

Low temperature heat capacity of Na 4 UO 5 and Na 4 NpO 5

A.L. Smith, J.-C Griveau, E Colineau, P. E. Raison, G Wallez, R.J.M.

Konings

► To cite this version:

A.L. Smith, J.-C Griveau, E Colineau, P. E. Raison, G Wallez, et al.. Low temperature heat capacity of Na 4 UO 5 and Na 4 NpO 5. Journal of Chemical Thermodynamics, 2015, 91, pp.245-255. 10.1016/j.jct.2015.08.003 . hal-01187729

HAL Id: hal-01187729 https://hal.sorbonne-universite.fr/hal-01187729

Submitted on $27~\mathrm{Aug}~2015$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

J. Chem. Thermodynamics 91 (2015) 245-255

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

CrossMark

Low temperature heat capacity of Na₄UO₅ and Na₄NpO₅

A.L. Smith ^{a,b,*}, J.-C. Griveau ^a, E. Colineau ^a, P.E. Raison ^a, G. Wallez ^{c,d}, R.J.M. Konings ^{a,*}

^a European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
^b Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
^c PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France

^d Sorbonne University, UPMC Université Paris 06, 75005 Paris, France

ARTICLE INFO

Article history: Received 20 March 2015 Received in revised form 29 July 2015 Accepted 1 August 2015 Available online 7 August 2015

Keywords: Heat capacity Entropy Calorimetry Sodium uranates Sodium neptunates

ABSTRACT

The low temperature heat capacities of Na₄UO₅ and Na₄NpO₅ have been measured for the first time in the temperature range (1.9 to 292) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The experimental data have been fitted to theoretical functions below 20 K, and to a combination of Debye and Einstein functions above this temperature. The heat capacity and entropy values at T = 298.15 K have been derived as $C_{p,m}^{0}(Na_4UO_5, cr, 298.15 \text{ K}) = (220.6 \pm 6.7) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, $S_m^{0}(Na_4UO_5, cr, 298.15 \text{ K}) = (247.5 \pm 6.2) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, $C_{p,m}^{0}(Na_4NpO_5, cr, 298.15 \text{ K}) = (219.0 \pm 6.6) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, and $S_m^{0}(Na_4NpO_5, cr, 298.15 \text{ K}) = (247.5 \pm 6.2) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. When combined with the enthalpies of formation reported in the literature, these data yield standard entropies and Gibbs energies of formation as $\Delta_f S_m^{0}(Na_4UO_5, cr, 298.15 \text{ K}) = -(521.0 \pm 6.3) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, $\Delta_f G_m^{0}(Na_4UO_5, cr, 298.15 \text{ K}) = -(219.0 \pm 6.3) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, $\Delta_f G_m^{0}(Na_4UO_5, cr, 298.15 \text{ K}) = -(210.1 \pm 6.3) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, $\Delta_f G_m^{0}(Na_4UO_5, cr, 298.15 \text{ K}) = -(210.1 \pm 6.3) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the potential event of a breach of the stainless steel cladding in a Sodium-cooled Fast Reactor (SFR), the sodium metallic coolant could come into contact with the nuclear fuel. (U,Pu)O₂ mixed oxide fuel is the preferred option for SFRs because of the long experience accumulated with the current second generation Light Water reactor systems in terms of fabrication, reactor operation, reprocessing, and risk assessment. The additional incorporation of minor actinides (Np,Am,Cm) into the fuel is moreover envisioned in the framework of the international Generation IV program so as to reduce the radiotoxic inventory of the fuel cycle and its long term impact [1,2]. One solution to reduce the amount of waste and its radiotoxicity is indeed to recover the long-lived isotopes from the spent fuel and re-irradiate them in a fast reactor to transmute them into radioactive elements with shorter halflives [1,2]. In this respect, the development of the SFR concept has led to a considerable interest for the reaction products between sodium coolant and (U,Pu,Np)O2 nuclear fuel. A thorough

* Corresponding authors at: European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany. knowledge of their structural and thermodynamic properties is essential from a safety perspective.

The phases forming in the (Na + U + O), (Na + Np + O), and (Na + O)+ Pu + O) systems are numerous: tetravalent Na₂PuO₃, pentavalent NaUO₃, Na₃AnO₄, Na₅PuO₅, hexavalent Na₂UO₄, Na₂NpO₄, Na_4AnO_5 , $Na_2An_2O_7$, and heptavalent Na_5NpO_6 , Na_5PuO_6 (An = U, Np,Pu) [3–13]. The structural properties of the sodium uranium ternary oxides have been reviewed extensively [3-6,8]. Their thermodynamic functions are also fairly well established at T = 298.15 K [14,15]. Only the heat capacities, entropies, and Gibbs energies of Na₄UO₅ and β -Na₂UO₄ are missing. By contrast, there is little knowledge of the sodium neptunates and plutonates. Keller et al. [9,10,16], Pillon et al. [17,4], Kleykamp [18], Smith et al. [11,13], and Bykov et al. [12] have contributed to their structural characterization, but there is a real lack of thermodynamic information on these phases [15]. Only the enthalpies of formation at T = 298.15 K of α -Na₂NpO₄, β -Na₂NpO₄, Na₄NpO₅, and Na₂Np₂O₇ have been measured experimentally using solution calorimetry [19,20,15] and Knudsen effusion mass spectrometry [21]. To complete the data on the (Na + U + O) and (Na + Np + O) systems, we report for the first time low temperature heat capacity measurements on Na₄UO₅ and Na₄NpO₅ and the determination of their heat capacities, entropies and Gibbs energies at T = 298.15 K.

E-mail addresses: als77@cantab.net (A.L. Smith), rudy.konings@ec.europa.eu (R.J.M. Konings).

2. Experimental methods

2.1. Sample preparation and characterization

The Na₄UO₅ material was kindly provided by NRG (Nuclear Research & Consultancy Group, Petten, The Netherlands). The sample as received was furthermore sintered at T = 923 K under oxygen flow for 12 h to produce a compact material suited for the measurements.

Na₄NpO₅ was synthesized under oxygen flow by reaction at T = 1100 K between accurately weighted samples of neptunium dioxide (237 NpO₂ from ORNL, Oak Ridge National Laboratory) and sodium carbonate (Na₂CO₃ 99.95%, Sigma). The total heating time amounted to 70 h, with intermediate regrinding steps. The purity of the samples was examined by X-ray diffraction at room temperature and ICP-MS analysis.

The X-ray diffraction measurements were carried out using a Bruker D8 X-ray diffractometer mounted in the Bragg–Brentano configuration with a curved Ge monochromator (111), a ceramic copper tube (40 kV, 40 mA), and equipped with a LinxEye position sensitive detector. The data were collected at room temperature, i. e. 300(5) K, by step scanning in the angle range $10^{\circ} \leq 2\theta \leq 120^{\circ}$, with an integration time of about 8 h, a count step of $0.02^{\circ} (2\theta)$, and a dwell of 5 s/step. Structural analysis was performed by the Rietveld method with the Fullprof2k suite [22].

Na₄UO₅ and Na₄NpO₅ are isostructural and crystallize in the tetragonal space group I4/m (Z = 2) [7,13]. The lattice parameters found in the present work, a = 0.7549(3) nm, c = 0.4637(3) nm for Na₄UO₅ (Vol. = 0.2643(2) nm³ and ρ = 5.152(4) g · cm⁻³), and a = 0.7533(3) nm, c = 0.4615(3) nm for Na₄NpO₅ (Vol. = 0.2619(2)) nm³ and $\rho = 5.199(4)$ g cm⁻³), respectively, are in very good agreement with the values reported in the literature [7,13]. Some very minor secondary phases of α -Na₂UO₄ and α -Na₂NpO₄ were detected with X-rays and quantified using the Rietveld method and ICP-MS analysis. According to our Rietveld refinement, the Na₄UO₅ batch was pure at 98.4 wt% with 1.6 wt% α-Na₂UO₄ impurity, corresponding to the composition Na3.962UO4.981. The ICP-MS analysis yielded a sodium to uranium ratio of (3.963 ± 0.016) at/ at,¹ in very good agreement with the latter quantification. The Na_4NpO_5 batch was pure at 99.5 wt% with 0.5 wt% α - Na_2NpO_4 impurity, corresponding to the composition Na3.988NpO4.982. The ICP-MS analysis yielded a sodium to neptunium ratio of (4.006 ± 0.048) at/ at¹, also in good agreement with the quantification using X-rays.

2.2. Heat capacity measurements

Low temperature heat capacity measurements were performed in the temperature ranges (1.9 to 288.7) K and (2.4 to 292.2) K for Na₄UO₅ and Na₄NpO₅, respectively, using a PPMS (Physical Property Measurement System, Quantum Design) instrument in the absence of a magnetic field. This technique is based on a thermal relaxation method, which was critically assessed by Lashley et al. [23]. The measurements were carried out on pellets of 28.90(5) mg of Na₄UO₅ and 21.07(5) mg of Na₄NpO₅ materials encapsulated in Stycast 2850 FT, and the heat capacity contribution of the Stycast was subtracted from the recorded data. A more detailed description of the experimental procedure, which is particularly well adapted to the study of radioactive materials, was given in [24]. The contribution of the sample platform, wires, and grease was also deduced by a separate measurement of an addenda curve. The collected data for Na₄UO₅ and Na₄NpO₅ were finally corrected for 1.6 wt% and 0.5 wt% impurities of α -Na₂UO₄ and α - Na₂NpO₄, respectively, which were measured by Osborne et al. [25] and Smith et al. [26].

Considering the accuracy of the PPMS instrument as estimated by Lashley et al. [23], the reproducibility of the measurements, and the error introduced by the encapsulation procedure in Stycast of these radioactive materials [24], the final uncertainty was estimated at about (1 to 2)% in the middle range of acquisition T =(10 to 100) K, and reaching about 3% at the lowest temperatures and near room temperature. The use of Stycast is the main contributor to the combined standard uncertainties on the heat capacities and entropies quoted hereafter. The uncertainties introduced by the presence of impurities are moreover within the uncertainty range of the method.

