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PAPER
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Abstract
Matter-wave interferometers utilizing different isotopes or chemical elements intrinsically have
different sensitivities, and the analysis tools available until now are insufficient for accurately
estimating the atomic phase difference undermany experimental conditions. In this work, we describe
and demonstrate two newmethods for extracting the differential phase between dual-species atom
interferometers for precise tests of theweak equivalence principle (WEP). Thefirstmethod is a
generalized Bayesian analysis, which uses knowledge of the systemnoise to estimate the differential
phase based on a statisticalmodel. The secondmethod utilizes amechanical accelerometer to
reconstruct single-sensor interference fringes based onmeasurements of the vibration-induced phase.
An improved ellipse-fitting algorithm is also implemented as a thirdmethod for comparison. These
analysis tools are investigated using both numerical simulations and experimental data from
simultaneous 87Rb and 39K interferometers, and both new techniques are shown to produce bias-free
estimates of the differential phase.We also report observations of phase correlations between atom
interferometers composed of different chemical species. This correlation enables us to reject
common-mode vibration noise by a factor of 730, and tomake preliminary tests of theWEPwith a
sensitivity of1.6 10 6× − permeasurement with an interrogation time ofT=10ms.We study the level
of vibration rejection by varying the temporal overlap between interferometers in a symmetric timing
sequence. Finally, we discuss the limitations of the new analysismethods for future applications of
differential atom interferometry.

1. Introduction

Einstein’s equivalence principle (EEP) is a fundamental concept in physics that describes the exact
correspondence between the gravitational and inertialmass of any object. It is a central assumption of the theory
of general relativity—which interprets gravity as a geometrical feature of space–time, and predicts identical
accelerations for different objects in the same gravitational field. Precise tests of the EEP are of great interest in
various fields of physics. For instance, some theories that attempt to unify gravity with the other fundamental
forces predict a violation of this principle [1, 2]. The detection of such a violation could aid our understanding of
dark energy in cosmology, and advance the search for physics beyond the standardmodel. In contrast, null
results are also pivotal for putting bounds onmodel parameters contained in various extensions to general
relativity [3–5]. The equivalence principle is generally divided into three sub-principles that eachmust be
satisfied for the EEP to hold [6, 7]: the local Lorentz invariance, the local position invariance and theweak
equivalence principle (WEP). In this article, wewill focus on the latter.

TheWEP—otherwise known as the universality of free fall—states that a charge-free bodywill undergo an
acceleration in a gravitational field that is independent of its internal structure or composition. Tests of theWEP
generally involvemeasuring the relative acceleration between two different test bodies that are in free fall with
the same gravitational field. TheWEP is characterized by the Eötvös parameter, η, given by
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where a1 and a2 are the accelerations of the two bodies, a a a1 2Δ = − is the relative acceleration, and
a a a( ) 21 2= + is the average acceleration. TheWEP is satisfied if and only if a 0Δ = —implying that 0η = .

Themost precise tests of theWEPhave been carried outwith lunar laser ranging techniques [8], or using a
rotating torsion balance [9, 10], which have bothmeasured η at the level of a few parts in 1013. Various Space
missions to test theWEP at improved levels (10−15 or better) using other classical devices are presently in
progress [11–13]. On a separate frontier, a number of groups have carried out tests between cold atoms [14–18]
in an effort to probe theWEP at the quantum level. Themajority of these tests have been conducted using
matter-wave interferometers which, over the past few decades, have been extensively studied both theoretically
and experimentally [19–22]. Atom interferometers have been utilized as ultra-precise inertial sensors to
measure, for example, the gravitational acceleration g [23–26], the gravitational constantG [27–29], gravity
gradients [25, 30–33], gravitational field curvature [34], and rotations [35–38]. AWEP test based on atom
interferometry involvesmeasuring the differential phase shift resulting from a relative acceleration between two
species with differentmasses that are in free fall within the same gravitational field. Thismeasurement is based
on the same principle as gravity gradiometry, where the quantity of interest is the differential phase between test
atoms of the same type but in different spatial locations. The gradient of the gravitational field can be extracted
from the differential phase between two sources, while higher derivatives of thefield can be accessed ifmore than
two sources are used. This techniquewas recently demonstrated tomeasure the curvature of the gravitational
field, and has been proposed to detect gravitational waves and to study geophysical effects [39–41]. Presently, the
state-of-the-art forWEP tests usingmatter-wave interferometry corresponds to an uncertainty of 3 10 8× − [18].
A comparison between the gravitational accelerationmeasured by atoms and amacroscopic object (i.e. a falling
corner-cube) have also been carried out, and yield agreement at the level of 6.5 10 9δη ≃ × − [42]. A handful of
ground-based [43–46] andmicro-gravity-based [41, 47–50] cold-atom experiments are currently underway
that aim to greatly improve this precision. In addition, there have been a number of proposals for Space-based
quantum tests of theWEP [7, 51–54] that target accuracies at the level of 10−15.

So far,most tests with cold atoms have used two isotopes of the same atomic element, e.g. 85Rb and 87Rb
[14, 15, 18, 55], or 87Sr and 88Sr [16]. Although this class of test bodies has demonstrated a good level of
common-mode noise rejectionwhen performing differential phasemeasurements [15], it is intrinsically less
sensitive to possible violations of the equivalence principle because the two atoms are relatively similar inmass
and composition. Thus, it is interesting to perform these tests with two entirely different atomic elements. In this
article, wewill focus on the case of 87Rb and 39K. These atoms exhibit a large difference in their number of nuclei
—facilitating amass ratio of M M 2.2Rb K ∼ . Additionally, they have identical hyperfine spin structure, and
similar excitationwavelengths (around 780 and 767 nm, respectively), which enables the use of the same laser
technology and optics for cooling and interferometry. Dual-species interferometers of this type have the added
advantage of being highly independent—that is, atomic sample properties such as the size and temperature, or
interferometer parameters such as the interrogation time, Raman phase, and detuning, can be controlled
independently. In contrast to dual-isotope setupswheremany of these parameters are coupled, this feature is
ideal for studying a variety of systematic effects that will be important for future precisionmeasurements [55].
For amore complete comparison of alkali atoms as candidates forWEP tests, see for example [56].

One complication that arises with non-common elemental species is a difference in the scale factors,
S k Tj j j

eff 2≃ , between the interferometers.When the interrogation timesTj are the same, this difference

originates from the effective wave vectors kj
eff of the interferometer beams used for atoms j=1 and 2. Assuming

that theWEP is true, the phase shift of the two interferometers due to a common acceleration a is S aj jΦ = .
Thus, a difference in the scale factors produces a relative phase shift between interferometers for the same
acceleration: S S a( )d

sys
1 2δϕ = − . For the case of 85Rb and 87Rb, the scale factors can bemade the same by a

suitable choice of Raman laser detuning that guarantees k k1
eff

2
eff= [52].However, this is not generally possible

for different chemical elements, and the systematic phase shift must be addressed in otherways.
Another issue related to having different scale factors regards the rejection of common-mode vibration noise

between interferometers. From an analysis of the interferometer transfer functions (see appendix C or
[52, 57, 58], for instance), one can show that perfect common-mode rejection requires four conditions to be
satisfied: (i) the interferometers occur simultaneously withT T1 2= , such that they experience the same vibration
noise, (ii) they have identical wave vectors, k k1

eff
2
eff= , they exhibit (iii) identical effective Rabi frequencies,

1
eff

2
effΩ Ω= , and (iv) identical pulse durations, 1 2τ τ= . These conditions imply that if S S1 2= , the

interferometers do not respond to common-mode noise with the same phase shift.
The scale factors can bemade the same by adjusting the interrogation times of the interferometers such that

T rT1 2= , where r k k2
eff

1
eff= [48]. This technique eliminates the systematic phase shift d

sysδϕ resulting from a
constant acceleration, and improves the rejection of common vibration noise at frequencies T1 1≲ , but it

2
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degrades the rejection efficiency at frequencies above T1 1∼ (see appendix C).However, if the ratio r is very close
to unity, as it is for some choices of atoms (r 1.009≃ for 39K and 87Rb), this option represents a good
compromise between efficient noise rejection and reducing systematic effects.

In this article, we describe and demonstrate three analysismethods for atom-interferometricWEP tests—
including two new techniques that eliminate both aforementioned problems of systematic phase shifts and
diminished common-mode rejection between coupled interferometers of different atomic species. Thefirst of
these two newmethods is a generalized Bayesian analysis of the Lissajous curves formed by plotting the coupled
sensormeasurements parametrically. The second technique involves restoring the interferometer fringes by
correlatingwith an auxiliarymechanical accelerometer. In this case, the phase shift for each species can be
measured directly from the reconstructed fringes regardless of their scale factors or the degree of temporal
overlap between the interferometers. Both of these newmethods intrinsically account for different scale factors,
and return unbiased estimates of the differential phase. Finally, to give a complete picture, we compare these
techniqueswith an improved ellipse-fittingmethod recently developed by Szpak et al [59]. This numerical
procedure yields an estimate of the differential phase shift with reduced bias compared tomore commonly
implemented algorithms in the presence of significant amounts of uncorrelated noise between sensors.

In this work, we also report correlated phasemeasurements between simultaneous interferometers of
different chemical species (39K and 87Rb).When operated in an environment with significant levels of
vibration noise, we demonstrate a common-mode vibration rejection factor of 730γ ≃ . These results
represent amajor step toward precise tests of theWEPwith elements exhibiting vastly differentmasses.We
also investigate the accuracy of the three aforementionedmethods on experimental data obtained from the
K–Rb interferometer.

The article is organized as follows. Section 2 reviews some theoretical background concerning aWEP test
with a dual-species interferometer. In section 3, we briefly describe the threemethods of extracting the
differential phase.We give a brief description of the experimental setup for theK–Rb interferometer in section 4.
We present our experimental results in section 5, andwe give a discussion of the advantages and limitations of
the newmethods in section 6. Finally, we conclude in section 7. A detailed description of the three analysis
methods, including extensive numerical tests of the generalized Bayesian estimator, can be found in the
Appendices.

2. Testing theWEPwith two atomic species

An atom-interferometric test of theWEP involvesmeasuring the relative acceleration between two atoms of
differentmass. This can be done in one of twoways: (i) the absolute acceleration of each atom, a1 and a2, can be
individuallymeasured and subtracted, or (ii) aΔ can bemeasured directly from the differential phase, dϕ . In the
ideal case, accelerationmeasurements are performed simultaneously in order to take advantage of correlated
noise between sensors—reducing the total uncertainty in aΔ . Sincemethod (ii) involves a directmeasurement
of dϕ , it intrinsically requires both simultaneity and phase correlation between atomic sensors to reject
common-mode noise.Henceforth, two ormore atom interferometers that satisfy these conditions are referred
to as ‘coupled sensors’.Method (i) can be carried out regardless of these two constraints. In this section, we
outline some theoretical background related to aWEP test withmethod (ii).

Generally, the output from two coupled atomic sensors is described by the following sinusoids

( )y a A S a B a( ) cos , (2 )1 1 1 1 1ϕ= + +

( )y a A S a B b( ) cos , (2 )2 2 2 2 2ϕ= + +

whereAj andBj are, respectively, the amplitude and offset of the interferometer fringes associatedwith sensor j
( j 1, 2= ). In principle, these two parameters can bemeasured and equations (2) can be recast in the normalized
form n y B A( )j j j j= − :

( )n a S a a( ) cos , (3 )1 1 1ϕ= +

( )n a S a b( ) cos . (3 )2 2 2ϕ= +

Here, a is an acceleration common to both atoms, Sj is the scale factor for interferometer j, and jϕ is a phase shift.
The scale factors can be computed exactly from the integral of the response function, fj(t), given by
equation (C.5):

( )S k f t t k T T( )d 2
4

, (4)j j j j j j j
jeff eff ⎛

⎝⎜
⎞
⎠⎟∫ τ

τ
π

= = + +
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where kj
eff is the effective wave-vector for the counter-propagating interferometer beams,Tj is the interrogation

time, and jτ is the 2π Raman pulse duration. A detailed explanation of the response function and its role in
WEP tests is outlined in appendix C. For large interrogation times,Tj jτ≫ , the scale factors reduce to thewell-

known relation S k Tj j j
eff 2≃ .

