b]

Mb
+ · · · , (59)

where the second-order derivatives are evaluated at (E[X],E[Y ]). The leading neglected term is
O(1/M2

b ) if the third moments of X and Y are finite. The second-order derivatives in Eq. (59)
can in practice be evaluated at (X,Y ) without changing the order of the approximation. Hence,
an estimator for f(E[X],E[Y ]) with an O(1/M2

b ) error is

f(E[X],E[Y ]) ≈ f(X,Y )− 1

2

(

∂2f

∂x2

)

V[Xb]

Mb
− 1

2

(

∂2f

∂y2

)

V[Y b]

Mb

−
(

∂2f

∂x∂y

)

Cov[Xb, Y b]

Mb
+ · · · , (60)

where the second-order derivatives are evaluated at (X,Y ).

This approach is general and can be used to recover some well-known unbiased estimators.
For example, let us consider the covariance of two random variables

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = f(E[XY ],E[X],E[Y ]), (61)

for which f(x, y, z) = x− yz. In this case, the generalization of Eq. (59) to three variables with
X = (1/M)

∑M
i=1Xi and Y = (1/M)

∑M
i=1 Yi where Xi and Yi are M uncorrelated realizations

of X and Y , respectively, gives

E[XY −X Y ]−Cov[X,Y ] = −Cov[X,Y ]

M
, (62)

which leads to the usual unbiased estimator for the covariance

Cov[X,Y ] ≈ M

M − 1

(

XY −X Y
)

=
1

M − 1

M
∑

i=1

(

Xi −X
) (

Yi − Y
)

. (63)
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Statistical uncertainty

First consider a function of a single variable. The statistical uncertainty of f(X) is given

by σ[f(X)] =
√

V[f(X)] where the variance of f(X) is V[f(X)] = E
[

(

f(X)− E[f(X)]
)2
]

.

Subtracting Eq. (57) from Eq. (56) gives

f(X)− E[f(X)] =

(

df

dx

)

(X − E[X]) + · · · . (64)

Taking the square of this equation and the expectation value leads to the leading term in the
variance of f(X)

V[f(X)] =

(

df

dx

)2

V[X ] + · · · . (65)

This equation can be generalized to a function of several variables. For example, for two vari-
ables, the variance of f(X,Y ) is

V[f(X,Y )] =

(

∂f

∂x

)2

V[X ] +

(

∂f

∂y

)2

V[Y ] + 2

(

∂f

∂x

)(

∂f

∂y

)

Cov[X,Y ] + · · · . (66)

Equation (66) can be used for estimating the variance of f(X,Y ) at the cost of evaluating the
variances V[X ] and V[Y ] and the covariance Cov[X,Y ]. Note however, that it can give a severe
underestimate of the error if ∂f/∂x and ∂f/∂y are small and Mb is not sufficiently large.

There is a simple alternative for estimating the variance of f that does not suffer from this
limitation and does not require calculating covariances. Consider again the case of a single
variable. Instead of defining the block average of f in the obvious way, i.e. f b = f(Xb), we
define the block average of f as

f1 = f(X1) for the first block b = 1

f b = bf(X(b))− (b− 1)f(X(b− 1)) for any block b ≥ 2, (67)

where X(b) is the running global average up to block b

X(b) =
1

b

b
∑

b′=1

Xb′ . (68)

With this definition of the block average, it is easy to check that

f(X) =
1

Mb

Mb
∑

b=1

f b, (69)

i.e. we have written f(X) as an average of random variables f b. Provided that the variance of
X is finite, the block average fb introduced in Eq. (67) can be expanded as

f b = f(E[X]) +

(

df

dx

)

(Xb − E[X]) + · · · . (70)

Assuming that f has a second-order Taylor expansion, the neglected term converges to zero in
probability for large b, at least as 1/(bMs). Therefore, according to Eq. (70), for large b, the
random variables f b converge to independent and equidistributed random variables (since the
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random variables Xb are)
7. Consequently, the variance of f(X) can be estimated with the usual

formula

V[f(X)] ≈ V[f b]

Mb
≈ 1

Mb − 1

(

1

Mb

Mb
∑

b=1

f
2
b − f(X)2

)

. (71)

This formula applies similarly for functions of several variables. The advantage of Eq. (71)
over Eq. (66) for estimating the variance is that it is much simpler to implement and compute,
especially for functions of many variables. The estimation of the variance can be simply updated
at each block, just as for the expectation value.

7The naive definition of the block average as fb = f(Xb) would also lead to Eq. (70) but the neglected term
would not converge to zero for large b.
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[8] J. Kolorenč and L. Mitas. Applications of quantum Monte Carlo methods in condensed
systems. Rep. Prog. Phys., 74:026502, 2011.

[9] W. L. McMillan. Ground state of liquid He4. Phys. Rev., 138:A442, 1965.

[10] D. Ceperley, G. V. Chester, and M. H. Kalos. Monte Carlo simulation of a many-fermion
study. Phys. Rev. B, 16:3081, 1977.

[11] H. Conroy. Molecular Schrödinger equation. II. Monte Carlo evaluation of integrals. J.
Chem. Phys., 41:1331, 1964.

[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations
of state calculations by fast computing machines. J. Chem. Phys., 21:1087, 1953.

[13] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57:97, 1970.

[14] R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 1998:1, 1998.

[15] C. J. Umrigar. Accelerated Metropolis method. Phys. Rev. Lett., 71:408, 1993.

[16] R. Assaraf and M. Caffarel. Zero-variance principle for Monte Carlo algorithms. Phys. Rev.
Lett., 83:4682, 1999.

[17] R. Assaraf and M. Caffarel. Computing forces with quantum Monte Carlo. J. Chem. Phys.,
113:4028, 2000.

[18] R. Assaraf and M. Caffarel. Zero-variance zero-bias principle for observables in quantum
Monte Carlo: Application to forces. J. Chem. Phys., 119:10536, 2003.

23



[19] R. Assaraf, M. Caffarel, and A. Scemama. Improved Monte Carlo estimators for the one-
body density. Phys. Rev. E, 75:035701(R), 2007.

[20] J. Toulouse, R. Assaraf, and C. J. Umrigar. Zero-variance zero-bias quantum Monte Carlo
estimators of the spherically and system-averaged pair density. J. Chem. Phys., 126:244112,
2007.

[21] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, London, 1996.

[22] U. Wolff. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett., 62:361–364,
1989.

[23] R. G. Melko and A. W. Sandvik. Stochastic series expansion algorithm for the S = 12 XY
model with four-site ring exchange. Phys. Rev. E, 72:026702, 2005.

[24] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes. Cambridge
University Press, Cambridge, 1992.
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