3. Results

The experimental heat capacity data collected for both samples in the absence of a magnetic field are shown in figure 1 and 2, and listed in table 8 and 9, respectively. As the temperature approaches 298.15 K, the specific heat reaches in both cases values that are about $30 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ below the classical Dulong–Petit limit ($C_{\text{lat}} = 30R \approx 249 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ for the ten atoms in the formula unit).

The heat capacity of Na₄UO₅ increases smoothly with temperature. Interestingly, the low-temperature heat capacity of Na₄NpO₅ shows a broad anomaly between T = (3 and 15) K with a maximum at about T = 7 K. This anomaly was found to be slightly shifted to lower temperatures when a magnetic field is applied as reported in our previous work [13]. The hypothesis of a magnetic ordering transition at about T = 7 K was ruled out based on our Mössbauer spectroscopy and magnetic susceptibility results. Instead, this feature was interpreted as a Schottky-type anomaly associated with low-lying electronic energy levels. Its entropy contribution was moreover estimated as $4.57 \text{ J} \cdot \text{K}^{-1} \text{ mol}^{-1}$ after subtraction of the lattice contribution approximated with that of Na₄UO₅ [13]. We refer the reader to [13] for further details on this particular feature, and derivation of its associated entropy contribution.

In the present work, the thermodynamic functions of Na₄UO₅ and Na₄NpO₅ were derived at T = 298.15 K by fitting the experimental data to theoretical functions below T = (20.0 and 4.3) K [27], respectively, and a combination of Debye and Einstein heat capacity functions [28–30] from T = (20.0 to 288.7) K and T = (23.2 to 292.2) K, respectively. In addition, the Schottky anomaly observed for the neptunium compound was fitted between T = (4.3 and 23.2) K with a series of cubic spline polynomial functions. The fitted data are shown with solid lines in Figs. 1–3.

The heat capacity values at T = 298.15 K were obtained by extrapolation, yielding $C_{p,m}^{o}(Na_4UO_5, cr, 298.15 \text{ K}) = (220.6 \pm 6.7)^2$ J · K⁻¹ · mol⁻¹ and $C_{p,m}^{o}(Na_4NpO_5, cr, 298.15 \text{ K}) = (219.0 \pm 6.6)^3$ J · K⁻¹ · mol⁻¹, respectively. The experimental standard entropies at T = 298.15 K were determined by numerical integration of $(C_{p,m}/T) = f(T)$ using the aforementioned fitted functions, yielding $S_m^o(Na_4UO_5, cr, 298.15 \text{ K}) = (247.5 \pm 6.2) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ and $S_m^o(Na_4 \text{ NpO}_5, cr, 298.15 \text{ K}) = (247.5 \pm 6.2) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ and so $S_m^o(Na_4 \text{ NpO}_5, cr, 298.15 \text{ K}) = (247.5 \pm 6.2) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, respectively. Finally, standard thermodynamic functions were calculated at selected temperatures between (0 and 300) K and are listed in tables 10 and 11.

¹ The uncertainty is an expanded uncertainty $U = k.u_c$ where u_c is the combined standard uncertainty estimated following the ISO/BIPM Guide to the Expression of Uncertainty in Measurement. The coverage factor is k = 2.

 $^{^2}$ The encapsulation procedure in Stycast is the main contributor (3%) to the quoted combined standard uncertainty. The errors associated with the Debye and Einstein fit (0.4%) and impurity contamination (0.4%) contribute very little to the final uncertainty.

³ The encapsulation procedure in Stycast is the main contributor (3%) to the quoted combined standard uncertainty. The errors associated with the Debye and Einstein fit (0.4%) and impurity contamination (0.1%) contribute very little to the final uncertainty.

FIGURE 1. Heat capacity of Na₄UO₅ (\circ) and fit to the data (red line) as a function of temperature over the temperature range (1.9 to 288.7) K. The inset shows the data below *T* = 16 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

FIGURE 2. Heat capacity of Na₄NpO₅ (\blacktriangle) and fit to the data (red line) as a function of temperature over the temperature range (2.4 to 292.2) K. The inset shows the data below *T* = 20 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

 TABLE 1

 Provenance and purity of the samples used in this study.

Formula Source State Color Mass fraction purity Na2CO3 Sigma Powder White 0.9995 NpO2 ORNL Powder Black >0.998 Na4UO5 NRG Powder Orange 0.984 Na4NO5 Synthesized in-house Powder Lime green 0.995	-					
Na2CO3 Sigma Powder White 0.9995 NpO2 ORNL Powder Black >0.998 Na4UO5 NRG Powder Orange 0.984 Na4NpO5 Synthesized in-house Powder Lime green 0.995		Formula	Source	State	Color	Mass fraction purity
		Na ₂ CO ₃ NpO ₂ Na ₄ UO ₅ Na ₄ NpO ₅	Sigma ORNL NRG Synthesized in-house	Powder Powder Powder Powder	White Black Orange Lime green	0.9995 >0.998 0.984 0.995

4. Discussion

The heat capacity at constant volume, $C_{v,m}$, is given by the sum of the lattice vibrations, electronic, and magnetic contributions [31]. The relation between the heat capacity at constant pressure measured experimentally, $C_{p,m}$, and the heat capacity at constant volume, $C_{v,m}$, involves the isobaric thermal expansivity and isothermal compressibility of the material. At very low temperatures, the thermal expansivity is negligible, so that $C_{p,m} \approx C_{v,m}$.

TABLE 2

Summary of fitting parameters of the heat capacity of Na_4UO_5 and Na_4NPO_5 within the temperature ranges (20.0 to 288.7) K and (23.2 to 292.2) K, respectively.

Parameters	Na ₄ UO ₅	Na ₄ NpO ₅
<i>n</i> _D /mol	1.8158	1.3355
θ_D/K	170.64	141.97
n_{E1} /mol	4.3260	3.7476
θ_{E1}/K	301.48	270.70
n_{E2}/mol	4.1826	5.1818
θ_{E2}/K	579.00	542.98
$n_D + n_{E1} + n_{E2}/\text{mol}$	10.3244	10.2649
Temp. range/K	20.0-288.7	23.2-292.2
RMS%	31.1	29.6

TABLE 3

Summary of fitting parameters of the heat capacity of Na_4UO_5 and Na_4NPO_5 within the temperature ranges (1.9 to 20.0) K and (2.4 to 4.3) K, respectively.

Parameters	Na ₄ UO ₅	Na ₄ NpO ₅
$\begin{array}{c} \delta/mJ \cdot mol^{-1} \cdot K^{-2} \\ B_3/mJ \cdot mol^{-1} \cdot K^{-4} \\ B_5/mJ \cdot mol^{-1} \cdot K^{-6} \\ B_7/mJ \cdot mol^{-1} \cdot K^{-8} \\ B_9/mJ \cdot mol^{-1} \cdot K^{-10} \\ Temp. range/K \\ RMS\% \end{array}$	$\begin{array}{c} 0.9897 \\ -1.7091 \cdot 10^{-3} \\ 3.9306 \cdot 10^{-6} \\ -4.0657 \cdot 10^{-9} \\ 1.9-20.0 \\ 0.58 \end{array}$	274.59 1.5100 8.4578 · 10 ⁻² 2.4-4.3 0.12

TABLE 4

Summary of fitting parameters used to model the broad Schottky-type anomaly observed in the heat capacity of Na_4NpO_5 .

Parameters	$Na_4NpO_5(1)$	$Na_4NpO_5(2)$
$B_3/\text{mJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-4}$ $B_5/\text{mJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-6}$ $B_7/\text{mJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-8}$ α_S	$\begin{array}{c} 0.90728 \\ -7.0430 \cdot 10^{-4} \\ 2.7899 \cdot 10^{-7} \\ 0.85 \end{array}$	$\begin{array}{c} 0.90728 \\ -7.0430 \cdot 10^{-4} \\ 2.7899 \cdot 10^{-7} \\ 0.73 \end{array}$
$ heta_{\rm S}/{ m K}$ $arepsilon_1/{ m cm}^{-1}$	20.1 14.0	22.9 25.9

TABLE 5		
C	~ f	.1.

Summary of thermodynamic data for Na4UO5 and Na4NpO5.

Phase	$\begin{array}{l} \Delta_{f}H^{o}_{m}(298.15~\text{K}) \\ (\text{kJ}\cdot\text{mol}^{-1}) \end{array}$	$S_{\rm m}^{\rm o}(298.15 \text{ K})$ (J · K ⁻¹ · mol ⁻¹)	$\begin{array}{l} C^{o}_{p,m}(298.15 \text{ K}) \\ (J \cdot K^{-1} \cdot mol^{-1}) \end{array}$	$\begin{array}{l} \Delta_{f}G_{m}^{o}(298.15~\text{K}) \\ (\text{kJ}\cdot\text{mol}^{-1}) \end{array}$
Na ₄ UO ₅ Na ₄ NpO ₅	$\begin{array}{c} -2457.0 \pm 2.2 \; [15] \\ -2315.4 \pm 5.7 \; [15] \end{array}$	$\begin{array}{c} 247.5 \pm 6.2 \\ 247.5 \pm 6.2 \end{array}$	$\begin{array}{c} 220.6\pm6.7\\ 219.0\pm6.6\end{array}$	$\begin{array}{c} -2301.7 \pm 2.9 \\ -2159.7 \pm 6.0 \end{array}$

4.1. Fitting of the lattice contribution above T = 20 K.

The lattice contribution dominates at temperatures above about T = 20 K, and can be modeled using a combination of Debye and Einstein functions, as written in Eq. (1). Two Einstein functions were needed in the present work to fit the data. Fitting with a single Einstein function was attempted, but could not reproduce accurately the high temperature region.

$$C_{\rm p,m} = n_{\rm D} D(\theta_{\rm D}) + n_{\rm E1} E(\theta_{\rm E1}) + n_{\rm E2} E(\theta_{\rm E2}). \tag{1}$$

Here *R* is the universal gas constant equal to 8.3144621 $J \cdot K^{-1} \cdot mol^{-1}$, $D(\theta_D)$, $E(\theta_{E1})$, and $E(\theta_{E2})$ are the Debye, low and high temperature Einstein functions, respectively, as written in Eqs. (2) and (3). θ_D , θ_{E1} , and θ_{E2} are the characteristic Debye and Einstein temperatures. n_D , n_{E1} , and n_{E2} are adjustable parameters, whose sum ($n_D + n_{E1} + n_{E2}$) should be approximately equal to the number of atoms in the formula unit (i.e., 10 in this case).