The phases jϕ each have three contributions, one from the interferometer laser phase j
laserϕ , one from

parasitic systematic effects j
sysϕ , and one from theWEP signal j

WEPϕ

. (5)j j j j
laser sys WEPϕ ϕ ϕ ϕ= + +

In an experiment, the laser phase is a control parameter which can be set to zero, and systematic effects are
independently nullified asmuch as possible. The shift due to aWEP violation can be defined as

S a a( )j j j
WEPϕ = − , which is expected to be very close to zero. In the ideal case, the total interferometer phase jΦ

contains only the shift due to themean acceleration, S aj , and aWEP violation. It then follows that

S a S a . (6)j j j j jϕΦ = + =

In this case, the total phase of each interferometer can be related to the Eötvös parameter in the followingway

S S

a

a

a
. (7)1 1 2 2η = Φ − Φ = Δ

In principle, the sensitivity in this type ofWEP test increases as the square of the interrogation time,T T T1 2∼ ∼ ,
due to the scale factors, Sj, that appear inversely in equation (7).

The general formof equations (3) describes a Lissajous curve. For the purposes of this analysis, it is useful to
redefine the phases in equations (3) to reduce the number of free parameters. Choosing sensor 2 as a reference to
rescale the phase of sensor 1, we define a commonphase cϕ that satisfies

S a a, (8 )c 2 2ϕ ϕ≡ +

S a b. (8 )c d 1 1κϕ ϕ ϕ+ ≡ +

Here, we introduce two newparameters—the scale factor ratio κ and the differential phase dϕ —which are
constrained from equation (8) to be

S

S
, . (9)d 1 2

1

2
ϕ ϕ κϕ κ= − =

The sensor outputs are now recast with cϕ as the primarily parameter

( ) ( )n acos , (10 )c c d1 ϕ κϕ ϕ= +

( ) ( )n bcos . (10 )c c2 ϕ ϕ=

Comparing equations (6), (7) and (9), it follows that the Eötvös parameter is directly proportional to the
differential phase:

S a
. (11)d

1
η

ϕ
=

3. Correlativemethods of differential phase extraction

In this section, we review three differentmethods tomeasure the differential phase from experimental data:
ellipse fitting, Bayesian analysis and fringe reconstruction frommirror accelerationmeasurements.

3.1. Improved ellipsefitting
The ellipse fitting techniquewasfirst applied to atom interferometry in [60] for situations inwhich the phase
common to two coupled atomic sensors is sufficiently scrambled to impede individual fringe observation. In this
case, when themeasurements from each sensor are plotted parametrically, one obtains an ellipse that is free from
commonphase noise. Using a least-squares ellipse fitting algorithm, the differential phase dϕ can be extracted.
Multiple groups have demonstrated the utility of ellipse fitting formeasurements of gravity gradients [32, 33]
and the gravitational constantG [27, 28, 61]. However, this technique suffers from anumber of drawbacks. First,
it is valid only for coupled sensors with the same scale factor ( 1κ = ). Second, in the presence ofmoderate

4
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amounts of noise in the fringe offsets or amplitudes (the parametersAj andBj in equations (2)), or in the
differential phase, the ellipse fit returns a biased estimate of3 dϕ .

Recently, Szpak et al [59] developed an algorithmbased on the optimization of the approximatemaximum
likelihood distancewhich seeks a balance between costly geometricmethods and stable algebraic techniques.
This algorithm—termed the FGEFmethod—exhibits a smaller bias in the differential phase estimate over a
relatively large phase range (centered on 2π ) compared to themore commonly used ‘direct ellipse fit’ (DEF)
technique [62]. Additionally, [63] includes error estimations for the geometricallymeaningful ellipse
parameters (center coordinates, axes and orientation).We have extended their work to include an estimate of
the statistical uncertainty in the differential phase, dδϕ .We provide amore detailed comparison betweenDEF
and FGEFmethods of ellipse fitting in appendix A.

3.2. Generalized Bayesian analysis
Heuristic approaches to estimating the differential phase, such as ellipse-fittingmethods, do not have knowledge
of the noise present in experimental data, nor of how various types of noise can affect the outcome of
measurements. Bayesian analysis offers an efficient alternative to the problemby constraining the estimate based
on a statisticalmodel that describes the distribution of data that results fromdifferent noise sources [64].
Bayesian phase estimationwas studied in the context of atom interferometry in [65] for two sensors containing
the same scale factor ( 1κ = ). In thatwork, a detailed study of each possible noise source (amplitude, offset and
differential phase) is presented. Reference [56] also used Bayesian analysis to estimate the differential phase from
a hypothetical systemwith 1κ < . There, however, only noise in the differential phase is considered, and the
range of commonphase was constrained to [0, ]cϕ π∈ . To the best of our knowledge, no complete Bayesian
estimator exists that (i) is valid for any scale factor ratio, (ii) accounts for noise in all relevant systemparameters,
and (iii) allows cϕ to vary over a broad range. Furthermore, this type of analysis has not yet been demonstrated
on experimental data fromdual-species interferometers.

In this work, we have developed a generalized Bayesian estimator for dϕ —based on the approach of [65]—
that satisfies all three of the requirementsmentioned above.We demonstrate this technique bymeasuring dϕ
fromboth simulated data (see appendix B) and experimental data fromourK–Rb interferometer (see section 5).
The advantage of using this estimation technique is that the uncertainty in dϕ convergesmuch faster than other

methods (i.e. it scales as N1∼ , whereN is the number ofmeasurements), so fewer data are required to reach a
given level of sensitivity. Furthermore, since κ is built directly into the Bayesian estimate of dϕ , it is free from the
aforementioned systematic phase shift d

sysδϕ arising between interferometers with different scale factors.
However, some of the drawbacks of the Bayesian analysis are that it requires a priori knowledge of the noise in
the system, and it is computationally costly due to the large number of integrals thatmust be evaluated.

Figure 1 illustrates the basic Bayesian estimation procedure. Here, we simulate data that follow the Lissajous
equations (10)with addedGaussian noise in the sensor offsets. After each successivemeasurement from the
system, thewidth of the new ‘prior’ probability distribution decreases and additional peaks are suppressed—

Figure 1.The process of Bayesian estimation of the differential phase dϕ from synthetic data following a Lissajous curve. (a) Randomly
chosen points (labelled 1–4) following equations (10)withGaussian noise added ton1 andn2. For the actual Lissajous curve (shown as
the black curve), we chose 0.8κ = and 1d

actϕ = rad for illustrative purposes. (b) The prior probability distribution computed from
Bayes’ algorithm after eachmeasurement. The vertical solid line indicates the differential phase used in the simulation. (c) Error in the
Bayesian estimate after successivemeasurements. Points represent the difference between d

estϕ and d
actϕ (i.e. the systematic error),

where d
estϕ is the Bayesian estimate based on themaximum likelihood value from the corresponding prior distribution. The error bars

indicate the statistical uncertainty, which are computed from the standard deviation of the prior distributions shown in (b).

3
Rosi et al [34] demonstrated that the bias in the estimate of dϕ can be eliminated under certain conditions whenfitting an ellipse in three

dimensions from the output of three simultaneous interferometers.
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facilitating an improvement in the estimate of dϕ . This is how the Bayesianmethod builds in information from
previousmeasurements. It is clear from figure 1(c) that after only a few iterations, both the statistical and
systematic error in dϕ have decreased dramatically. A detailed description of the generalized Bayesian analysis
can be found in appendix B.

3.3. Fringe reconstruction by accelerometer correlation—the differential FRACmethod
Differential atom interferometry is often utilized under conditions where each sensor is overwhelmed by
external phase noise that is common to both sensors. Typically, one is concernedwith only the differential phase
and not the common phase cϕ , which is treated as an arbitrary parameter. Both the ellipse-fitting andBayesian
estimationmethods for extracting dϕ take this approach. An alternative technique involvesmeasuring the
commonphase and correcting for it. For the case of parasiticmirror vibrations, single-sensor interference
fringes that are otherwise smeared by phase noise can be restored based onmeasurements from seismometers
[66–68] ormechanical accelerometers [41, 69, 70].Henceforth, we refer to this as the fringe reconstruction by
accelerometer correlation (FRAC)method. In this work, we demonstrate how the FRACmethod can be applied
to two quasi-simultaneous interferometers of different atomic species tomeasure the relative phase shift
between them. This technique to extract dϕ is referred to as the differential FRACmethod throughout the article
to differentiate between the (standard) FRACmethod, which is generally employed tomeasure the absolute
phase shift of a single atom interferometer.

Figure 2 illustrates the basic schematic of the FRACmethod for a single interferometer. Amechanical
accelerometer is secured to the back of the referencemirror used to retro-reflect interferometry light, and the
time-dependentmirror acceleration, a t( )vib , is recorded during the interferometer sequence. These acceleration
measurements arefirst weighted by the response function of the jth interferometer, fj(t), and are then integrated
tofind the vibration-induced phase given by4

Figure 2. Schematic of the FRACmethod for a single interferometer. Amechanical accelerometer ismounted to the back of the retro-
reflectionmirror for the Raman beam (withwave vectors k1 and k2). Accelerationmeasurements during the interferometer sequence
are weighted by the response function f(t) (see equation (C.5)) and integrated to obtain the phase estimate vibϕ . Correlating this phase
with the interferometer signal during the same time interval reproduces the interference fringe.

4
The underlying assumption of this technique is thatmotion of the referencemirror at frequencies within the response bandwidth of the

mechanical accelerometer are responsible for phase changes of the atom interferometer. Although the corresponding acceleration signal is
indistinguishable fromfluctuations in local gravity (as a consequence of the equivalence principle), we can be confident in our assumption
since typical variations in gravity occur on timescalesmuch larger than T2 .
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k f t a t t( ) ( )d . (12)j j j
vib eff vib∫ϕ =

For each repetition of the experiment, this randomphase is computed and correlatedwith the interferometer
signal. This process allows one to reconstruct the interference fringes point-by-point. Depending on the level of
vibrations and the interferometer sensitivity, the range of vibration-induced phases can spanmultiple fringes—
enabling the single-sensor phase shift jϕ to bemeasured using, for instance, a sinusoidal least-squares fit to the
data. It is straightforward to extend this algorithm for two ormore interferometers, which do not need to be
overlapped in time. In this case, the only additional requirement is that the time-series ofmirror acceleration
measurements span the interrogation times for all interferometers. For two coupled sensors, the differential
phase is easily computed from the individual sensor phase shifts via d 1 2ϕ ϕ κϕ= − . The statistical error in this
quantity is governed by

( ) ( ) ( ) ( )( )2 , (13)d
2

1
2

2
2

, 1 21 2
δϕ δϕ κδϕ κϱ δϕ δϕ= + − ϕ ϕ

where the jδϕ represent the statistical uncertainties in the jϕ obtained from fits to the two fringes, and ,1 2
ϱϕ ϕ is the

correlation coefficient for themeasurements of 1ϕ and 2ϕ . In the limit of perfect correlation ( 1,1 2
ϱ =ϕ ϕ ), the

uncertainty in the differential phase reduces to d 1 2δϕ δϕ κδϕ= ∣ − ∣. Figure 3(a) illustrates how the coupled-
interferometer correlation is utilized by the differential FRACmethod. Since the fringes for each interferometer
are recovered usingmeasurements from the same classical device, the phase noise present on each fringe is
highly correlated. This induces a correlation between themeasurements of 1ϕ and 2ϕ extracted from thefits, as
characterized by ,1 2

ϱϕ ϕ . The key to the differential FRACmethod ismaximizing this correlation to reduce the
uncertainty in dϕ .

The correlation coefficient for a given set of reconstructed fringes can be estimated numerically from a large
sample of simulated data.Wefind that it is sensitive to experimental parameters such as the level of uncorrelated
noise on each sensor, the scale factor ratio and the differential phase. For instance, figure 3(b) shows the
dependance of ,1 2

ϱϕ ϕ on dϕ for synthetic fringes that contain non-commonphase noise with a standard deviation

of 0.1 rad. The correlation coefficient yields amaximumwhen the interferometers are perfectly in-phase or π
radians out-of-phase. This is an ideal feature forWEP tests, since themaximum sensitivity occurs exactly at the
expected signal of 0dϕ = . This implies that, unlike ellipse-fittingmethodswhere the sensitivity is optimized at

2dϕ π= , one does not need to engineer an additional phase shift between the atoms to optimize the sensitivity
and reduce systematic bias. Furthermore, a recent study of a gradiometer configuration (i.e. 1κ = ) has shown
that the differential FRACmethod can reach sensitivities close to the quantum-projection-noise limit when
modest levels of uncorrelated phase noise are present [71].