TABLE 6

Refined atomic positions in Na₄NpO₅. R_{wp} = 11.2%, R_{exp} = 4.53%, χ^2 = 6.1. 5578 points for pattern. 83 Refined parameters. Peak shape η : Pseudo-Voigt*Axial divergence asymmetry. Background: Linear interpolation between operator-selected points in the pattern.

_							
	Atom	Ox. State	Wyckoff	x	у	z	B_0 (Å ²)
	Na	+1	8h	0.1970(5)	0.4035(5)	0	1.05(7)
	Np	+6	2a	0	0	0	0.51(1)
	01	-2	2b	0	0	0.5	1.67(10)
	02	-2	8h	0.264(1)	0.082(1)	0	2.32(10)

TABLE 7

Selected bond lengths, R(Å), for Na₄NpO₅ derived from the X-ray diffraction data. Standard deviations are given in parentheses. *N* is the number of atoms in each coordination shell.

Bond	Ν	<i>R</i> (Å)
Np-O(1)	2	2.30(1)
Np-O(2)	4	2.09(1)
Na-O(1)	1	2.40(1)
Na-O(2)	2	2.32(1)
Na-O(2)	1	2.48(1)
Na-O(2)	1	2.36(1)
Na-O(2)	1	2.66(1)

$$D(\theta_D) = 9R\left(\frac{1}{x}\right)^3 \int_0^x \frac{\exp(x)x^4}{\left[\exp(x) - 1\right]^2} \cdot dx, \quad x = \frac{\theta_D}{T},$$
(2)

$$E(\theta_E) = 3Rx^2 \frac{\exp(x)}{\left[\exp(x) - 1\right]^2}, \quad x = \frac{\theta_E}{T}.$$
(3)

The fitted parameters obtained for Na₄UO₅ and Na₄Np₅ in the temperature regions (20.0 to 288.7) K and (23.2 to 292.2) K, respectively, are listed in table 4. The sum $(n_D + n_{F1} + n_{F2})$ is very close to 10. The Debye and Einstein temperatures are found systematically higher for the uranium compound, suggesting stronger bonding between the uranium cation and surrounding oxygen ions. The reverse behaviour would be expected, however, considering the respective bond lengths in the UO_6 [7] and NpO₆ octahedra [13], and ionic radii of the U^{6+} (0.73 Å) and Np⁶⁺ (0.72 Å) cations according to Shannon's tabulated data [32]. This result can be related to the fact that the experimental curves cross around T = 35 K, as seen in figure 3, and could be the effect of the 5f valence electrons since these compounds show different electronic configurations, namely $[Rn]5f^{0}$ for Na₄UO₅ and $[Rn]5f^{1}$ for Na₄NpO₅. An alternative explanation would be the interplay between force constant and atomic mass [33]. However, considering the uncertainty of the method, and especially of the encapsulation procedure in Stycast, it is not possible to definitively assign this feature to a physical phenomenon. Calculations of the phonon density of states and of the vibration modes would be required to conclude.

The root mean square deviation (RMS) of the fits are rather high, despite a good general agreement with the experimental data. Indeed, the deviation from the experimental results remains below 0.4% over the temperature range (20 to 292) K, as shown in figure 4. The RMS discrepancy can be related to the uncertainty on our experimental results, which increases towards high temperatures, mainly due to the correction for the Stycast contribution.

4.2. Fitting below T = 20 K.

At very low temperatures (T < 20 K), the phonon contribution is well-represented using an harmonic-lattice model [27], as expressed by Eq. (4), where the number of required terms augments with the high temperature limit of the fit:

$$C_{latt} = \sum B_n T^n$$
, where $n = 3, 5, 7, 9...$ (4)

The electronic contribution of the conduction electrons at the Fermi surface are represented with a linear term γT [34]. The electronic specific heat is zero for insulating materials such as Na₄UO₅ and Na₄NpO₅ (orange and lime green, respectively). However, recent studies have revealed that a linear term could nevertheless occur due to departure from stoichiometry, oxygen vacancies or defects within the material [27]. α -FeOOH [27], Fe₂P₂O₇ [35], and Sr₂TiSi₂O₈ [33] are example of such materials.

The heat capacity of Na₄UO₅ was fitted with the harmonic model using four terms to cover the rather large temperature range of the fit (1.9 to 20.0) K. The corresponding coefficients are listed in table 4. A simple two terms harmonic model was sufficient to cover the temperature range (2.4 to 4.3) K in the case of Na₄NpO₅. However, the addition of a linear δT term also appeared necessary to describe the experimental curve. The broad Schottly anomaly was fitted between T = (4.3 and 23.2) K using a series of cubic spline polynomials.

The need for a linear δT term to fit the Na₄NpO₅ data in the temperature range (2.4 to 4.3) K suggests the presence of a non negligible amount of oxygen vacancies or defects within the material [27]. This observation can be related to the particular peak profile shape observed in the X-ray diffraction pattern as detailed in Appendix A. The Bragg reflections indeed show an asymmetric profile in opposite directions for successive hkl reflections, which is particularly pronounced at low angles, as detailed in [13]. This feature was interpreted in our previous work as a slight heterogeneity within the material which creates stresses. In fact, the Rietveld refinement and the description of the peak profile shape can be improved by introducing a second tetragonal phase with slightly larger cell volume, which concurs with the hypothesis of the formation of oxygen vacancies or defects (see Appendix A). A departure from stoichiometry is unlikely, however, as the Mössbauer data showed no traces of pentavalent neptunium in this material [13]. Instead, it is suggested that oxygen Frenkel pairs might occur. The δT term is much larger than reported in the literature for this type of defects, however [27,33], which is rather puzzling. Self-heating effects coming from the radioactive decay of ²³⁷Np were considered, but appeared negligible. The corresponding contribution amounts to no more than 0.5% at T = 2.5 K and 0.04% at T = 10 K of the signal. The physical interpretation of this phenomenon could therefore be more intricate.

4.3. Modelling the Schottky-type anomaly

The neptunium cation in Na₄NpO₅ is hexavalent, as confirmed by Mössbauer spectroscopy [13], and shows therefore a $[Rn]5f^1$ electronic configuration. The Np ion in this structure is therefore a Kramers ion with a ${}^{2}F_{5/2}$ ground state manifold and ${}^{2}F_{7/2}$ first excited state arising from spin–orbit coupling. The ${}^{2}F_{5/2}$ ground state has a degeneracy of (2J + 1) = 6, and is subsequently split into three Kramers doublets (Γ_7 ground state, and Γ_7^t, Γ_6^t excited states) by the crystal field effect in the tetragonally distorted (D_{4h}) symmetry [13]. Our previous studies have shown that Na₄NpO₅ probably shows two low-lying states having the same degeneracy and separated by about 14 cm⁻¹ [13]. It was therefore attempted in the present work to fit the anomaly in the heat capacity data using a simple two levels Schottky function as written in Eq. (5) [34]:

$$C_{Schottky} = R \left(\frac{\theta_S}{T}\right)^2 \frac{g_0}{g_1} \frac{\exp\left(\frac{\theta_S}{T}\right)}{\left(1 + \frac{g_0}{g_1}\exp\left(\frac{\theta_S}{T}\right)\right)^2},\tag{5}$$

TABLE 8

Experimental heat capacity data^{*a*} for Na₄UO₅ measured at pressure p = 1.233 mPa^{*b*}. The reported data were corrected for 1.6 wt% α -Na₂UO₄ impurity [25]. *R* is the ideal gas constant equal to 8.3144621 J · K⁻¹ · mol⁻¹.

T/K	$C^o_{p,m}/J\cdot K^{-1}\cdot mol^{-1}$	$C_{p,m}^{o}/R$	T/K	$\textit{C}^{o}_{p,m}/J\cdot\textit{K}^{-1}\cdot\textit{mol}^{-1}$	$C_{\rm p,m}^{\rm o}/R$	T/K	$C^o_{p,m}/J\cdot K^{-1}\cdot mol^{-1}$	$C_{p,m}^{o}/R$	T/K	$\textit{C}^{o}_{p,m}/J\cdot\textit{K}^{-1}\cdot\textit{mol}^{-1}$	$C_{\rm p,m}^{\rm o}/R$
1.92	0.00593	$7.1322\cdot10^{-4}$	8.71	0.588	0.0707	39.95	24.347	2.928	165.25	165.91	19.95
1.95	0.00639	$7.6854 \cdot 10^{-4}$	8.89	0.615	0.0739	41.62	26.309	3.164	166.92	167.14	20.10
1.99	0.00660	$7.9380 \cdot 10^{-4}$	9.07	0.651	0.0783	43.29	28.298	3.403	168.59	168.30	20.24
2.03	0.00709	$8.5273 \cdot 10^{-4}$	9.26	0.691	0.0831	44.96	30.351	3.650	170.26	169.22	20.35
2.07	0.00747	$8.9844 \cdot 10^{-4}$	9.45	0.728	0.0876	46.63	32.399	3.897	171.93	170.63	20.52
2.11	0.00821	$9.8744 \cdot 10^{-4}$	9.64	0.771	0.0928	48.30	34.486	4.148	173.60	171.73	20.65
2.16	0.00865	$1.040 \cdot 10^{-3}$	9.84	0.816	0.0981	49.96	36.580	4.400	175.27	172.85	20.79
2.20	0.00919	$1.110 \cdot 10^{-3}$	10.04	0.864	0.1039	51.64	38.704	4.655	176.94	173.92	20.92
2.25	0.00977	$1.180 \cdot 10^{-3}$	10.25	0.908	0.1092	53.30	40.820	4.910	178.61	175.00	21.05
2.29	0.0102	$1.230 \cdot 10^{-3}$	10.46	0.962	0.1157	54.98	43.053	5.178	180.28	175.82	21.15
2.34	0.0113	$1.360 \cdot 10^{-3}$	10.67	1.0161	0.1222	56.64	45.303	5.449	181.95	172.04	21.29
2.38	0.0117	$1.400 \cdot 10^{-3}$	10.89	1.0725	0.1290	50.52	47.545	5./18	105.01	170.00	21.41
2.45	0.0128	$1.540 \cdot 10$ 1.610 10^{-3}	11.11	1.1392	0.1370	59.99 61.67	49.930	6.280	185.28	179.00	21.55
2.40	0.0134	$1.010 \cdot 10$ 1 720 · 10 ⁻³	11.54	1.1558	0.1445	63 33	54 606	6 568	188.62	180.89	21.05
2.55	0.0154	$1.720 \cdot 10^{-3}$	11.57	1 3339	0.1515	64 99	56 902	6 844	190.02	181 94	21.70
2.63	0.0161	$1.940 \cdot 10^{-3}$	12.05	1.4125	0.1699	66.67	58.963	7.092	191.96	183.02	22.01
2.69	0.0175	$2.100 \cdot 10^{-3}$	12.30	1.4924	0.1795	68.34	61.380	7.382	193.63	184.02	22.13
2.74	0.0186	$2.240 \cdot 10^{-3}$	12.55	1.5738	0.1893	70.00	63.597	7.649	195.32	184.77	22.22
2.80	0.0203	$2.440 \cdot 10^{-3}$	12.81	1.6681	0.2006	71.67	65.956	7.933	196.97	185.87	22.35
2.85	0.0206	$2.480 \cdot 10^{-3}$	13.06	1.7629	0.2120	73.35	68.269	8.211	198.64	186.91	22.48
2.91	0.0212	$2.550 \cdot 10^{-3}$	13.33	1.8701	0.2249	75.01	70.592	8.490	200.31	187.85	22.59
2.97	0.0247	$2.960 \cdot 10^{-3}$	13.60	1.9728	0.2373	76.69	72.935	8.772	201.98	188.42	22.66
3.03	0.0260	$3.130 \cdot 10^{-3}$	13.88	2.0882	0.2512	78.36	75.296	9.056	203.65	189.55	22.80
3.09	0.0270	$3.240 \cdot 10^{-3}$	14.16	2.1993	0.2645	80.04	77.375	9.306	205.31	190.19	22.87
3.16	0.0293	$3.520 \cdot 10^{-3}$	14.45	2.3245	0.2796	81./1	/9./82	9.596	206.98	191.15	22.99
2.22	0.0315	$3.760 \cdot 10^{-3}$	14.74	2.4000	0.2951	03.30 85.04	82.055 84.259	9.000	206.04	191.76	23.07
3 35	0.0325	$4.020 \cdot 10^{-3}$	15.04	2,3013	0.3103	86.72	86 463	10.15	210.52	192.02	23.17
3 42	0.0372	$4.020 \cdot 10^{-3}$	15.55	2.8701	0.3452	88 39	88 563	10.10	213.66	194.27	23.26
3.49	0.0399	$4.800 \cdot 10^{-3}$	15.98	3.0319	0.3647	90.05	90.767	10.92	215.32	195.25	23.48
3.56	0.0424	$5.100 \cdot 10^{-3}$	16.32	3.2008	0.3850	91.72	92.988	11.18	216.99	195.84	23.55
3.63	0.0451	$5.430 \cdot 10^{-3}$	16.63	3.3660	0.4048	93.38	95.047	11.43	218.66	196.75	23.66
3.71	0.0473	$5.690 \cdot 10^{-3}$	17.00	3.5489	0.4268	95.06	97.096	11.68	220.32	197.67	23.77
3.78	0.0522	$6.270 \cdot 10^{-3}$	17.34	3.7540	0.4515	96.73	99.204	11.93	221.98	198.23	23.84
3.86	0.0536	$6.440 \cdot 10^{-3}$	17.70	3.9711	0.4776	98.39	101.40	12.20	223.65	198.97	23.93
3.94	0.0578	$6.960 \cdot 10^{-3}$	18.06	4.1908	0.5040	100.07	103.46	12.44	225.31	199.42	23.99
4.05	0.0613	$7.370 \cdot 10^{-3}$	18.42	4.4056	0.5297	101.74	103.43	12.00	220.96	200.17	24.06
4.10	0.0694	8 340 · 10 ⁻³	19.00	4 8500	0.5505	105.40	107.42	13.15	220.04	200.85	24.15
4.28	0.0745	$8.960 \cdot 10^{-3}$	19.57	5.0977	0.6131	106.75	111.42	13.40	231.97	201.90	24.28
4.36	0.0811	$9.750 \cdot 10^{-3}$	19.98	5.4070	0.6503	108.40	113.42	13.64	233.64	202.39	24.34
4.45	0.0844	0.0101	20.37	5.6465	0.6791	110.08	115.46	13.89	235.32	203.19	24.44
4.54	0.0900	0.0108	20.80	5.9563	0.7164	111.76	117.47	14.13	236.98	203.97	24.53
4.64	0.0959	0.0115	21.21	6.2423	0.7508	113.43	119.30	14.35	238.65	204.81	24.63
4.73	0.103	0.0124	21.65	6.5652	0.7896	115.11	121.22	14.58	240.31	205.37	24.70
4.83	0.109	0.0132	22.09	6.8973	0.8296	110.//	123.02	14.80	241.98	205.95	24.77
4.95	0.115	0.0139	22.34	7.2310	0.0722	110.45	124.64	15.01	245.05	200.50	24.02
5.05	0.125	0.0148	23.00	7.0100	0.9133	120.11	120.33	15.25	245.51	200.87	24.00
5.24	0.140	0.0168	23.95	8.3169	1.000	123.45	130.03	15.64	248.64	208.04	25.02
5.34	0.146	0.0176	24.47	8.7734	1.055	125.13	131.61	15.83	250.30	208.66	25.10
5.45	0.158	0.0190	24.93	9.1949	1.106	126.79	133.50	16.06	251.97	209.12	25.15
5.56	0.166	0.0200	25.47	9.6060	1.155	128.48	135.13	16.25	253.63	209.84	25.24
5.68	0.176	0.0211	25.99	10.053	1.209	130.15	136.65	16.44	255.29	209.94	25.25
5.79	0.186	0.0224	26.50	10.509	1.264	131.82	138.32	16.64	256.95	210.17	25.28
5.91	0.196	0.0236	27.05	10.997	1.323	133.49	140.08	16.85	258.61	210.66	25.34
6.03	0.210	0.0252	27.60	11.494	1.382	135.10	141.03	17.03	260.28	211.34	25.42
6.28	0.222	0.0207	28.10	12.018	1.445	130.05	143.00	17.21	201.94	211.00	25.40
6.41	0.249	0.0299	29.33	13.129	1.579	140.18	146.03	17.56	265.27	212.68	25.58
6.54	0.264	0.0317	29.92	13.703	1.648	141.84	147.42	17.73	266.94	212.89	25.60
6.68	0.279	0.0335	30.53	14.287	1.718	143.51	149.03	17.92	268.60	213.30	25.65
6.81	0.295	0.0355	31.16	14.896	1.792	145.18	150.44	18.09	270.26	213.48	25.68
6.96	0.315	0.0379	31.79	15.543	1.869	146.86	151.79	18.26	271.93	214.09	25.75
7.12	0.333	0.0401	32.44	16.180	1.946	148.52	153.11	18.42	273.59	214.46	25.79
7.27	0.355	0.0427	33.10	16.863	2.028	150.20	154.41	18.57	275.25	214.75	25.83
7.41	0.375	0.0451	33.78	1/.567	2.113	151.87	155.67	18.72	276.92	214.85	25.84
7.57	0.395	0.0475	34.49	18.263	2.19/	155.54	157.00	18.89	2/8.58	215.27	25.89
7.72	0.420	0.0500	35.20	19.000	2.200 2.376	156.20	150.47	19.00	200.24 281 QA	≥13.47 215.98	25.92 25.92
7.00	0.11/	0.0000	10.01	13.133	2.570	150.05	133.13	13.41	201.00	213.30	20.00

(continued on next page)

TABLE 8 (continued)

T/K	$C_{\mathrm{p},\mathrm{m}}^{\mathrm{o}}/\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$	$C_{p,m}^{o}/R$	T/K	$C_{p,m}^{o}/J \cdot K^{-1} \cdot mol^{-1}$	$C_{p,m}^{o}/R$	T/K	$C_{p,m}^{o}/J \cdot K^{-1} \cdot mol^{-1}$	$C_{p,m}^{o}/R$	T/K	$C^{o}_{p,m}/J\cdot K^{-1}\cdot mol^{-1}$	$C_{\rm p,m}^{\rm o}/R$
8.04	0.465	0.0560	36.64	20.564	2.473	158.57	161.07	19.37	283.56	216.80	26.07
8.20	0.492	0.0592	37.40	21.409	2.575	160.24	162.31	19.52	285.22	217.10	26.11
8.37	0.524	0.0630	38.16	22.257	2.677	161.90	163.70	19.69	286.87	217.15	26.12
8.54	0.551	0.0663	38.93	23.126	2.781	163.57	164.92	19.84	288.66	218.27	26.25

^{*a*} The standard uncertainties *u* on the temperature are: u(T) = 0.01 K for 1.9 < T/K < 20, u(T) = 0.02 K for 20 < T/K < 100, u(T) = 0.05 K for 100 < T/K < 300. The combined relative standard uncertainties on the values of the heat capacities are determined to be $u_r(C_{p,m}) = 0.03$ for T/K < 10, $u_r(C_{p,m}) = 0.01$ for 10 < T/K < 70, $u_r(C_{p,m}) = 0.02$ for 70 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 100 for 10 <

^{*b*} The standard uncertainty *u* on the pressure is: u(p) = 0.009 mPa.

where θ_S is the spacing between the two low-lying electronic levels expressed in K, g_0 and g_1 their respective degeneracy ($g_0/g_1 = 1$ in this case). θ_S is related to the energy separation ε_1 between the two levels via the formula $\theta_S = \varepsilon_1/k_B$, where k_B is Boltzmann constant equal to 1.3806488 $\cdot 10^{-23}$ J · K⁻¹.