A number of ideal featuresmake this technique interesting for both absolute and differential atom
interferometry experiments.

(1)The differential FRAC estimate of dϕ is precise and unbiased over the full phase range [0, ]dϕ π∈ , since it
relies on least-squares fits to individual fringes.

(2)It is simple, fast, and computationally low in cost—allowing the interferometer phase to be corrected in real-
time [70], or by post-processing the data [66, 67, 69].

Figure 3. (a) Schematic illustrating the source of correlation in the differential FRACmethod. The signal from each atom
interferometer (AI), exhibiting a known scale factor Sj and unknownphase shift jϕ , is directly correlated (indicated by the solid lines)
with a common vibration phasemeasured by amechanical accelerometer (MA). Since the resulting fringes are derived from a
common source,measurements of each jϕ are highly correlated, as indicated by the dotted lines and characterized by the positive
coefficient ,i j

ϱϕ ϕ . This technique can be extended formultiple coupled interferometers (shown in gray), althoughwe focus on the case

of only two. (b) Correlation coefficient ,1 2
ϱϕ ϕ as a function of dϕ estimated from a large sample of simulated fringes. Here, we assumed

1κ = andwe added non-commonGaussian noise to the phase of the reconstructed fringes with a standard deviation of 0.1
d

σ =ϕ rad.
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(3)Unlike the Bayesian analysis, the FRAC method does not require any a priori information about the
interferometer offsets, contrasts, and noise parameters—which can be challenging tomeasure accurately
without phase stability [72].

(4)Systematic phase shifts in dϕ due to non-identical pulse durations jτ and Rabi frequencies j
effΩ [15] are

accounted for in the estimates of j
vibϕ for each interferometer. Such systematics will be important to consider

in future long-baseline differential interferometry experiments [7, 44–46, 51–54].

(5)The relative timing between coupled interferometers can be freely chosen—they need not be overlapped.
This is a unique feature to dual-species interferometers that do not share the sameRaman beams.Unlike the
ellipse-fitting andBayesian techniques, the FRACmethod allows one to extract absolute phase information
from each sensor. Varying the temporal overlap between interferometers can be useful for studying a variety
of effects, such as the level of correlation between sensors, or systematics related to the interaction between
atoms [55].

(6)Single-sensor fringes can be accurately measured in ‘noisy’ environments, which is ideal for mobile sensors
such as atomic gravimeters [26, 41, 68, 69].

Although the standard FRACmethod is conceptually simple to implement, the drawback is that it is sensitive
to errors in themeasurements of vibrations. Such errors include the quality of coupling between themirror and
themechanical device, electronic noise in the signal acquisition, the level of self-noise of the device, drifts in the
offset or sensitivity factor, and nonlinearities in both the amplitude and frequency response. The natural low-
passfiltering feature of atom interferometers can alleviate some of these effects—particularly those that
dominate at frequencies beyond the cut-off frequency T1 2 j. Alternatively, themechanical accelerometer can be
used as a coursemeasurement of the phase to identify the correct interferometer fringe. Then one can use the
atom interferometer output to refine the phasemeasurement [69, 70] by inverting the sinusoidal relation (2).
On the other hand,measurements of dϕ using the differential FRACmethod aremuch less sensitive tomany of
these noise sources since they are common to two simultaneous interferometers.We discuss the limitations of
thismethod inmore detail in section 6.

4.Description of the Interférométrie Cohérente pour l’Espace (ICE) experiment

ICE is an experiment that aims tomeasure ηusing a dual-species interferometer of 87Rb and 39K. It is designed to
be transportable and to operate in themicro-gravity environment provided by theNovespace Zero-g plane
[41, 48, 69, 73]. In this section, we give a brief description of the experimental setup.

A detailed description of the telecom-frequency fiber-based laser systemused on ICE can be found in
[41, 74]. For each atomic species, we utilize amaster-slave architecture, where themaster laser diode is locked to
either a saturated absorption peak (in the case of rubidium), or to a frequency comb (in the case of potassium).
The slave lasers are frequency-locked to their correspondingmaster through an optical beat-note in the 1550 nm
telecomband. After second harmonic generation to 780 nm for 87Rb and 767 nm for 39K, the frequency of each
slave laser can be precisely adjusted over∼1.3 GHzwithin∼2ms of settling time. Approximately 1.5Wof total
light is available in each slave beambefore entering a free-space optical bench. Thismodule is composed of a
series of shutters and acousto-opticmodulators (AOMs) that are used to split, pulse and frequency shift the light
appropriately for cooling, state preparation, interferometry and detection. Finally, the 780 and 767 nm light is
coupled into a series of single-mode, polarization-maintaining fibers and sent to the vacuum chamber. The two
frequencies required for cooling and repumping, as well as driving Raman transitions in 87Rb, are generated via a
broadbandfiber-based electro-opticmodulator operating near 6.8 GHz. Similarly, anAOMoperating in dual-
pass configuration at∼230MHz is used to generate these frequencies for 39K.

The sensor head is composed of a non-magnetic titanium vacuumchamber surrounded by a μ-metal shield.
The chamber resides within three nestedHelmholtz coils used to compensate residualmagnetic fields and to
generate a bias along the vertical axis. A custom2-to-6wayfiber splitter is used to combine the 780 and 767 nm
light intended for laser cooling without significant power loss via a polarizing cube and a dichroic wave plate.
The splitter subsequently divides the light equally into six beams that are re-coupled into independent fibers
used for the dual-species vapor-loadedmagneto-optical trap (MOT). In a similar way, light for both detection
and interferometry is overlapped in a free-space 2-to-1wayfiber combiner for 780 and 767 nm. The∼2 cm
diameter beams output from the combiner have the same linear polarization, and are aligned along the vertical
direction through the atoms. A quarter-wave plate (fabricated for the intermediate wavelength of 773 nmand
mounted in front of the retro-reflectionmirror) rotates the polarization of the Raman beams by 90° such that
the counter-propagating fields have lin lin⊥ polarization.
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A typical experimental sequence for theK–Rb interferometer is shown infigure 4 and is carried out as
follows. TheMOTbeams load approximately 2 108× (7 107× ) atoms in 0.5 s, which is followed by a 7ms (5
ms)molasses cooling stage for the 87Rb (39K) sample. In addition to cooling, the rubidiummolasses stage also
pumps the atoms into the F 2∣ = 〉 ground state. This is followed by amicrowave π-pulse that transfers atoms
into F m1, 0F∣ = = 〉, and the remaining atoms are removedwith a push beam resonant with the F=2 to F 3′ =
transition. During the potassiummolasses, the frequency and intensity of the cooling and repumpbeams are
modified in a similarmanner to [75, 76]. At the end of themolasses, the atoms are in a superposition of both
hyperfine ground states, which is a critical part of the coolingmechanism for potassium [75].We detune our
767 nmpush beam to the red of the F=2 to F 3′ = transition by∼17MHz (2.9Γ) to optically pump the atoms
into the F=1 level with a 3 μs pulse. Following this depumping stage, the 39K atoms are distributed roughly
equally amongst themagnetic sub-levels of the lower hyperfine ground state.With this system,we achieve
temperatures of∼3 μK for 87Rb and∼20 μK for 39K, as confirmed by both time-of-flight imaging and velocity-
sensitive Raman spectroscopy. After preparing the internal atomic states, we typically wait∼12ms for the atoms
to fall such that theDoppler resonance of both sets of counter-propagating Raman beams becomes non-
degenerate. Additionally, we apply an externalmagnetic biasfield between 1 2− Gauss to shift the
F m1, 1F∣ = = ± 〉 states of potassium away from the centralmF=0 state onwhichwe perform interferometry.
The frequency of the Raman beams for both species is detuned by 1.2− GHz ( 200− Γ)relative to the F=2 to
F 3′ = transition.We then apply the interferometry pulses in a symmetric fashion, such that the central π-pulse
for both interferometers occurs at the same time, as shown infigure 4. The delay between the 2π pulses for
either atom, TRb, KΔ , can be adjustedwithin the interrogation time of the rubidium interferometer,TRb, in order
to study correlations and effects related to the scale factor ratio, κ. Finally, wemeasure the atomic state
populations for each atom viafluorescence detection on an avalanche photodiode (50MHz bandwidth)within
100 μs of one another.

5. Experimental results

Wenowdescribe some experimental results obtained from theK–Rb interferometer. All of the data presented in
this workwere recorded in a laboratory environment, with the interferometer beams aligned along the vertical
direction, andwith no anti-vibration platform. To compensate for theDoppler shift due to gravity, the
frequency difference betweenRaman beams for interferometers j 1 K= ≡ and j 2 Rb= ≡ is chirped at a rate
of k gj j

effα ≃ to account for the gravity-inducedDoppler shift of the falling atoms. Thismodifies the total phase
shift of the interferometers from equations (2), S aj j jϕΦ = + , to the following

( ) ( )S a k k g T . (14)j j j j j j j j
eff eff 2α ϕ αΦ = − + ≃ −

The last expression represents the casewhen both interferometers experience the same acceleration, a a gj = = ,

and the scale factors can be approximated as S k Tj j j
eff 2≃ . Determining the location of the central fringe, for

which k gj j
effα = isfixed for allTj, yields ameasurement of g. Using the fact that the sensitivity of the

interferometer scales asTj
2, absolutemeasurements of g have been demonstrated at accuracies of a few 10−9

[24, 68, 77, 78].

Figure 4. Symmetric timing sequence for theK–Rb interferometer. Thefirst Raman pulse of the 39K interferometer is delayed by
TRb Rb, Kτ + Δ relative to that of 87Rb such that the central π-pulse of both interferometers occurs at the same time. The preparation

stages (shown in blue) include both the internal state preparation pulses (microwave + push beam for 87Rb, depump for 39K), and the
external state preparation via time-of-flight. Raman pulses are shown in green, and detection pulses in orange.
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As discussed in the introduction, we are interested inmeasuring the differential acceleration aΔ between 39K
and 87Rb.Oneway of achieving this is tomeasure the gravitationally-induced accelerations gK and gRb from each
interferometer independently by scanning the chirp rates, jα , in a low-noise environment. This is the approach
recently employed forWEP tests with 39K and 87Rb by Schlippert et al [17].However, at high levels of sensitivity
(i.e. largeTj), or in ‘noisy’ environments,mirror vibrations can corrupt the fringes—making individual phase
measurementsmore challenging.We nowdemonstrate the utility of the FRAC technique formeasuring g from a
single interferometer under these conditions.

There are typically two approaches inwhich the FRACmethod can be applied to restore the interference
fringes of a single interferometer. Thefirst approach is to let the interferometer phase be ‘scanned’ randomly by
vibrationswhile the laser-induced phase is held fixed. The reconstructed fringes in this case are purely a function
of j

vibϕ , as shown infigure 2. Thismode of operation can be used to precisely calibrate themechanical

accelerometer by rescaling the voltage-to-acceleration sensitivity factor of the device such that the fringe period
is5 2π . The second approach is to scan the interferometer phase in a controlledmanner, for example by varying
the phase difference betweenRaman lasers, and to correct each phase using vibϕ obtained during the same
measurement interval. This procedure is illustrated infigure 5, where the fringes of aT=25ms 87Rb
interferometer are shown before and after applying the FRAC correction.Here, the interferometer is operated
without any vibration isolation in the presence of a rootmean squared (rms) dc vibration noise of
a 6 10rms

vib 5≃ × − m s−2 (integrated over the frequency response of the interferometer)—corresponding to an

rms phase noise of k a T 0.6rms
vib

Rb
eff

rms
vib

Rb
2ϕ = ≃ rad. Accelerationmeasurements were performedwith a force-

balance three-axis accelerometer (Nanometrics Titan, dc to 430 Hz bandwidth, 5 V/g sensitivity). By applying
the FRAC correction to these data, we improve the signal-to-noise ratio (SNR) and hence the uncertainty
in the central fringemeasurement by almost an order ofmagnitude.We estimate an individual phase
correction uncertainty of 1 SNR 33vibδϕ = ≃ mrad based on the improved SNRof∼30.With thismethod,
we emphasize that the interferometer sensitivity is directly linked to the intrinsic noise of the accelerometer
+ signal acquisition system, and the quality of the coupling between the device and the Ramanmirror.
Therefore,modest improvements to any of these system components can result in a dramatic increase in the
fringe SNR.

5.1. K–Rb interferometer correlation
Typically, whenmirrormotion is the dominant source of phase noise it is advantageous to use differential atom
interferometry techniques tomeasure aΔ through the differential phase dϕ . This requires a high level of
correlation between interferometers in order to reject the common-mode phase noise.We now compare three
methods of extracting dϕ from experimental data recorded in an environment with high vibrational noise, as in
the case of onboard applications [58, 69]. These studies are also applicable to future high-sensitivity differential
interferometers operated in low-noise environments [44–46].

Figure 5. Interferometer fringes from the 87Rb interferometer operating atT=25ms at a contrast of 40%∼ without vibration
isolation. The interferometer phase is scanned by both uncontrolledmirrormotion, and by varying the chirp rate α betweenRaman
beams about a central value of 25.13550α = MHz s−1. The open circles indicate rawmeasurements of the normalized atomic
population in the F 2∣ = 〉 state, while the closed circles are the samemeasurements after applying the FRACphase correction, vibϕ , to
each point. A few of these corrections are shown as blue arrows. The solid curve is a least-squares fit to the corrected data, resulting in a
signal-to-noise ratio of∼30 and a relative statistical uncertainty of 10−7 in the determination of gRb—corresponding to almost an
order ofmagnitude improvement compared to the raw data.

5
One advantage of performing this procedure is that the device can be precisely calibrated for the vibration spectrumon site. Depending on

the bandwidth and spectral response of the device, the sensitivity can vary significantly with the vibration spectrum.
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Figure 6 shows data produced by quasi-simultaneous K–Rb interferometers at a total interrogation time of
T2 6= ms.Here, we held the chirp ratefixed at k gj j

effα ≃ for each species, andwe applied strong vibrations to

the system (a 0.05rms
vib ≃ m s−2) such that the randomvibration-induced phase j

vibϕ spannedmultiple fringes

( 7.3rms
vibϕ ≃ rad). The vibrations were applied bymounting a heavy industrial fan on top of the support structure

surrounding the vacuum system and running it during the experiment. Figure 6(a) shows a histogramof 87Rb
F 2∣ = 〉populationmeasurements, yRb, which clearly indicates the characteristic bimodal probability
distribution of a sinusoid. These distributions can be used to estimate the contrast, offset and SNRof the
interferometer fringes as described in [69].We note that the bimodal distribution is less pronounced for 39K in
figure 6(b) owing to a smaller fringe contrast, and thus a lower SNR, compared to 87Rb.Despite this fact, the two
sensors exhibit strong correlations, as confirmed by the ellipse infigure 6(c).

For these experimental parameters the scale factor ratio is S S 1.008K Rbκ = = , and the Lissajous curve
formed by parametrically plotting the atomic state populations, yRb and yK, is indistinguishable from an ellipse

at the present level of offset noise.Wemeasure a differential phase of 1.13(2)d
ellipseϕ = rad from a least-squares

fit to an ellipse using the FGEFmethod [59].We also estimate 1.18(2)d
Bayesϕ = rad using the Bayesian analysis

described in section 3.2 and appendix B.Here, it is worthmentioning that this non-zero differential phase does
not originate from aWEP violation, but from systematic phase shifts in the experiment—primarily due to the
quadratic Zeeman effect from an externalmagnetic biasfield (∼1G) that is used to sufficiently split the ground
statemagnetic sub-levels in 39K.

Figure 6(d) shows the output of each interferometer as a function of the vibration-induced phase, j
vibϕ . Here,

the single-sensor fringes were reconstructed using the FRACmethod usingmirror vibrationmeasurements
from a broadbandmicro-electro-mechanical accelerometer (Colibrys SF3600, dc to 1 kHz bandwidth, 1.2 V/g
sensitivity). From these data the differential phase shift between interferometers is clearly visible. Sinusoidal
least-squaresfits to each fringe yield 1.17(1)d

FRAC
K Rbϕ ϕ κϕ= − = rad.Here, the statistical uncertainty

d
FRACδϕ was computed from the quadrature sumof each interferometer phase error. The value of dϕ estimated

from the Bayesian analysis and the FRACmethod are in good agreement. On the other hand, the differential
phase from the ellipse fit is underestimated by∼40mrad, i.e. 2σ below d

Bayesϕ and d
FRACϕ .We attribute this

discrepancy to the inherent bias of ellipse-fitting techniques (see appendix A), which increases with the level of
offset noise or differential phase noise in either interferometer.

We emphasize that a crucial input parameter for the Bayesian analysis is the commonphase range.We use
the accelerometer data to estimate this range once the experiment is complete: [min( ), max( )]c Rb

vib
Rb
vibϕ ϕ ϕ∈ .

However, if an accelerometer is not available, it is also possible to estimate this range using the rawdata from a
single interferometer. For example, one can reduce the interrogation time until the sensitivity to vibrations
reaches a point where interference fringes are clearly visible. Bymeasuring the rms scatter of the phase about a
reference sinusoid, one can estimate the level of vibration noise via the relation a Srms

vib
rms
vibϕ= . Once arms

vib is
known, this relation can be inverted to determine the range of phase scanned by the same level of vibrations at
larger sensitivities/interrogation times.

Figure 6.Measurements of normalized F 2∣ = 〉 state populations from simultaneousK–Rb interferometers operating at T 3≃ ms.
Fringes are scanned randomly by applying vibrational noise to the retro-reflectionmirror. Graphs (a) and (b) show a time series of 500
measurements from the 87Rb and 39K interferometers, respectively, alongwith histograms of the populations. (c) Atomic populations
from (a) and (b) plotted parametrically—indicating strong correlation between the two species. The solid green line is an ellipse fit to
the data using the FGEFmethod, which yields a differential phase 1.13(2)d

ellipseϕ = rad. A separate estimate from aBayesian analysis
gives 1.18(2)d

Bayesϕ = rad. (d) Interferometer fringes reconstructed frommeasurements ofmirrormotion using the FRACmethod.
The red and blue curves correspond to least-squares fits to Rb andKdata, respectively. The differential phase estimated from thefits is

1.17(1)d
FRACϕ = rad.Other interferometer parameters: pulse separations: T 3.018Rb = ms, T 3K = ms; 2π -pulse durations: 4Rbτ =

μs, 6Kτ = μs; delay between interferometers: T 10K, RbΔ = μs; one-photonRaman detunings: 1.2Rb KΔ = Δ ≃ − GHz.
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The data shown infigure 6(d) also indicate that the combined differential-atomic-sensor +mechanical-
accelerometer system is capable of efficiently rejecting common vibrational noise.We estimate a rejection factor
of k a T 730d

eff
rms
vib 2 FRACγ δϕ= ≃ for these data.

Figure 7 displays the results of a correlation study between rubidium and potassium interferometers
operating at a total interrogation time of T2 20= ms. Similar tofigure 6, the interferometer phases are scanned
by externally applied vibrations (a 1.7 10rms

vib 3≃ × − m s−2, 2.7rms
vibϕ ≃ rad atT T 10Rb K= = ms). The vibrations

were applied using the samemethod as previouslymentioned, butwith the fan set on a slower rotation setting.
Here, we vary the interrogation time of potassium,TK, in a symmetric waywith respect to rubidium such that the
centers of the π-pulses coincide. This optimizes the degree towhich the vibration-induced phase noise remains
common-mode, whilemodifying the degree of temporal overlap between interferometers. It also allows us to
control the scale factor ratio since κ scales at T T( )K Rb

2.
From figure 7, three features are clearly visible asTK is decreased. First, the potassium fringes undergo a

phase shift thatmodifies the differential phase relative to the rubidium fringes. This feature, alongwith the fact
that the scale factor ratio is varied, causes the shape of the Lissajous figures to change, as shownby the solid green
curves. Second, the phase range scanned by the potassium interferometer reduces, since it scales asTK

2. Finally,
the level of correlation between the interferometers degrades as the temporal overlap decreases. This is evident
from the lack of agreement between the data and the predicted Lissajous curves, particularly forT 8K ≲ ms.

Regardless of this degradation of correlation and temporal overlap between interferometers, the differential
FRACmethod is able to restore the interference fringes with a good SNR (∼30 for 87Rb,∼10 for 39K, limited by
uncorrelated offset noise). The vibration rejection factor for each of the data sets shown infigure 7 is
approximately 100γ ∼ . This permits unbiased estimates of dϕ with a statistical uncertainty at the level of

25dδϕ ∼ mradwith 300 points—corresponding toWEP test with a statistical sensitivity of

k gT 1.6 10d Rb
eff

Rb
2 6δη δϕ≃ = × − per data set. The robustness of the differential FRAC technique under ‘noisy’

Figure 7.Correlation studies for different levels of temporal overlap. The symmetric, quasi-simultaneous K–Rb interferometer was
operatedwith T 10Rb = ms and the interrogation time for potassiumwas varied between T 6 10K = − ms. The interferometer phase
was scanned by externally applied vibrations and individual fringes were restored using the FRACmethod. Parametric plots of the
atomic populations are shown to the right, alongwith the expected Lissajous curve (solid green line). These curves result fromplotting
the fit functions to each reconstructed fringe parametrically. There is a clear disagreement between the predicted Lissajous curves and
the data for T T 2Rb K− ≳ ms.Other interferometer parameters: 3Rb Kτ τ= = μs; 1.2Rb KΔ = Δ ≃ − GHz.
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conditionsmakes it an ideal candidate for futureWEP tests [7, 53, 54], or other differential atom interferometry
applications [34, 40].

In contrast, for Bayesian estimation, an increase in uncorrelated phase noise is problematic.When the
‘commonphase’ becomes largely uncorrelated, the Bayesianmethod can converge onmultiple possible dϕ , or
may not converge at all. For these data, wefind that byT 9K = ms the Bayesian estimate of dϕ is not consistent
with the FRAC estimate, and forT 8K ≲ ms the analysis is not able to converge on a unique value.We note that
these particular results are strongly dependent on the level of phase noise, the degree of temporal overlap, the
value of dϕ and the scale factor of each interferometer. In the following section, we study some of these
dependenciesmore quantitatively.

5.2. Comparison of Bayesian andFRACmethods as a function of κ and dϕ
Wehave tested the functionality and accuracy of both the Bayesian and FRACmethods for extracting dϕ from
experimental data acquired under various conditions. Specifically, we are interested in the accuracy of these
techniques over (i) the full range of differential phase [0, ]dϕ π∈ , and (ii) a broad range of interferometer scale
factor ratios S SK Rbκ = . To investigate these two aspects, we recorded data using the symmetric interferometer
configuration shown infigure 4with different interrogation times,TRb andTK. Since κ is proportional to
T T( )K Rb

2, each configuration ofTj corresponds to a different scale factor ratio. Additionally, the differential
phase ismodifiedwith eachTK due to a systematic phase shift of the potassium interferometer from an external
magnetic field. Therefore, we are able to study both effects with a single data set.

Figure 8 shows a comparison betweenBayesian and FRAC estimates of dϕ , using the FRAC estimate as a
reference.We variedTRb from1 to 5ms, andTK independently in the vicinity ofTRb such that the scale factor
ratio wasmodified over a relatively broad range ( 0.45κ ≃ to 1.01). The phase noise due to the externally applied
vibrationswas kept quasi-common-mode between sensors by ensuring thatTK waswithin a few 100 μs ofTRb.
Over this range ofTRb andTK, we found that the differential phase ranged from roughly 0dϕ = to 2.8 rad as a
result of a systematic shift of the potassium interferometer. It is clear from figure 8 that there is a high degree of
correlation between the Bayesian and FRAC estimates, which is consistent with our expectations based on the
simulations discussed in section 3.2. The error bars in thisfigurewere computed from the combined statistical
uncertainties of bothmethods, which both typically yield 30dδϕ ∼ mrad at the present level of noise.