The heat capacity of Na_4NpO_5 was thereafter represented using the aforementioned function together with a three terms harmonic model as written in Eq. (6). The corresponding coefficients are listed in table 4.

$$C_{p,m}(Na_4NpO_5, cr, T) = B_3T^3 + B_5T^5 + B_7T^7 + \alpha_sC_{Schottky},$$
 (6)

where α_s is a scaling factor adjusting the amplitude of the theoretical Schottky function to the one actually observed in the experiment.

The maximum temperature of the broad anomaly is fairly well described with such model as shown in figure 5. The spacing between the two low-lying electronic levels is at about T = (20.1 to 22.9) K, which corresponds to an energy separation of (14 to 15.9) cm⁻¹, in good agreement with our previous study [13]. The combination of the simple two levels Schottky function and harmonic model is not sufficient, however, to describe adequately both the width and intensity of the data below T = 6.5 K. The experimental $(C_{p,m}/T)$ curve saturates at about 275 J · K⁻² · mol⁻¹

TABLE 9

Experimental heat capacity data^{*a*} for Na₄NpO₅ measured at pressure p = 1.233 mPa^{*b*}. The reported data were corrected for 0.5 wt% α -Na₂NpO₄ impurity [26]. *R* is the ideal gas constant equal to 8.3144621 J · K⁻¹ · mol⁻¹.

2.45 0.70490 0.08478 7.12 2.0012 0.3201 24.77 9.9987 1.203 89.31 85.845	10.32
2.50 0.71848 0.08641 7.35 2.7249 0.3277 25.60 10.525 1.266 92.43 90.203	10.85
2.55 0.73698 0.08864 7.51 2.7831 0.3347 26.51 11.225 1.350 95.57 93.800	11.28
2.61 0.75366 0.09064 7.75 2.8785 0.3462 27.34 11.963 1.439 98.91 98.385	11.83
2.67 0.77466 0.09317 8.01 2.9485 0.3546 28.28 12.767 1.536 102.30 102.34	12.31
2.73 0.79286 0.09536 8.27 3.0341 0.3649 29.25 13.606 1.636 105.76 106.62	12.82
2.80 0.81229 0.09770 8.54 3.1179 0.3750 30.25 14.511 1.745 109.46 111.36	13.39
2.87 0.83549 0.1005 8.82 3.2051 0.3855 31.29 15.443 1.857 113.18 115.85	13.93
2.94 0.86034 0.1035 9.11 3.2834 0.3949 32.38 16.421 1.975 116.98 119.41	14.36
3.01 0.88756 0.1068 9.42 3.3551 0.4035 33.50 17.463 2.100 121.02 123.80	14.89
3.09 0.91791 0.1104 9.73 3.4302 0.4126 34.65 18.594 2.236 125.19 128.19	15.42
3.17 0.94721 0.1139 10.05 3.4996 0.4209 35.85 19.774 2.378 129.51 132.43	15.93
3.26 0.97847 0.1177 10.39 3.5645 0.4287 37.08 21.005 2.526 133.99 136.86	16.46
3.35 1.0102 0.1215 10.75 3.6224 0.4357 38.35 22.319 2.684 138.61 141.15	16.98
3.44 1.0462 0.1258 11.06 3.6978 0.4447 39.67 23.667 2.846 143.40 145.80	17.54
3.54 1.0850 0.1305 11.43 3.7817 0.4548 41.03 25.150 3.025 148.36 150.07	18.05
3.64 1.1295 0.1358 11.82 3.8630 0.4646 42.44 26.686 3.210 153.46 154.06	18.53
3.74 1.1692 0.1406 12.21 3.9576 0.4760 43.89 28.328 3.407 158.77 158.40	19.05
3.85 1.2177 0.1465 12.62 4.0521 0.4874 45.36 30.051 3.614 164.23 162.51	19.55
3.96 1.2634 0.1520 13.05 4.1628 0.5007 47.01 31.939 3.841 169.89 166.34	20.01
4.08 1.3175 0.1585 13.50 4.2716 0.5138 48.62 33.994 4.089 175.75 170.60	20.52
4.20 1.3760 0.1655 13.95 4.3849 0.5274 50.28 35.980 4.327 181.80 174.59	21.00
4.32 1.4347 0.1726 14.42 4.5254 0.5443 52.03 38.140 4.587 188.06 178.47	21.47
4.45 1.4997 0.1804 14.93 4.6819 0.5631 53.78 40.320 4.849 194.56 182.52	21.95
4.58 1.5616 0.1878 15.43 4.8503 0.5834 55.66 42.651 5.130 201.26 186.09	22.38
4.72 1.6229 0.1952 15.96 5.0366 0.6058 57.57 45.008 5.413 208.19 189.61	22.80
4.87 1.6834 0.2025 16.50 5.1695 0.6218 59.53 47.601 5.725 215.38 193.34	23.25
5.02 1.7530 0.2108 17.09 5.4416 0.6545 61.59 50.208 6.039 222.76 196.86	23.68
5.18 1.8274 0.2198 17.66 5.6846 0.6837 63.70 52.949 6.368 230.42 199.63	24.01
5.34 1.8994 0.2285 18.27 5.8974 0.7093 65.88 55.908 6.724 238.37 202.54	24.36
5.51 1.9794 0.2381 18.91 6.2590 0.7528 68.16 58.818 7.074 246.59 204.81	24.63
5.68 2.0660 0.2485 19.56 6.4976 0.7815 70.52 61.879 7.442 255.08 207.29	24.93
5.87 2.1356 0.2569 20.23 6.8914 0.8288 72.93 65.058 7.825 263.86 210.20	25.28
6.05 2.2158 0.2665 20.92 7.2645 0.8737 75.44 68.365 8.222 272.95 212.24	25.53
6.25 2.3078 0.2776 21.65 7.6765 0.9233 78.00 71.370 8.584 282.35 214.72	25.83
6.46 2.3937 0.2879 22.39 8.1704 0.9827 80.70 75.402 9.069 292.25 218.40	26.27
6.68 2.4782 0.2981 23.16 8.6915 1.045 83.52 78.164 9.401	
6.89 2.5563 0.3075 23.97 9.2049 1.107 86.34 82.246 9.892	

^a The standard uncertainties *u* on the temperature are: u(T) = 0.01 K for 1.9 < T/K < 20, u(T) = 0.02 K for 20 < T/K < 100, u(T)=0.05 K for 100 < T/K < 300. The combined relative standard uncertainties on the values of the heat capacities are determined to be $u_r(C_{p,m}) = 0.03$ for T/K < 10, $u_r(C_{p,m}) = 0.01$ for 10 < T/K < 70, $u_r(C_{p,m}) = 0.02$ for 70 < T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 150, and $u_r(C_{p,m}) = 0.03$ for T/K < 100, $u_r(C_{p,m}) = 0.02$ for 100 < T/K < 150, and $u_r(C_{p,m}) = 0.03$ for T/K < 100.

^b The standard uncertainty u on the pressure is: u(p) = 0.009 mPa.

FIGURE 3. $C_{p,m}/T$ for Na_4UO_5 (\circ) and $Na_4NpO_5(\blacktriangle)$ measured in zero magnetic field, and fit to the data (plain and dotted lines).

TABLE 10

instead of going to zero when reaching T = 0 K, probably due to the presence of defects within the material as detailed previously. This effect makes it more difficult to describe the anomaly with a theoretical Schottky function. Moreover, the associated entropy is less ($\alpha_{S1} = 0.85$, $\alpha_{S2} = 0.73$) than predicted by theory ($\Delta S_{Schottky} = R \ln 2 = 5.76 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$), which also renders the fitting procedure more intricate. We have therefore preferred in the present work to fit the broad Schottky anomaly with a series of cubic spline polynomials so as to derive the thermodynamic functions between T = (0 and 300) K.

4.4. Derivation of thermodynamic functions

The empirical Neumann–Kopp (NK) rule, which suggests that the heat capacity of a solid is the sum of the heat capacity of its constituent chemical components, is usually a good approximation for the estimation of the specific heat at T = 298.15 K [36]. From the data of UO₃ [37] and Na₂O [38], the heat capacity of Na₄UO₅ can be estimated as 219.9 J · K⁻¹ · mol⁻¹, in very good agreement with our

Standard thermodynamic functions for Na₄UO₅ at pressure p = 100 kPa. $\phi_m^o(T) = S_m^o(T) - [H_m^o(T) - H_m^o(0)]/T$.^a