To summarize, wefind that the difference between the two estimates is consistent with zerowithin a typical
total uncertainty of∼40mrad. These data confirm that the two analysis techniques produce unbiased estimates
of dϕ for dual-species interferometers with vastly different scale factors.We discuss further the advantages and
limitations of these two techniques in the following section.

6. Advantages and limitations of themethods

As discussed in section 3.2, Bayes’method is optimally efficient and yields a statistical error that scales as N1 ,
compared tomore heuristic fitting techniqueswhich convergemore slowly. This improved efficiency is a clear
advantage of the Bayesian estimator compared to the FRAC analysis. However, the disadvantage is that it
requires a priori information about the system, such as noise levels and interferometer contrasts, and it requires

Figure 8.Comparison of differential phase estimates from the Bayesian and FRACmethods for various dϕ and κ. (a)Difference
between Bayesian and FRAC estimates d d

Bayes FRACϕ ϕ− as a function d
FRAC

K Rbϕ ϕ κϕ= − . The vertical error bars represent the
combined statistical uncertainty of both estimates. (b)Difference between Bayesian and FRAC estimates as a function of S SK Rbκ =
corresponding to each point in (a). Themajority of the data points shown in bothfigures are consistentwith zero towithin 1σ of
uncertainty, indicating agreement between the two techniques at the level of∼40mrad. The standard deviation of offset noise for each
data set was typically 0.20BKσ ≃ and 0.05BRbσ ≃ in the normalized space (n1 and n2). A value of 0.05

d
σ =ϕ radwas used for the

differential phase noise of all data sets. The range of commonphase noise was estimated from accelerometermeasurements.
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significant computational resources to evaluate. Furthermore, it is only a viable solution for simultaneous
interferometer configurations that exhibit a high-degree of phase correlation.

In contrast to the Bayesian estimator, the FRACmethod requires only the interferometer timing parameters
and a sensitive accelerometer that is well-coupled to the referencemirror in order to function accurately. It does
not assume any particular interferometer configuration or require any additional system information. The
FRACmethod also has applications in absolute interferometry, as has been previously demonstrated in [26, 66–
69]. Additionally, it is fast enough to be used for real-time feedback, which has been shown to improve single-
sensor sensitivity [70].

Table 1 contains estimates of the phase noise for a single 87Rb interferometer, and two coupled
interferometers of 87Rb and 39K. The rms phase spread due to vibration noise ( rms

vibϕ ) and the self-noise of the

accelerometer ( rms
selfϕ ) are shown for various frequency bands and interrogation times. For a single sensor

analyzedwith the FRACmethod, the vibration-induced noise rms
vibϕ represents the spread of phase on the

uncorrected fringes, while the quantity rms
selfϕ indicates the residual phase noise present on the corrected fringes.

Since this term is directly linked to the intrinsic noise of themechanical accelerometer, it represents a
fundamental limitation of the standard FRACmethod. To give a quantitative example, based in the self-noise of
the Titan accelerometer used in our experiments (3.2 10 8× − g Hz ), the corresponding phase noise reaches
∼90mrad for an interrogation time of 100ms, and∼3 rad byT 1Rb = s.With this level of self-noise, fringes
cannot be reconstructed accurately. However, for a state-of-the-art device with an order ofmagnitude smaller
self-noise (3.2 10 9× − g Hz ), the phase noise decreases by a further factor of 10—allowing a least-squares fit
to accurately converge on the fringe phase.We also point out that the noise contributions fromboth vibrations
and self-noise are smallest at high frequencies—a result of the natural low-pass filtering of atom interferometers.
Thus, high-bandwidth accelerometers are generally not required to implement the FRACmethodwith a single
sensor. For instance, for ground-basedWEP test facilities targeting a few 10−15 [43, 44, 46] using interrogation
times ofT 1∼ s, we estimate that amechanical accelerometer with a self-noise less than 10−11 g Hz in theDC
to 1 Hz frequency bandwill yield a phase noise contribution below the projected shot-noise limit of∼1mrad for
each interferometer.

When employing the differential FRACmethodwith two simultaneous interferometers, the self-noise of the

accelerometer contributes to the phase of both sensors. Thus, in table 1 (where 1κ = andT T k kK Rb Rb
eff

K
eff= ),

we have indicated the same values for rms
selfϕ in the corresponding columns for both single and differential sensors.

However, we emphasize that one canmeasure the differential phase significantlymore accurately than the self-
noise limit for a single sensor. This is because the noise introduced by the accelerometer is correlated between
the two interferometers—reducing the uncertainty in the determination of dϕ , as discussed in section 3.3. A
recent study [71] has shown that uncertainties close to the quantum-projection-noise limit can be obtainedwith
thismethodwhen the interferometers are in phase ( 0dϕ = ) and the accelerometer exhibits a conservative level

of self-noise ( 0.3rms
selfϕ ≲ rad). In general, for the differential FRACmethod to functionwell for all values of dϕ

Table 1.Comparison between phase noise for a single interferometer, and two coupled interferometers with effective wave vectors kRb
eff

and kK
eff . The rms phase noise (in radians) due to vibrations ( rms

vibϕ ) and the self-noise of themechanical accelerometer ( rms
selfϕ ) are shown

for different frequency bands and interrogation times, TRb. The noise from each band is summed in quadrature to obtain the total noise.
Contributions less than 1mrad are not shown. For the simultaneous differential sensor, it is assumed that k T k TRb

eff
Rb
2

K
eff

K
2= . The rms

phase noise rms
vibϕ was computed from equation (C.9) usingmodel (C.13) for the power spectral density S ( )a ω of ground accelerations in

a ‘quiet’ location [66, 67] with integrated rms noise g1.4 10 4× − (see figure C2(b)). The quantity rms
selfϕ was computed in a similar

manner by replacing S ( )a ω with the self-noise spectrumof the accelerometer—here assumed to bewhite noise with
3.2 10a

1 2 8∣ ∣ ≃ × − g Hz . Quantities in the last row indicated by ‘*’ correspond to low-noise conditions that can be achievedwith
passive vibration isolation (integrated rms noise g1.4 10 6× − ), and an accelerometer with 10 times smaller self-noise of

3.2 10a
1 2 9∣ ∣ ≃ × − g Hz .

Single sensor Differential sensor

Noise Frequency range (Hz) Frequency range (Hz)

TRb (s) Source dc 1− 1 10− 10 100− dc − ∞ dc 1− 1 10− 10 100− dc − ∞

0.01 ( )rms
vibϕ 0.023 0.779 1.071 1.324 0.000 0.000 0.004 0.004

( )rms
selfϕ 0.000 0.002 0.002 0.003 0.000 0.002 0.002 0.003

0.1 ( )rms
vibϕ 2.240 19.62 2.962 19.97 0.001 0.380 0.140 0.405

( )rms
selfϕ 0.050 0.078 0.005 0.093 0.050 0.078 0.005 0.093

1 ( )rms
vibϕ 58.13 23.42 3.779 62.79 1.067 2.556 1.511 3.155

( )rms
selfϕ 2.936 0.160 0.006 2.940 2.936 0.160 0.006 2.940

( )*rms
vibϕ 28.06 1.868 0.021 28.12 0.303 0.098 0.009 0.319

( )*rms
selfϕ 0.294 0.016 0.001 0.294 0.294 0.016 0.001 0.294
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and κ, the self-noise of the accelerometer should correspond to less than 2π in phase noise for each sensor—
allowing individual fringes to be accurately fit. However, for the special case of 0dϕ = and 1κ = , the
requirements on the accelerometer noise aremuch less stringent. For instance, [71] indicates that reliable fits
can be obtainedwith up to 20rms

selfϕ ∼ rad. For these reasons, we emphasize that state-of-the-artmechanical
accelerometers are not required tomake sensitivemeasurements of dϕ with long-baseline differential
interferometers.We anticipate that competitive levels of accuracy can be achievedwith compact devices that
feature amoderate level of sensitivity.

For two coupled interferometers exhibiting different wave vectors, the vibration-induced phase noise is not
identical and thus cannot be perfectly rejected at all frequencies. The values of rms

vibϕ listed in the last four columns
of table 1 contribute directly to dϕ —representing the level of uncorrelated differential phase noise in the system.
We estimate that byT 1Rb = s the differential phase noise reaches a level of∼3 rad.However, we note that the
differential transfer function (equation (C.11)) rejectsmost efficiently at frequencies below T1∼ , and this
estimate is directly linked to the vibration spectrumused. In a quieter environment, such as that achievedwith a
vibration isolation platform [66, 67] or in a satellite [52], the phase noise can be reduced by an order of
magnitude ormore. At this point, the Bayesianmethod can be employed—which easily handles differential
phase noise. Since the sensitivity scales as Nrms

vibϕ , the analysis simply requiresmoremeasurements for larger

rms
vibϕ to reach a given level of precision.

7. Conclusion

Wehave described and demonstrated experimentally twonew analysis techniques for extracting the differential
phase from coupled atom interferometers with different scale factors, Sj. A non-unity ratio S S1 2κ = can result
fromusing atomswith different kj

eff , or from interferometers with different interrogation times,Tj.We also
carried out correlated phasemeasurements between simultaneous interferometers of two chemical elements
exhibiting different scale factors, andwe have demonstrated a vibration rejection factor as large as 730γ ≃ . This
systemwas used to validate the Bayesian and FRAC analysismethods, as well as a new ellipse fitting procedure
[59], for extracting dϕ . Furthermore, the FRACmethodwas used to demonstrate a statistical sensitivity for the
Eötvös parameter of 1.6 10 6δη = × − permeasurement withT=10ms interferometers operating in a ‘noisy’
environment.

Presently, the contrast and SNRof our 39K interferometer fringes are limited by, respectively, the
temperature of the atoms and technical noise present in the slave laser used for cooling, interferometry and
detection. The latter issue results in uncorrelated offset noise, which reduces the correlation between
interferometers. This, in turn, increases the error on dϕ , which degrades the vibration rejection factor γ and the
sensitivity δη.We anticipate that amodest reduction of both the technical noise, and further cooling the 39K
sample in a graymolasses [79, 80], will result in a substantial improvement in the correlation between rubidium
and potassium.A precise determination of ηwith our apparatus, including a complete evaluation of systematic
effects, is beyond the scope of this work, but will be the subject of a future publication.

Both the generalized Bayesian and differential FRACmethods yield unbiased estimates of dϕ for any scale
factor ratio, κ, and are robust against experimental parameters such as the commonphase range scanned by the
two interferometers, or the level of uncorrelated offset noise present in the system. These featuresmake both
methods ideal for applications of dual-species interferometry where, until now, the available analysis tools could
accommodate only systems that exhibit either 1κ = or low levels of commonphase noise. These newmethods
are also appealing for gradiometer configurations using the same atoms and the sameTj [71], which have
previously been utilized for preciselymeasuring the gravitational constantG and gravity gradients [27–
29, 31–33, 61].

The freedom to vary the scale factor, the interrogation time or phase of either interferometer independently
can be advantageous for studying systematic effects, interactions between atomic species [55], or for shifting the
differential phase toward a region of higher sensitivity. Examples of such regions include 2dϕ π= in the case of
ellipse-fittingmethods, and 0dϕ = or π for the FRAC technique [71]. Both the FRAC andBayesianmethods also
eliminate the systematic shift introduced on themeasurement of aΔ when using dual-species interferometers
with 1κ = —making themwell-suited for upcomingWEP tests on ground [43–46], inmicrogravity [41, 47–
50], and in Space [7, 51–54].
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AppendixA. Ellipsefittingmethods

In this appendix, we give some background regarding ellipse-fitting techniques and illustrate the problemof
parameter bias for two differentfitting algorithms.

The general formof an ellipse in a cartesian plane is described by the algebraic equation for a conic

y yF y y y y y y( , ) · 0, (A.1)
1
2

1 2 2
2

1 2     λ λ= = + + + + + =

provided that 42 < . Here, { , , , , , }     λ = and y y y y y y y{ , , , , , 1}
1
2

1 2 2
2

1 2= . The center,
orientation,major andminor axes of the ellipse are determined by the elements of λ, and the differential phase
can be shown to be

cos
2

. (A.2)d
1

⎛
⎝⎜

⎞
⎠⎟


ϕ = −−

Generally, two types of ellipse-fitting algorithms exist: those that seek tominimize (i) an algebraic distance or (ii)
a geometric / orthogonal distance between the ellipse and the data points.While algebraicmethods tend to be
simple, efficient and can guarantee an ellipse solution to the conic equation (A.1) (i.e. parabolic and hyperbolic
solutions can be eliminated), they tend to suffer highly frombias in the ellipse parameters—resulting in a poor
fit under certain circumstances. Geometricmethods are usuallymuchmore accurate than algebraic algorithms,
but at the cost ofmore complexity,more computation and less stability. Sinceminimizing the orthogonal
distance between a point and an ellipse has no closed-form solution, these routines resort to iterative techniques
that are not guaranteed to converge on an ellipse.

A commonly used algebraicmethod is the simple and robustDEFmethod developed by Fitzgibbon et al [62]

thatminimizes the sumof squared algebraic distances between the points and the ellipse, yF ( , )
i

N

i1
2∑ λ

=
,

subject to the constraint 4 12 = − . Recently, Szpak et al [59, 63] developed an algorithmbased on the
optimization of the approximatemaximum likelihood distancewhich seeks a balance between the costly
geometricmethods and stable algebraic techniques. This algorithm—termed the FGEFmethod—also includes
error estimation for the geometricallymeaningful ellipse parameters (center coordinates, axes and orientation)
whichwe have extended to include an estimate of the differential phase error, dδϕ .

Figure A1 illustrates the bias introduced on the differential phase estimated by theDEF and FGEFmethods.
Formoderate amounts of noise in the offset, theDEFmethod tends to produce fits that are characteristically
compressed along themajor axis and stretched along theminor axis of the ellipse, as shownby the red curve in
figure A1(a). This effect results in a biased estimate of dϕ that increasesmonotonically away from 2π , as shown
infigure A1(b). In contrast to theDEFmethod, the FGEF algorithmpredicts an ellipse (shown in blue) that is
muchmore representative of the actual ellipse (shown in green), and also results in less bias in dϕ in the central
region around 2π . Outside of this region, the bias behaves nonlinearly in amanner that depends on the ellipse
parameters and the level of noise. Here, we point out that these bias estimates are dependent on the type of noise
(offset, amplitude, or differential phase) and the amount of noise present in the data, but typically the bias is
smallest in the vicinity of 2dϕ π= , and decreases with the noise level. In general, ellipse-fitting techniques
always generate a non-zero systematic on the differential phase estimate, and depending on the level of
sensitivity, this biasmust be carefully accounted for when performing precisemeasurements with dϕ
[28, 31, 32, 34, 61].

Appendix B. Bayesian analysis of Lissajous curves

In this appendix, we describe in detail our generalized Bayesian analysis technique to estimate the differential
phase fromLissajous curves.We also demonstrate the effectiveness of thismethod using numerically simulated
datawithGaussian noise in the offset parameters B B{ , }1 2 and the differential phase, dϕ . Noise in the amplitude
parameters A A{ , }1 2 of the coupled-sensormodel (2) can also be included via a trivialmodification of the noise
model. Inwhat follows, we first provide some relevant theoretical background of the Bayesian estimation
technique. For amore comprehensive description of Bayesian analysis in this context, see [65].
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In a generalized system,whereM represents ameasurement of the systemquantities andV represents a
variable we are interested inmeasuring, Bayes’ rule can be summarized by the following equation

P V M
p V L M V

N M
( )

( ) ( )

( )
. (B.1)∣ =

∣

Here, P V M( )∣ is called the ‘posterior’ probability distribution and represents our state of knowledge after a
measurement,M. p(V) is the ‘prior’ probability before themeasurement, and L M V( )∣ is called the ‘likelihood’
to obtain a certain result forMgivenV. The key to the entire estimation process is the likelihood distribution,
which is computed based on a specificmodel of the noise present in the system. The quantity
N M L M V p V( ) ( ) ( )

V
∑= ∣ is the probability ofmeasuringM integrated over all possible values ofV, and is

just a normalizing factor for the posterior distribution.Mathematically, L M V( )∣ can be thought of as a function
ofVwithMfixed, and vice versa for P V M( )∣ . The essence of Bayes’ rule is that knowledge of the variableV can
be updated on ameasurement-by-measurement basis—with each successivemeasurement contributing
additional information that narrows thewidth of the probability distribution associatedwithV. Awell-known
example of this type of recursive analysis is a Kalmanfilter [81], which is used extensively in the fields of
guidance, navigation and trajectory optimization.

For the specific case of two coupled atom interferometers, the variable of interest is dϕ and the ith system
measurement is given by the pair of (normalized) atomic state populations M n n{ , }i i1 2= . Thus, for a single
measurement equation (B.1) becomes

( )
( )( )

( )
P n n

p L n n

N n n
{ , }

{ , }

{ , }
, (B.2)d i

i

d i
i d

i

i
i

1 2

1 2

1 2

ϕ
ϕ ϕ

=

where P n n( { , } )d i i1 2ϕ ∣ is referred to as the conditional distribution based on the ithmeasurement. The basic
algorithm for Bayes’ estimation can be summarized as follows:

(1)Choose a suitable initial prior distribution, p ( )d i 1ϕ = . In our case, we take this to be a uniform distribution
within the range [0, ]dϕ π∈ , and zero elsewhere.

(2)Record a newmeasurement n n{ , }i1 2 , and calculate the likelihood distribution L n n({ , } )i d i1 2 ϕ∣ from the noise
model.

(3)Compute the conditional probability distribution P n n( { , } )d i i1 2ϕ ∣ fromBayes’ rule (B.2).

(4)Set the newprior distribution equal to the previous conditional distribution: p P n n( ) ( { , } )d i d i i1 1 2ϕ ϕ= ∣+ .

(5)Repeat steps (2) through (4) until thewidth of the conditional distribution reduces to the desired level.

Figure A1. (a) Synthetic data following an ellipsewith added offset noise. The solid green curve represents the actual ellipse, and fits to
the data using theDEFmethod (red curve with big dashes) and FGEFmethod (blue curvewith small dashes). The simulated ellipse
contains 500 points withGaussian-distributed noise on the offset parametersBjwith standard deviations { , } {0.01, 0.03}B B1 2σ σ =
(corresponding to SNR {20, 6}∼ ). Ellipse parameters: A A 0.21 2= = , B B 0.51 2= = , 1κ = , 1dϕ = rad. (b)Measured bias in
differential phase estimates, d

estϕ , from theDEF (red triangles) and FGEF (blue points)methods relative to the actual value, d
actϕ . The

black squares show the estimates from the differential FRACmethod for comparison. On all plots, the error bars correspond to the
statistical distribution offits to 100 synthetic data sets.
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(6)Estimate the variable of interest, dϕ , using the maximum likelihood value of the final conditional (i.e.
posterior) probability distribution.

This algorithm is illustrated infigure 1 in section 3.2.
The likelihood distribution
Themain challenge in Bayesian analysis is to compute the likelihood distribution L n n({ , } )d1 2 ϕ∣ given a

specificmodel for n1 and n2. For the specific case of coupled interferometers, there are three possible sources of
noise: amplitude, offset and differential phase. To illustrate each source, wemodify the definitions of the nj in
equation (10) to explicitly include these noise terms

( ) ( ) ( )n A B a1 cos , (B.3 )c c d d1 1 1ϕ δ κϕ ϕ δϕ δ= + + + +

( ) ( ) ( )n A B b1 cos . (B.3 )c c2 2 2ϕ δ ϕ δ= + +

The parameters Ajδ , Bjδ , and dδϕ represent uncorrelated noise in the amplitude, offset and differential phase,
respectively, each of which is assumed to follow aGaussian probability distributionwith zeromean and non-
zero standard deviation. Using thismodel, the likelihood distribution can be shown to be [65]

( ){ }
( ) ( { })

L n n
P n s P n s s

s
s,

; ,

1
d . (B.4)d

d
1 2

1

1 1 1 2 2, 1

1
2

1∫∑ϕ
ϕ

=
−ℓ

ℓ

−

Here, P n s( )1 1∣ and P n s s( { ; , })d2 2, 1 ϕ∣ ℓ are the single-sensor conditional probability distributions for n1 and n2,
whichwe discuss inmore detail below. The quantities s cos( )c d1 κϕ ϕ≡ + and s cos( )c2, ϕ≡ℓ are the principle
variables onwhich the coupledmeasurements n1 and n2 depend in themodel (B.3). Due to the periodic nature
of the Lissajous equations (10), for each value of n1 there aremultiple possible solutions for n2 (as shown in
figure B1 ).We assign an integerℓ to each of these solutions.More specifically, s2,ℓ is theℓth root of n2 given
n s1 1= . The sumoverℓ appearing in equation (B.4) accounts for all possible solutions. In the distribution
functions P n s( )1 1∣ and P n s s( { ; , })d2 2, 1 ϕ∣ ℓ , we denote the implicit dependence on variables s1 and dϕ by a semi-
colon. This notation emphasizes that the quantity s2,ℓ is coupled to s1 through the commonphase6 cϕ . Finally,
we point out that the coupled variables s1 and s2,ℓ both depend on dϕ , but we do notwrite this dependence
explicitly.

At this point, we need to know the possible values n s2 2,= ℓ (given ameasurement of n s1 1= ) which enter
into the likelihood distribution.We devote the remainder of this section to a detailed description of computing
the roots of the Lissajous equations (10). Asmentioned above, due to the nonlinear nature of Lissajous curves,
there aremultiple possible solutions for n2 given a single value of n1 within a predefined phase range.We denote
these solutions s2,ℓ for integerℓ.When 1κ = , the Lissajous curve collapses to an ellipse, and only two values of
n2 exist for each n1 over any 2π range of cϕ . In this case, it is straightforward to compute the two solutions as
s scos[cos ( ) ]d2, 1

1
1 ϕ= ±±

− . However, when 1κ = , the problem ismuchmore complex. If the scale factor ratio

Figure B1. Example of a Lissajous curve for p q 3 7κ = = . (a) The curve is plotted over the phase range [0, 2 ]cϕ π∈ and the
solutions n n s{ , }1 2 2,= ℓ are shown as points. For n 0.91 = − there are two solutions s2,ℓ , shown as the blue points. Similarly, for
n 01 = there is only one possible value of n2 (shown in green), and for n 0.81 = no solutions exist. (b) The same Lissajous curve plotted
over q[0, 2 ]cϕ π∈ with q=7. In this range, there are always 6 solutions s2,ℓ for each value of n1 (although theymay not be unique).

6
Since it is assumed that cϕ is random and unknown, the probability distributions of s1 and s2,ℓ are equivalent to that of a sinusoid:

P s s( ) (1 )c2, 2,
2 1 2ϕ∣ = −ℓ ℓ

− .
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can bewritten in the form p qκ = , where p and q are prime numbers, then the period of the Lissajous curve is
q2π —requiring q revolutions to form a closed loop.Within each 2π interval, there can be either 0, 1 or 2

solutions of n2 for each n1, as illustrated infigure B1.
To calculate these solutions for a given n s1 1= and dϕ , it is necessary to know the approximate range of

commonphase spanned by the data7: [ , ]c c c
min maxϕ ϕ ϕ∈ .With this information, we compute the range of phase

spanned by sensor 1, [ , ]c c d
min maxθ κ ϕ ϕ ϕ∈ + , andwe subdivide this range into intervals of π such that theℓth

interval is defined as the range [ , 1)θ ℓ ℓ π∈ +ℓ , where ℓ θ π= ⌊ ⌋. Here, the brackets⌊⋯⌋indicate thefloor
function. Beginningwith the left-most interval, we check for solutions sequentially at each π phase bin until the
entire range is spanned. Empirically, wefind that if a solution exists within theℓth interval given a value n1, then
it is unique and can bewritten explicitly as

( )
( )

s
s m

s m

cos cos 2 for even ,

cos cos 2 for odd ,
(B.5)

d

d

2,

1
1 1,

1
1 2,

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ϕ π κ ℓ

ϕ π κ ℓ
=

− +

+ −
ℓ

ℓ

ℓ

−

−

where the integers m1,ℓ and m2,ℓ are defined as

m m
( 1) 2 1,

0 1 2,
2 2,

2 2,

0 2 1,
( 1) 2 1.