T/K	$C_{p,m}^{o}/(J \cdot K^{-1} \cdot mol^{-1})$	$S_{\rm m}^{\rm o}/({\rm J}\cdot{\rm K}^{-1}\cdot{ m mol}^{-1})$	$H^{o}_{m}(T) - H^{o}_{m}(0)/(kJ \cdot mol^{-1})$	$\phi^{\rm o}_{\rm m}(T)/({\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1})$
0	0	0	0	
1	$9.8800 \cdot 10^{-4}$	$3.3120 \cdot 10^{-4}$	$2.4961 \cdot 10^{-7}$	$8.1595 \cdot 10^{-5}$
2	$7.8600 \cdot 10^{-3}$	$2.7900 \cdot 10^{-3}$	$4.6753 \cdot 10^{-6}$	$4.5340 \cdot 10^{-4}$
3	0.026320	$9.1400 \cdot 10^{-3}$	$2.1765 \cdot 10^{-5}$	$1.8900 \cdot 10^{-3}$
4	0.061650	0.021240	$6.5749 \cdot 10^{-5}$	$4.8000 \cdot 10^{-3}$
5	0.11867	0.040810	$1.5591 \cdot 10^{-4}$	9.6300 · 10 ⁻³
6	0.20154	0.069470	$3.1602 \cdot 10^{-4}$	0.016800
7	0.31382	0.10868	$5.7370 \cdot 10^{-4}$	0.026730
8	0.45842	0.15975	$9.5982 \cdot 10^{-4}$	0.039770
9	0.63780	0.22383	$1.5100 \cdot 10^{-3}$	0.056290
10	0.85403	0.30197	$2.2500 \cdot 10^{-3}$	0.076580
11	1.1091	0.39508	$3.2400 \cdot 10^{-3}$	0.10096
12	1.4048	0.50402	$4.4900 \cdot 10^{-3}$	0.12967
13	1.7433	0.62961	$6.0700 \cdot 10^{-3}$	0.16297
14	2.1269	0.77262	$8.0000 \cdot 10^{-3}$	0.20109
15	2.5577	0.93383	0.010340	0.24425
16	3.0374	1.1140	0.013140	0.29268
17	3.5665	1.3138	0.016440	0.34658
18	4.1424	1.5338	0.020300	0.40614
19	4.7580	1.7741	0.024750	0.47155
20	5.3980	2.0342	0.029830	0.54293
25	9.2442	3.6289	0.065940	0.99148
30	13.806	5.7097	0.12336	1.5977
35	18.832	8.2093	0.20477	2.3586
40	24.311	11.076	0.31245	3.2653
45	30.237	14.278	0.44865	4.3078
50	36.554	17.787	0.61548	5.4776
55	43.165	21.579	0.81468	6.7668
60	49.967	25.626	1.0475	8.1680
65	56.865	29.897	1.3145	9.6737
70	63.783	34.364	1.6161	11.277
75	70.662	39.000	1.9523	12.969
80	77.460	43.778	2.3226	14.745
85	84.144	48.675	2.7267	16.596
90	90.688	53.670	3.1638	18.517
95	97.076	58.745	3.6333	20.500
100	103.29	63.883	4.1343	22.540
110	115.16	74.291	5.2272	26.771
120	126.23	84.791	6.4348	31.168
130	136.48	95.305	7.7490	35.697
140	145.91	105.77	9.1617	40.329
150	154.55	116.14	10.665	45.038
160	162.44	126.37	12.250	49.802
170	169.62	136.43	13.911	54.603
180	176.14	146.32	15.640	59.425
190	182.08	156.00	17.432	64.254
200	187.46	165.48	19.280	69.079
210	192.36	174.75	21.180	73.891

TABLE 10 (continued)

T/K	$C_{p,m}^{o}/(\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1})$	$S_{\rm m}^{\rm o}/({\rm J}\cdot{\rm K}^{-1}\cdot{ m mol}^{-1})$	$H^o_m(T) - H^o_m(0)/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	$\phi^{o}_{m}(T)/(J\cdotK^{-1}\cdotmol^{-1})$
220	196.82	183.80	23.126	78.682
230	200.87	192.64	25.115	83.445
240	204.57	201.27	27.142	88.175
250	207.95	209.69	29.205	92.868
260	211.03	217.90	31.300	97.520
270	213.86	225.92	33.425	102.13
273.15	214.70	228.41	34.100	103.57
280	216.45	233.75	35.576	106.69
290	218.83	241.39	37.753	111.20
298.15	220.63	247.48	39.544	114.84
300	221.02	248.84	39.952	115.67

^{*a*} The relative combined standard uncertainties in the values of the fitted heat capacities are determined from the experimental and fitted uncertainties to be $u_r(Cp, m) = 0.031$ for T/K < 10, $u_r(Cp, m) = 0.011$ for 10 < T/K < 70, $u_r(Cp, m) = 0.021$ for 70 < T/K < 100, $u_r(Cp, m) = 0.026$ for 100 < T/K < 150, and $u_r(Cp, m) = 0.031$ for T/K < 150. The standard uncertainty on the pressure is u(p) = 5 kPa.

TABLE 11 Standard thermodynamic functions for Na₄NpO₅ at pressure p = 100 kPa. $\phi_m^o(T) = S_m^o(T) - [H_m^o(T) - H_m^o(0)]/T$.

0 0 0 0 0.5 0.12749 0.12363 3.4349.10 $^{+}$ 0.014930 1 0.27618 0.26138 1.3769.10 $^{+}$ 0.2169 2 0.65397 0.54047 5.777.10 $^{+}$ 0.26158 3 0.88509 0.82897 1.2800.10 $^{-1}$ 0.4528 4.5 1.5181 1.3013 3.0700.10 $^{-1}$ 0.65204 5. 1.7469 1.4730 3.8800.10 $^{-1}$ 0.66661 5. 1.3739 1.6501 4.8100.10 $^{-1}$ 0.85522 7 2.6669 2.2005 8.2600.10 $^{-3}$ 0.8552 8 2.9557 2.5713 0.011400 1.1818 9 3.2320 2.3054 0.017510 1.5407 11 3.4939 3.2946 0.021110 1.5407 13 4.1508 4.2681 0.028940 2.0619 14 4.4035 4.6950 0.033220 2.2323 15 4.7077 4.9192	T/K	$C_{p,m}^{o}/(J \cdot K^{-1} \cdot mol^{-1})$	$S_{\rm m}^{\rm o}/({\rm J}\cdot{\rm K}^{-1}\cdot{ m mol}^{-1})$	$H^{\mathrm{o}}_{\mathrm{m}}(T) - H^{\mathrm{o}}_{\mathrm{m}}(0)/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	$\phi_{\mathrm{m}}^{\mathrm{o}}(T)/(\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1})$
0.5 0.13749 0.12263 3.4349 10 ⁻¹ 0.054930 1 0.26718 0.26138 1.3769 10 ⁻¹ 0.25138 2 0.56397 0.2600 0.2297 1.2800 10 ⁻³ 0.64024 4 1.2816 1.1367 2.3700.10 ⁻¹ 0.65204 5.5 1.3739 1.6501 8.8800.10 ⁻¹ 0.65661 5.5 1.3739 1.6501 8.2600.10 ⁻³ 0.83552 7 2.6669 2.205 8.2600.10 ⁻³ 0.83552 11 3.9433 3.2919 0.01140 1.5407 12 3.9126 3.2634 0.024910 1.8897 13 4.1508 4.2631 0.024910 1.8897 14 4.4052 0.01750 2.2031 1.2407 15 4.0707 4.0392 0.03320 2.2323 16 4.0707 4.0392 0.033270 2.9895 17 5.4041 5.500 0.095500 2.2492	0	0	0	0	
1 0.27618 0.26138 1.3769 · 10 ⁻¹ 0.12369 2 0.56397 0.64047 5.77 · 10 ⁻⁴ 0.26158 3 0.88509 0.32897 1.2800 · 10 ⁻¹ 0.65428 4.5 1.5181 1.3013 3.0700 · 10 ⁻¹ 0.62004 5.5 1.4749 1.4713 3.0700 · 10 ⁻¹ 0.65661 5.6 2.1955 1.811 5.0500 · 10 ⁻¹ 0.85552 7 2.6069 2.2005 8.2600 · 10 ⁻¹ 0.85552 8 2.557 2.3713 0.011040 1.3656 11 3.6937 3.6345 0.021110 1.5407 12 3.126 3.6654 0.021101 1.7158 14 4.4055 4.6061 0.03220 2.2323 15 4.7077 4.9192 0.024910 3.897 14 4.4055 4.6051 0.02770 2.4010 15 5.5001 0.02840 2.302 2.392 16 5.3394 5.550	0.5	0.13749	0.12363	$3.4349 \cdot 10^{-5}$	0.054930
2 0.56397 0.564047 5.5777.10 ⁻⁴ 0.6158 3 0.85509 0.82897 1.2300-10 ⁻³ 0.40154 4 1.2816 1.1367 2.3700-10 ⁻³ 0.65204 5.5 1.7469 1.4730 3.8800-10 ⁻³ 0.65204 5.5 1.9739 1.6501 4.8100-10 ⁻³ 0.85552 7 2.6669 2.2005 8.2600-10 ⁻³ 0.85552 19 3.2520 2.9353 0.011440 1.918 9 3.2520 2.9363 0.01440 1.8897 11 3.6437 3.654 0.02410 1.8897 12 3.9126 3.9654 0.024910 2.2323 13 4.1508 4.2632 0.03720 2.4907 14 4.4037 4.9632 0.03770 2.4902 15 4.7074 4.9526 0.05870 2.4902 16 4.0631 0.03770 2.4902 17 4.9644 0.5327 2.4902	1	0.27618	0.26138	$1.3769 \cdot 10^{-4}$	0.12369
30.885090.828971.2800 10 - 30.0454284.41.28161.30733.2700 10 - 30.545284.51.51811.30133.0700 10 - 30.6596615.51.74691.65014.8100 10 - 30.6996615.62.197391.65018.800 10 - 30.69967162.19551.81315.8500 10 - 30.6855272.60692.20058.2600 10 - 31.021182.95372.57130.011401.3566103.49393.29190.0175101.5407113.69373.63450.021101.718123.9263.66540.0284002.6619144.0354.06050.0332002.2323154.70774.91920.0377002.7342165.0945.5000.0478072.3682175.40415.5000.0478072.3999185.80715.8730.0583473.29922510.0558.36520.0966103.22922510.0558.36520.095803.6643206.74486.52950.666103.22922510.0558.36520.095803.673267.4281.57970.383337.0118462.40481.59700.383333.113470.62170.848551.0799263.57572.24770.848551.0793276.72241.94241.305 <td>2</td> <td>0.56397</td> <td>0.54047</td> <td>$5.5777 \cdot 10^{-4}$</td> <td>0.26158</td>	2	0.56397	0.54047	$5.5777 \cdot 10^{-4}$	0.26158
4 1.2816 1.1367 2.3700.10 ⁻³ 0.62004 4.5 1.7469 1.4730 3.8800.10 ⁻³ 0.62004 5.5 1.7469 1.4730 3.8800.10 ⁻³ 0.62004 5.5 1.9739 1.6501 4.8100.10 ⁻³ 0.85552 7 2.6669 2.2053 8.2600.10 ⁻³ 0.1211 8 2.9537 2.5713 0.011400 1.1021 9 3.2520 2.3655 0.014140 1.3656 10 3.4939 3.2919 0.017510 1.5497 11 3.6937 3.3654 0.024100 1.8987 12 3.9126 3.9654 0.024910 2.8397 13 4.1508 4.2881 0.024910 2.8397 14 4.4035 4.6050 0.04250 2.5042 15 4.7077 4.9192 0.03320 2.3434 16 5.8071 5.8763 0.04550 2.6042 17 5.40414 5.5350 0.064100 <td>3</td> <td>0.88509</td> <td>0.82897</td> <td>$1.2800 \cdot 10^{-3}$</td> <td>0.40154</td>	3	0.88509	0.82897	$1.2800 \cdot 10^{-3}$	0.40154
4.5 1.5181 1.3013 3.070-10-3 0.62004 5.5 1.9739 1.6501 4.800-10-3 0.77513 6 2.1955 1.8313 5.8500-10-3 0.85552 7 2.6069 2.2005 8.260-10-3 0.85552 8 2.9537 2.5713 0.011440 1.9118 9 3.2520 2.9365 0.014140 1.3656 10 3.4939 3.2319 0.017510 1.5407 11 3.6937 3.6345 0.024910 1.8897 12 3.9126 3.9654 0.024910 1.8897 13 4.1508 4.2881 0.023220 2.2733 14 4.4055 4.6050 0.042650 2.6692 17 5.40411 5.5300 0.047870 2.2342 18 5.8071 5.8703 0.05500 3.0643 20 6.7488 6.5295 0.066010 3.2292 21 6.5485 0.16819 4.9614 25 10.055 8.3652 0.10745 4.0670	4	1.2816	1.1367	$2.3700 \cdot 10^{-3}$	0.54528
5 1.7469 1.4730 3.800 · 10 ⁻³ 0.69661 5.5 1.9759 1.6501 3.800 · 10 ⁻³ 0.8552 6 2.1955 1.8313 5.800 · 10 ⁻³ 0.8552 7 2.6069 2.2005 8.2600 · 10 ⁻³ 1.0211 8 2.9537 2.5713 0.0114/0 1.566 10 3.4939 3.2919 0.01710 1.5407 11 3.6937 3.6345 0.022110 1.7158 12 3.9126 3.9654 0.0228400 2.6619 13 4.1508 4.2881 0.028940 2.6619 14 4.4035 4.6050 0.037770 2.4010 15 4.7077 4.9192 0.037770 2.4010 16 5.0394 5.2360 0.042670 2.342 17 5.4041 5.5500 0.059500 3.6643 20 6.7498 6.5295 0.06010 3.2292 19 6.2539 0.16192 0.56192	4.5	1.5181	1.3013	$3.0700 \cdot 10^{-3}$	0.62004
5.5 1.9739 1.6501 4.8100 ⁻¹⁰⁻³ 0.77513 6 2.1955 1.8131 5.8500 ⁻¹⁰⁻³ 1.0211 7 2.6069 2.2005 8.2600 ⁻¹⁰⁻³ 1.0211 9 3.5520 2.9365 0.011440 1.1918 9 3.520 2.9365 0.017510 1.5407 11 3.6937 3.6345 0.02110 1.8897 12 3.1626 3.9654 0.024910 1.8897 13 4.1508 4.2881 0.023940 2.2313 14 4.4035 4.6050 0.042650 2.5802 15 4.7077 4.9152 0.037700 2.4010 16 5.3034 5.2366 0.042650 2.5862 17 5.40411 5.500 0.04370 2.2342 18 5.8071 5.8703 0.05500 3.0643 20 6.7488 6.5295 0.065010 3.2292 21 16.505 8.3652 0.10745 4.6670 22 1.0355 8.352 0.10745 4.6670 25 1.0355 8.3652 0.10745 4.6670 25 1.0355 8.3652 0.10745 4.9614	5	1.7469	1.4730	$3.8800 \cdot 10^{-3}$	0.69661
6 2,1955 1,8313 5,8000 10 ⁻³ 0.85552 7 2,0669 2,2005 8,2600 10 ⁻³ 1.0211 8 2,9537 2,5713 0.011400 1,918 9 3,2520 2,9365 0.014140 1,5666 10 3,4939 3,2919 0.017510 1,5467 11 3,6937 3,6345 0.02410 1,8897 12 3,9126 3,9654 0.024910 1,8897 13 4,1035 4,6050 0.033220 2,2323 14 4,4035 4,6050 0.042650 2,5682 15 4,7077 4,9192 0.053770 2,8095 16 5,0394 5,2336 0.042650 2,5682 17 5,4041 5,5500 0.055470 2,8995 19 6,2539 6,1662 0.055470 2,8995 10 0.55 8,3652 0.10745 4,0670 30 1,4294 1,5686 1,0734 1,2246	5.5	1.9739	1.6501	$4.8100 \cdot 10^{-3}$	0.77513
7 2.6069 2.2005 8.2010 ⁻³ 1.0211 8 2.9577 2.5713 0.011040 1.1918 9 3.2520 2.9365 0.011440 1.3656 10 3.4939 3.2919 0.017510 1.5407 11 3.6937 3.6345 0.021110 1.7158 12 3.9126 3.9654 0.028440 2.0619 13 4.1508 4.2881 0.02840 2.019 14 4.4035 4.6050 0.03770 2.4010 15 4.7077 4.9192 0.03770 2.4010 16 5.0394 5.2336 0.042850 2.5682 17 5.4041 5.5500 0.05610 3.2292 18 5.8071 5.8703 0.05570 2.8995 19 6.2539 0.06610 3.2292 25 1.0055 8.3652 0.06610 3.2292 25 1.0553 3.6527 0.26817 5.9399 40	6	2.1955	1.8313	$5.8500 \cdot 10^{-3}$	0.85552
8 2537 25713 0.01440 1.1918 9 32520 2.9365 0.01440 1.5666 10 3.4939 3.2919 0.017510 1.5407 11 3.6937 3.6445 0.021110 1.7158 12 3.9126 3.9654 0.023401 1.8897 13 4.1005 4.6050 0.033220 2.2323 14 4.4035 4.6050 0.033220 2.7342 15 4.7077 4.9192 0.037770 2.4010 16 5.0394 5.2336 0.042650 2.5682 17 5.4041 5.5000 0.047870 2.8995 19 6.2539 6.1662 0.0565100 3.2292 25 10.055 8.3652 0.10745 4.0670 30 1.4294 1.5686 0.16819 4.9614 35 18.933 13.113 0.25107 5.9399 40 2.4048 15.970 0.65522 9.4423	7	2.6069	2.2005	$8.2600 \cdot 10^{-3}$	1.0211
9 3,2520 2,3955 0,01440 1,3666 10 3,4939 3,2919 0,017510 1,5407 11 3,6937 3,645 0,024110 1,7158 12 3,9126 3,9654 0,024910 2,8619 13 4,1508 4,2681 0,028940 2,0619 14 4,4035 4,6050 0,33770 2,4010 15 4,7077 4,9192 0,037770 2,4010 16 5,0394 5,2336 0,047870 2,7942 17 5,4041 5,5500 0,05950 3,0643 19 6,2539 0,60510 3,2292 25 10,055 8,3652 0,60610 3,2292 25 10,056 0,10745 4,0670 30 14,294 10,568 0,16745 4,0670 35 18,393 13,113 0,25107 5,9399 46 2,9625 13,102 0,4522 9,4423 55 4,1791 </td <td>8</td> <td>2.9537</td> <td>2.5713</td> <td>0.011040</td> <td>1.1918</td>	8	2.9537	2.5713	0.011040	1.1918
10 3.4939 3.2919 0.017510 1.5407 11 3.6937 3.6345 0.021110 1.7158 12 3.9126 3.6954 0.024910 1.8897 13 4.1508 4.2881 0.03320 2.2323 14 4.4035 4.6050 0.033770 2.4010 16 5.0394 5.2336 0.042650 2.5682 17 5.4041 5.5500 0.047870 2.7342 18 5.8071 5.8703 0.053470 2.8995 19 6.2539 6.1962 0.056510 3.2292 25 1.0055 8.3652 0.10745 4.0670 30 1.4.294 1.0568 0.16819 4.9614 35 1.8.933 1.3.113 0.25107 5.3939 40 2.4048 1.5.970 0.38833 7.0118 45 2.9625 1.9120 0.49234 1.9379 50 3.5.75 2.2547 0.65852 9.4243	9	3.2520	2.9365	0.014140	1.3656