(B.6)1, 2,

⎧
⎨⎪
⎩⎪

⎧
⎨⎪
⎩⎪

ℓ ℓ
ℓ

ℓ ℓ

ℓ ℓ
ℓ

ℓ ℓ
=

⌊ − ⌋ < −
− ⩽ <

⌊ ⌋ ⩾
=

⌊ ⌋ < −
− ⩽ <

⌊ + ⌋ ⩾
ℓ ℓ

With these solutions in hand, it is possible to compute the likelihood (B.4) given specific noisemodels for the
single-sensor probability distributions P n s( )1 1∣ and P n s s( { ; , })d2 2, 1 ϕ∣ ℓ .We now investigate the specific cases of
offset and differential phase noise on the extraction of dϕ from simulated data sets. This analysis can also be
extended to include noise in the fringe amplitudes through the parameters Ajδ [65], butwe do not consider this
case here.

Offset noise
When the system exhibits noise only in the offset of the atomic statemeasurements, the parameters Bjδ are

randomly distributed for each repetition of the experiment, and A 0jδ = and 0dδϕ = in themodel (B.3). Under
realistic conditions, these noise parameters follow aGaussian distributionwith zeromean and standard
deviations given by Bj

σ , and the single-sensor conditional probabilities can bewritten as

( )P n s n s aexp ( ) 2 , (B.7 )B1 1 1 1
2 2

1

⎡⎣ ⎤⎦σ∝ − −

( { })P n s s n s b; , exp ( ) 2 . (B.7 )d B2 2, 1 2 2,
2 2

2

⎡⎣ ⎤⎦ϕ σ∝ − −ℓ ℓ

Figure B2 shows some examples of simulated data in the presence of offset noise, where the differential
phase has been extracted using the Bayesian estimation algorithmdescribed above. These simulations show that

dϕ can be precisely estimated over the full range of 0 π− , and for awide variety of scale factor ratios. Here, we
demonstrate the technique for the limited range [0.6, 1.4]κ ∈ , but we have also verified that the extraction
methodworkswell outside this range. In contrast to ellipse-fitting techniques, no systematic bias in the phase
estimates is observed, and fewer points are required to converge to competitive error levels.

Differential phase noise
Since the noise parameter associatedwith the differential phase, dδϕ , adds directly to the quantity of interest,

dϕ , we can account for this type of noise by adding an extra convolutionwith our noisemodel at the end of any
likelihood calculation.We choose to examine the case of Gaussian noise for the differential phase, such that the
conditional probability distribution is

( ) ( )P exp 2 . (B.8)d d d d
2 2

d

⎡⎣ ⎤⎦ϕ ϕ ϕ ϕ σ′ ∝ − ′ − ϕ

Here, dϕ′ represents ameasured value of the differential phase in the presence ofGaussian noise centered on the
most likely value, dϕ , and

d
σϕ is the standard deviation of the noise distribution. Themodified likelihood

function is described by the convolution

( { } ) ( { } ) ( )L n n L n n P, , d . (B.9)d d d d d1 2 1 2∫ϕ ϕ ϕ ϕ ϕ∝ ′ ′ ′
−∞

∞

In a similar fashion to the offset, in the absence of any other noise sources it is necessary to estimatemultiple
candidate solutions for dϕ over a given range of cϕ in order to compute the likelihood function. Before
convolvingwith the conditional probability distribution in equation (B.9), the likelihood function can be

7
In practice, this range estimate does need not to be very precise—wefind that estimating the correct range towithin π± still results in a

precise estimate for dϕ . However, overestimating the phase rangemay result in a slower convergence rate for the estimate. See section 5.1 for
a description of how the phase range can be estimated experimentally.
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written as

( { } ) ( )L n n, , (B.10)d
k

d d k1 2 ,∑ϕ δ ϕ ϕ′ = ′ −

where x( )δ is theDirac delta function, and the sumover k accounts for all candidate solutions d k,ϕ that exist in

the commonphase range [ , ]c c c
min maxϕ ϕ ϕ∈ . These solutions can be computed by, again, dividing the phase

range into intervals of π, and labeling each of themby an integer k cϕ π= ⌊ ⌋.Wefind that two possible solutions
exist for dϕ within each interval, whichwe denote as d k,

( )ϕ ± for k k[ , ( 1) )cϕ π π∈ ± ± + . Explicitly, these phases
can be computed from

n n mcos ( ) cos ( ) 2 , (B.11)d k k,
( ) 1

1
1

2
⎡⎣ ⎤⎦ϕ κ π= ± −± − −

where m k( 1) ( 1) 2k
k= − ⌊ ∣ ∣ + ⌋.We transform these phases into the range of 0 π− using

cos [cos( )]d k d k,
( ) 1

,
( )ϕ ϕ→± − ± . Finally, this result is convolvedwith theGaussian noisemodel to obtain

( { } ) ( )L n n, exp 2 . (B.12)d
k

d d k1 2 ,
( ) 2 2

d

⎡⎣ ⎤⎦∑ϕ ϕ ϕ σ= − − ϕ
±

Two subtleties exist with this analysis, however, that warrant discussion. First, when the commonphase range
exceeds [ , ]cϕ π π∈ − , the Bayesian analysismay predictmultiple equally probable values for dϕ . This is
obviously a problem if we are interested in a precise, unique estimate of the differential phase, andwe have no
pre-existing knowledge of its value. Therefore, we restrict our consideration of the problem to a range of
commonphasewithin π− to π. Second, the noise parameter dδϕ can theoretically take any value, i.e.

( , )dδϕ ∈ −∞ ∞ , although in practice it is limited to afinite range defined by
d

σϕ . So far, we have considered dϕ
only in the range of 0 to π, but for situations where 4

d
σ π≳ϕ , the likelihood distribution can have significant

contributions from thewings of the adjacent π phase intervals. This effect can be taken into account by using the
fact that P P P( ) ( ) (2 )d d dϕ ϕ π ϕ= − = − , and addingmirrored versions of the likelihood to the convolution in
equation (B.9). This ‘tiling’ technique can be extended to account for large noise levels, wheremore than one π
phase bin is spanned [65].

Figure B3 shows some examples of simulated data in the presence of differential phase noise. As for the case
of offset noise, estimates of dϕ exhibit no significant bias over the full range of 0 π− , and for a large range of
scale factor ratios. Additionally, only a small number of points are required to converge to a level of uncertainty
less than that of the noise defined by

d
σϕ . The convergence of this uncertainty as a function of the number of

measurements is the subject of the next section.
Scaling withmeasurement number
To test the scaling of the statistical and systematic error of the Bayesian estimator as a function of the number

ofmeasurements, we performed the following study.We randomly generatedM=50 samples of
‘measurements’, each containing 100 points following themodel (B.3)with noise added to either the differential

Figure B2. Simulated Bayesian phase estimates in the presence of offset noise. Top row: simulated data for
{0.6, 0.8, 1.0, 1.2, 1.4}κ = . Here, points based on equation (B.3) were generated from commonphases chosen randomly over the

range [ 2 , 2 ]cϕ π π∈ − . The differential phasewas set to 1d
actϕ = rad, and offset noisewas applied to the points viaGaussian

distributions with standard deviations { , } {0.02, 0.04}B B1 2σ σ = —corresponding to SNR∼50 and 25, respectively. Bottom row: the
systematic error in the Bayesian phase estimate, d d

est actϕ ϕ− , as a function of d
actϕ for each value of κ. Only 10 points were required to

bring the statistical uncertainty indicated by the error bars to 50≲ mrad.
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phase or the offset. As a function of themeasurement number,N, within each sample, we computed the
Bayesian estimate N( )d

estϕ and the standard deviation of the associated probability distribution N( )d
estδϕ . The

statistical error for eachmeasurement is taken as the average of N( )d
estδϕ over allM samples, whichwe denote as

N N( ) ( )d M
stat est
d

ϵ δϕ= 〈 〉ϕ . Similarly, the systematic error is defined as N N( ) ( )d d M
sys est act
d

ϵ ϕ ϕ= 〈∣ − ∣〉ϕ . The

results are shown infigure B4 .
For the specific case of noise that contributes directly to the variable of interest (e.g. differential phase noise)

the statistical uncertainty of the Bayesian estimator is given by Nstat
d d

ϵ σ=ϕ ϕ . Aswe show in figure B4(a), the
measured statistical error closely follows this dependence. Similarly, on average the systematic error drops to a
levelmuch less than stat

d
ϵϕ after only a fewmeasurements. This level is primarily determined by the grid resolution

usedwhen computing the likelihood distribution for dϕ . During the estimation procedure, we initially set the
phase grid resolution to 100π∼ , andwe refine this grid size on ameasurement-by-measurement basis. As the
likelihood distribution narrows, grid points are redistributed toward themaximum likelihood value.Wefind
that this grid optimization procedure can improve the resolution by up to an order ofmagnitude (depending on
the level of noise in the system), while keeping the number of integral evaluations permeasurement fixed.

Figure B3. Simulated Bayesian phase estimates in the presence of differential phase noise. Top row: simulated data for
{0.6, 0.8, 1.0, 1.2, 1.4}κ = . Similar to figure B2, commonphases are randomly chosen over the range [ , ]cϕ π π∈ − , and the

differential phase is set to 1d
actϕ = rad. Differential phase noise is applied to each point with a standard deviation of 0.1

d
σ =ϕ rad

(SNR∼10). Bottom row: the systematic error in the Bayesian phase estimate, d d
est actϕ ϕ− , as a function of d

actϕ for each value of κ. Only
10 points were required to bring the statistical uncertainty to 50≲ mrad.

Figure B4.The statistical and systematic error in the Bayesian phase estimator as a function of the number ofmeasurements,N, used
in the Bayesian analysis for (a) differential phase noise and (b) offset noise. In both plots, 0.8κ = , 1d

actϕ = rad, andM=50 samples
were used. Black points represent the statistical uncertainty stat

d
ϵϕ , and blue triangles indicate the systematic error sys

d
ϵϕ . The solid red

lines indicate theminimum convergence rates based on N
d

σϕ for differential phase noise and on N I1 ( )dϕ for offset noise,
where I ( )dϕ is the Fisher information given by equation (B.14). The dashed horizontal lines represent the nominal phase resolution
used in the simulations. Values of 0.1

d
σ =ϕ rad (SNR ∼ 10) and 0.2B B1 2σ σ= = (SNR ∼ 5) were used as the noise parameters in (a)

and (b), respectively.
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For themore general case of noise present in a parameter that is indirectly related to the quantity of interest
through some function, the uncertainty is constrained by theCramer–Rao lower bound

( )N I

1
. (B.13)

d

est
d

σ
ϕ

⩾ϕ

This relationship can be used to compute theminimumconvergence rate of the statistical error in the presence
of offset or amplitude noise, for example, where the noise affects dϕ indirectly through the quantities n n{ , }1 2 .
TheCramer–Rao lower bound includes the Fisher information, I ( )dϕ , of an individualmeasurement, which
can be computed from the likelihood distribution L n n({ , } )d1 2 ϕ∣ as follows

( ) ( { } )
( { } )

I L n n
n n

L n n

L
ln ,

d d

,
. (B.14)d

d
d

n n d d

2

2 1 2

{ , }

1 2

1 2

2

1 2

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟∬ϕ

ϕ
ϕ

ϕ ϕ
= − ∂

∂
= ∂

∂

Here, the brackets n n{ , }1 2
〈⋯〉 denote an average over the randomvariables n n{ , }1 2 . The Fisher information is a

measure of the amount of information that a randomvariable (or a set of randomvariables) carries about an
unknownparameter. In this case, the unknownparameter of interest is dϕ and the set of randomvariables is the
set ofmeasurements n n{ , }1 2 , which are governed by the likelihood distribution L n n({ , } )d1 2 ϕ∣ —hence its
appearance in equation (B.14). This quantity has no closed-form expression for the case of offset or amplitude
noise in our system, andmust be evaluated numerically. For the parameters used infigure B4(b), wefind
I ( ) 3.3dϕ ≃ , which gives aminimumconvergence rate of N0.55 . This rate is consistent with themeasured
statistical uncertainties shown in thefigure.We note that the Fisher information empirically scales as I e B∼ βσ− ,
where β is a large factor that depends on the differential phase and the scale factor ratio used (e.g. 35β ∼ for

0.8κ = and 1dϕ = rad). Thus, with only amoderate reduction to the level of offset noise in the system, one can
dramatically improve the convergence rate of the Bayesian estimate.

AppendixC. Response of a dual-species interferometer tomirror vibrations

Here, we summarize the essential theoretical tools required to evaluate the response of both single- and dual-
species interferometers to vibrational noise of the retro-reflectionmirror.

First, we provide a review of the sensitivity function for a single atom interferometer, g(t). This function
characterizes how the interferometer transition probability behaves in the presence offluctuations in the Raman
laser phase difference, t( )Lφ . Developed previously for usewith atomic clocks [82], the sensitivity function is a
useful tool that can be applied, for example, to evaluate the response of the interferometer to laser phase noise
[57], or to correct for spurious vibrations in the Raman beamoptics [41, 58, 69].We are primarily interested in
the latter.

The sensitivity function is a unitless quantity that is defined as follows

g t
t P t

( ) lim
( , )

2 lim
( , )

, (C.1)
0 0

δ δφ
δφ

δ δφ
δφ

= Φ =
δφ δφ→ →

where δφ is a phase jump occurring at time t during the interferometer thatmodifies the total interferometer
phase,Φ, by an amount δΦ, and the transition probability P ( ) (1 cos ) 2Φ = − Φ by a corresponding amount
Pδ . Thus, the interferometer phase due to an arbitrary phase noise function, t( )φ , can be computed as

g t t g t
t

t
t( )d ( ) ( )

d ( )

d
d . (C.2)∫ ∫φ

φΦ = =φ
−∞

∞

−∞

∞

The quantummechanical nature of the atomplays a crucial role on the sensitivity function—in particular, the
evolution of the internal atomic states during eachRaman pulse. Using the procedure outlined in [41, 57], the
sensitivity function, gj(t), of an interferometer with timing parameters labeledwith subscript ‘j’ can be shown to
be

( )

( )

( )

( )

( )

( )

g t

t T t T

t T T

t T T T t T T

T t T T

t T T T t T T

( )

sin 0 ,

1 ,

sin 3 ,

1 3 2 3 ,

sin 2 2 3 2 4 ,

0 otherwise.

(C.3)j

j j j j

j j j j

j j j j j j j j

j j j j j

j j j j j j j j

eff

eff

eff

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

Ω τ

τ τ

Ω τ τ

τ τ

Ω τ τ

=

− − Δ < − Δ ⩽

− < − Δ ⩽ +

− − Δ − + < − Δ ⩽ +

+ < − Δ ⩽ +

− − Δ − + < − Δ ⩽ +

Here,Tj is the interrogation time, jτ is a pulse duration, j
effΩ is the effective Rabi frequency associatedwith the

two-photonRaman transitions, and TjΔ is a delay with respect to t=0 that facilitates a difference in the start
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time between interferometers. It is assumed that 2j j
effΩ τ π= , such that thefirst and third interferometer pulses

have pulse areas of 2π with duration jτ , and the second is a π-pulse of duration 2 jτ .
To evaluate the response of an interferometer to Ramanmirrormotion, the phase noise function isfirst

expressed as t k z t( ) ( )j j
effφ = , with z(t) representing the time-dependent position of themirror along the axis of

the beams. Then, the phase shift of interferometer j due tomovement of the Ramanmirror is

w t a t t k f t a t t( ) ( )d ( ) ( )d , (C.4)j j j j
vib vib eff vib∫ ∫ϕ = =

−∞

∞

−∞

∞

where a t z t( ) ¨( )vib = is the time-dependent acceleration of themirror due to vibrations, w t k f t( ) ( )j j j
eff= is a

time-dependent weight function for themirror accelerations, and fj(t) is called the response function associated
with the jth interferometer. This function is given by the integral of the sensitivity function:

f t g t t( ) ( )dj

t

j
0

∫= − ′ ′, and can be evaluated as

( )

( )

( )

( )

( )

( )

( )

( )

f t

t T t T

t T t T T

T t T T T t T T

T t T T t T T

t T T T t T T

( )

1
1 cos 0 ,

1
,

1
1 cos 3 ,

2 3
1

3 2 3 ,

1
1 cos 2 2 3 2 4 ,

0 otherwise.

(C.5)j

j
j j j j

j
j

j j j j

j
j

j j j j j j j

j j
j

j j j j j j

j
j j j j j j j j

eff
eff

eff

eff
eff

eff

eff
eff

⎧

⎨
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⎩

⎪⎪⎪⎪⎪⎪⎪

Ω
Ω τ

Ω
τ τ τ

Ω
Ω τ τ

τ
Ω

τ τ

Ω
Ω τ τ

=

− − Δ < − Δ ⩽

− Δ + − < − Δ ⩽ +

+ − − Δ − + < − Δ ⩽ +

+ + − − Δ + < − Δ ⩽ +

− − Δ − + < − Δ ⩽ +

At its heart, equation (C.4) is a generalization of thewell-known interferometer phase shift due to a constant
acceleration, a

( )S a k T T a k T a2
4

. (C.6)j j j j j j
j

j j
eff eff 2⎛

⎝⎜
⎞
⎠⎟ϕ τ

τ
π

= = + + ≃

In this relation, the quantity S k Tj j j
eff 2≃ is equivalent to the integral of theweight function,wj(t), which

determines how strongly themirror vibration at time t contributes to the interferometer phase shift. This
function is triangle-shaped, as shown infigureC1 ,which indicates that the phase contributions are smallest near
t Tj= Δ and T T2 4j j jτΔ + + , where thewavepacket separation is aminimum. Similarly, theweights are largest
near themid-point, t T T 2j j jτ= Δ + + , where the separation between the interfering states is amaximum.

For the case of two coupled interferometers, the differential phase shift resulting frommirror vibrations can
be expressed as

w t a t t( ) ( )d , (C.7)d d
vib

1
vib

2
vib vib∫ϕ ϕ ϕ= − =

−∞

∞

where the differential weight function,wd(t), is given by the difference between the single-sensor weight
functions

FigureC1.Weight functions,wj(t), described by the response function (C.5). Theseweights determine the phase shift associatedwith
mirror vibrations in equation (C.4). The pulse durations, jτ , satisfy 2j j

effΩ τ π= . The differential weight function, i.e. the difference
between the red and blue curves, is shown in black.
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w t w t w t k f t k f t( ) ( ) ( ) ( ) ( ). (C.8)d 1 2 1
eff

1 2
eff

2= − = −

This function has an intuitive understanding. For the extreme casewhen k k1
eff

2
eff= and the two interferometers

are perfectly overlapped (i.e. T T1 2Δ = Δ ,T T1 2= , 1 2τ τ= ),wd(t) is zero everywhere. This implies that the
differential phase shift due tomirrormotion is 0d

vibϕ = —corresponding to perfect common-mode phase noise

rejection. In the opposite extreme, when either k k1
eff

2
eff= or the interferometers are notwell-overlapped,

vibration noise induces a differential phase shift d
vibϕ between the two sensors given by equation (C.7). This non-

zero phase shift is directly responsible for uncorrelated contributions to dϕ in the case of non-overlapped
interferometers, and it explains the loss of common-mode rejection in the case of coupled interferometer with
different scale factors. For the case of a constant acceleration, equation (C.7) can also be used to derive the
systematic shift S S a( )d

sys
1 2δϕ = − resulting from interferometers exhibiting S S1 2= .

One can characterize howmirror vibrationswith a given frequency spectrum affect each interferometer by
computing themean-squared phase noise

( ) H
1

2
( ) ( )d . (C.9)j arms

vib 2

0

2∫ϕ
π

ω ω ω= ∣ ∣
∞

Here, ( )a ω is the power spectral density of acceleration noise on themirror, and H ( )j ω is the transfer function
associatedwith interferometer j given by the Fourier transformofwj(t). The transfer function describes how
acceleration noise at a given frequency affects the phase over the duration of the interferometer. For frequencies

j
effω Ω≪ and pulse separationsTj jτ≫ , this function is well-approximated by

( )H k T
T

( ) ie sinc
2

. (C.10)j
T T

j j
ji 2 eff 2 2j j j

⎛
⎝⎜

⎞
⎠⎟ω

ω
= − ω τ− Δ + +

For the dual-species interferometer, one uses the differential transfer function in the same fashion:

H H H( ) ( ) ( ). (C.11)d 1 2ω ω ω= −

These functions are shown infigure C2 (a) for realistic experimental parameters associatedwith a K–Rb
interferometer. Here, there is a clear difference between the transfer functions associatedwith single-species and
dual-species interferometers. For the individual sensors, the transfer function is well-approximated by the
square of a sinc function—which exhibits regular zeroes at the fundamental frequency T1 j and an envelope that
decreases as T(2 )j

2ω . This dependence implies that the interferometer naturally filters the high-frequency
components of the vibration spectrum, with a−3 dB cut-off frequency of T T2 2 1 2j j j

cutω π π= ≃ .
The differential transfer function, on the other hand, has amuchmore complicated frequency dependence.

Wewill focus on themost interesting case forWEP tests, i.e. when thewave vectors satisfy k k(1 )1
eff 2

2
effϵ= −

where 1ϵ ≪ , and the two interferometers are symmetrically overlapped in time as shown infigureC1.Under
these conditions, wefind thatHd can be approximated by

FigureC2. (a)Normalized transfer functions, H k T( )j j j
eff 2ω∣ ∣ , described by equation (C.10) for coupledK–Rb interferometers. These

functions determine the response of the single-species (red curve) and dual-species (black curve) interferometers to acceleration noise

at different frequencies,ω. Here, T 11 = s and T T(1 )2 1ϵ= − , with k k1 0.00871
eff

2
effϵ = − ≃ , and 101 2τ τ= = μs. (b)Model

curves for the power spectral density of ground vibrations described by equation (C.13). The solid red curve corresponds to the power
spectral density of a ‘quiet’ location [66, 67] that we simulatedwith the parameters 0.5ξ = , 1χ = , 2 100ω π = Hz,
a g1.4 10rms

4= × − . The dashed blue curve corresponds to ‘low-noise’ conditions achievable with passive vibration isolation ( 2ξ = ,
0.8χ = , 2 10ω π = Hz, a g1.4 10rms

6= × − ). These two curves were used to compute the rms phase noise in table 1.
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( )
( ) ( )

H k T T
T T T T

k T
T

( ) sinc
2

sinc
2

2 sinc
2
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−

It follows that there is a competition between the two terms in this expression. For the extreme casewhen 0ϵ =
(i.e. k k1

eff
2
eff= ), the differential transfer function is dominated by the first term, which is identically zero for all

frequencies only ifT T1 2= . This represents the ideal case for gravity gradiometry applications. On the other
hand, when 0ϵ > andT T1 2= , the second term in equation (C.12) dominates. Since the two interferometers are
assumed to have different wave vectors, it is not possible tomake the transfer function zero at all frequencies.
However, it is straightforward to show thatHd=0 in dc provided that k T k T1

eff
1
2

2
eff

2
2= . This criteria optimizes

the rejection of common-mode vibration noise at frequencies below the cut-off for a single-sensor, j
cutω , and can

be achieved by adjusting the interrogation times such thatT k k T T(1 )2 1
eff

2
eff

1 1ϵ= = − .
Figure C2(a) shows a comparison between single-sensor and differential transfer functions forT 1∼ s

interferometers.When operated differentially, the sensitivity to vibrations at frequencies less than j
cutω is

typicallymore than three orders ofmagnitude below that of the single interferometer, despite the fact that
k k1

eff
2
eff= .

Figure C2(b) displays the power spectral density function, S ( )a ω , that was used to compute the rms phase
noise in table 1. These curves are based on a regressionmodel for ground accelerations [83] described by

( ) ( )
N

a
( ) ( , )

4

2

2
. (C.13)a

0
3

2
0
2 2

0
2

rms
2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ω ξ χ ξω ω

ω ω ξω ω

π
ω

=
− +

χ

Thismodel has a single peak at 0ω ω= and contains two positive shape parameters, ξ and χ, that determine the
sharpness of the peak and the scaling of thewings of the distribution, respectively. The quantity arms

2 is themean-
squared acceleration of the corresponding time-domain acceleration signal, a(t), and N ( , )ξ χ is a normalization
factor that depends on the shape parameters. This factor is chosen such that the integral

a( )d 2a rms
2∫ ω ω π=

−∞

∞
.
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