11 3.6937 3.6345 0.021110 1.7158 12 3.9126 3.9654 0.028940 2.0619 13 4.1508 4.2881 0.028940 2.0619 14 4.4035 4.0600 0.033220 2.2323 15 4.7077 4.9192 0.037770 2.4010 16 5.0394 5.2336 0.042650 2.5682 17 5.4041 5.5500 0.067870 2.7342 18 5.8071 5.8703 0.0653470 2.8995 19 6.2539 6.1962 0.059500 3.0643 20 6.7498 6.5295 0.066010 3.2292 23 10.055 8.3652 0.10745 4.0670 30 14.294 10.568 0.16819 4.9614 35 18.933 13.113 0.25107 5.39399 40 2.4048 15.970 0.35837 7.0118 45 2.9625 19.120 0.48234 8.1793 50 3.575 2.5447 0.65222 9.4423 <tr< td=""><td>10</td><td>3.4939</td><td>3.2919</td><td>0.017510</td><td>1.5407</td></tr<>	10	3.4939	3.2919	0.017510	1.5407
12 3.9126 3.9654 0.024910 1.8897 13 4.1508 4.2081 0.028940 2.0619 14 4.4035 4.6050 0.033220 2.2323 15 4.7077 4.9192 0.03770 2.4010 16 5.0394 5.2336 0.042650 2.5682 17 5.4041 5.5500 0.063470 2.7342 18 5.8071 5.8703 0.639500 3.0643 20 6.7498 6.5295 0.066010 3.2292 25 10.055 8.3652 0.16819 4.9614 36 18.933 13.113 0.25107 5.9399 40 2.4048 15.970 0.3833 7.0118 45 2.9625 19.120 0.49234 8.1793 50 3.5.575 2.2.547 0.86525 9.4423 55 4.1.791 2.6.27 0.84855 10.799 60 4.8.177 30.136 1.0734 12.246 65 5.4660 3.2442 1.7083 3.937	11	3.6937	3.6345	0.021110	1.7158
13 41508 42881 0.028940 2.0619 14 44035 46050 0.033220 2.2323 15 4.7077 4.9192 0.037770 2.4010 16 5.0394 5.2336 0.042650 2.5682 17 5.4041 5.550 0.047870 2.3342 18 5.8071 5.8703 0.053470 2.8995 19 6.2539 6.1962 0.059500 3.0643 20 6.7498 6.5295 0.066010 3.2292 25 10.055 8.3652 0.06010 3.2399 40 2.4048 15.970 0.35833 7.0118 30 14.294 10.568 0.16819 4.8614 35 18.933 13.113 0.25107 5.9399 40 2.4048 15.970 0.35833 7.0118 50 3.5575 2.547 0.65522 9.4423 51 4.171 2.6227 0.84855 10.799 60 4.8.177 3.0136 1.7342 1.246 <td< td=""><td>12</td><td>3.9126</td><td>3.9654</td><td>0.024910</td><td>1.8897</td></td<>	12	3.9126	3.9654	0.024910	1.8897
144.40354.60500.0332202.2323154.70774.91920.0377702.4010165.03945.23360.0426502.5682175.40415.5000.0478702.7342185.80715.87030.0534702.8955196.25396.19620.0600103.22922510.0558.36520.107454.0670301.4.29410.5680.168194.9614351.8.93313.1130.251075.3399402.404815.9700.358337.0118452.962519.1200.492348.1793503.5.5752.2.5470.655229.4423554.1.7912.62270.8485510.7996048.17730.1361.073412.246655.466034.2481.300513.7797567.72442.9821.942417.083807.423647.5612.297318.844858.06955.22552.684720.6719087.07857.0493.104122.5581009.9.52266.8714.037526.49611011.4076.9195.09273.0622120122.6087.0986.263334.90413013.30397.3287.542139.312140142.6810.7548.292133.82115015.152117.6910.33334.8211	13	4.1508	4.2881	0.028940	2.0619
154.7074.91920.0377702.4010165.03945.23360.0426502.5682175.40415.5000.0478702.7342185.80715.87030.0534702.8995196.253936.19620.0595003.0643206.74986.52950.0660103.22922510.0558.36520.107454.06703014.29410.5680.168194.9614351.8.93313.1130.251075.9399402.404815.9700.358337.0118452.9.6251.9.1200.492348.1793503.55752.2.5470.655229.44235541.79126.2270.8485510.7996654.66034.2481.30513.7797061.18938.5371.620115.3937567.7244.2.9821.942417.0838074.23647.5612.29731.8.844959.3.66161.9253.555324.5021009.5226.68714.03756.649611011.4076.9195.09273.0622120122.6087.0986.26333.931214414.26810.7548.29133.452115015.52117.6910.39348.408160150.61127.7411.9493.05317016.69713.76413.5835.738180<	14	4.4035	4.6050	0.033220	2.2323
165.03945.23360.0426502.5682175.40415.55000.0478702.7342185.80715.57030.0534702.8995196.25396.19620.0595003.0643206.74986.52950.0660103.22922510.0558.36520.107454.06703014.29410.5680.168194.96143518.93313.1130.251075.9399402.404815.9700.358337.0118452.962519.1200.492348.1793503.57522.5470.655229.44235541.79126.2270.8485510.7996048.17730.1361.07341.2246655.466034.2481.330513.7797061.1898.5371.620115.3937567.7244.29821.942417.083807.423657.0493.104122.558959.336161.9253.55332.45021009.52266.8714.03752.649611011.407.6195.09273.0622120122.6087.0986.26333.49413013.039.73287.5413.9312140142.6810.548.29133.48415015.52117.6910.3934.840816015.96117.76415.2866.244815015.52	15	4.7077	4.9192	0.037770	2.4010
175.40415.55000.0478702.7342185.80715.87030.0534702.8995196.25396.16620.0595003.0643206.74986.52950.0660103.22922510.0558.36520.107454.06703014.29410.5680.168194.96143518.93313.1130.251075.93994024.04815.5700.358337.01184529.62519.1200.492348.17935035.57522.5470.655229.44235541.79126.2270.8485510.7996048.17730.1361.073412.2466554.66034.24813.30513.7797061.18938.5371.620115.3937567.72442.9821.942417.0838074.23647.5612.297318.8448580.69552.2552.684720.6719087.07857.0493.104122.5589593.36161.9253.55532.450210099.52266.8714.03752.649611011.42.68107.548.921343.82115015.52117.6910.39348.408160159.61127.7410.39348.408160159.61127.7413.28662.43817016.697137.6413.58357.738180	16	5.0394	5.2336	0.042650	2.5682
185.80715.87030.0534702.8995196.25396.19620.0599003.0643206.74986.52950.0660103.22922510.0558.36520.107454.06703014.29410.5680.168194.96143518.93313.1130.251075.93994024.04815.9700.358337.0118452.962519.1200.492348.17935035.57522.5470.655229.44235541.79126.2270.8485510.7996048.17730.161.073412.2466554.66034.2481.330513.7797061.18938.5371.620115.3937567.7244.28221.942417.0838074.23647.5612.297318.8448580.69552.2552.684720.6719087.07857.0493.104122.5589593.6161.9253.553324.50210099.52266.8714.037526.49611011.4076.5195.09273.062212012.26087.0986.263334.90413013.0397.3286.263334.90415015.52117.6910.39348.408160159.61127.7410.39348.408160159.61127.7410.39348.408160159	17	5.4041	5.5500	0.047870	2.7342
196.23396.19620.0595003.0643206.74986.52950.060103.22922510.0558.36520.107454.06703014.29410.5680.188194.96143518.93313.1130.251075.93994024.04815.9700.358337.01184529.62519.1200.492348.17935035.57522.5470.655229.44235541.79126.2270.8485510.7996048.17730.1361.073412.2466554.66034.2481.330513.7797061.18938.5371.620115.3937567.72442.9821.942417.0838074.23647.5612.297318.8448580.69552.2552.664720.6719095.2266.8714.037526.49611011.4076.9195.09273.622120122.6087.0986.263334.90413013.0397.3287.542139.312140142.6810.7548.921343.82115015.52117.6913.93943.82115015.5217.6413.58357.738180173.66147.3715.28662.448170166.97137.6413.58357.738180173.65176.6918.87971.893170166.97	18	5.8071	5.8703	0.053470	2.8995
20 67498 6.5295 0.066010 3.2292 25 10.055 8.3652 0.10745 4.0670 30 14.294 10.568 0.16819 4.9614 35 18.933 13.113 0.25107 5.9399 40 24.048 15.970 0.35833 7.0118 45 2.9625 19.120 0.49234 8.1793 50 35.575 22.547 0.65522 9.4423 55 41.791 26.227 0.84855 10.799 60 48.177 30.136 1.0734 12.246 65 54.660 34.248 1.3305 13.779 70 61.189 38.537 1.6201 15.393 75 67.724 42.982 1.9424 17.083 80 74.236 47.561 2.2973 18.844 95 9.3361 61.925 3.553 24.502 100 9.9522 66.871 4.0375 26.496	19	6.2539	6.1962	0.059500	3.0643
25 10.055 8.3652 0.10745 4.0670 30 14.294 10.568 0.16819 4.9614 35 18.933 13.113 0.25107 5.9399 40 24.048 15.970 0.35833 7.0118 45 29.625 19.120 0.49234 8.1793 50 35.575 22.547 0.65522 9.4423 55 41.791 26.227 0.84855 10.799 60 48.177 30.136 1.0734 12.246 65 54.660 34.248 1.3305 13.79 70 61.189 38.537 1.6201 15.393 75 67.724 42.982 1.9424 17.083 80 74.236 47.561 2.2973 18.844 85 80.695 52.255 2.6847 20.671 90 87.078 57.049 3.1041 22.558 95 9.361 61.925 3.5553 24.502	20	6.7498	6.5295	0.066010	3.2292
30 14,294 10,568 0,16819 4,9614 35 18,933 13,113 0,25107 5,9399 40 24,048 15,970 0,35833 7,0118 45 29,625 19,120 0,49234 8,1793 50 35,575 22,547 0,65522 9,4423 55 41,791 26,227 0,84855 10,799 60 48,177 30,136 1,0734 12,246 65 54,660 34,248 1,305 13,779 70 61,189 38,537 1,6201 15,393 75 67,724 42,982 1,9424 17,083 80 74,236 47,561 2,2973 18,844 85 80,695 52,255 2,6847 20,671 90 87,078 57,049 3,1041 22,558 95 93,361 61,925 3,5553 24,502 100 99,522 66,871 4,0375 26,496	25	10.055	8.3652	0.10745	4.0670
35 18,933 13,113 0.25107 5,9399 40 24,048 15,970 0.35833 7,0118 45 29,625 19,120 0.49234 8,1793 50 35,575 22,547 0.65522 9,4423 55 41,791 26,227 0.84855 10.799 60 48,177 30,136 1.0734 12,246 65 54,660 34,248 1.305 13,779 70 61,189 38,537 1,6201 15,393 75 67,724 42,982 1,9424 17,083 80 74,236 47,561 2,2973 18,844 85 80,695 52,255 2,6847 20,671 90 87,078 57,049 3,1041 22,558 95 9,3361 61,925 3,553 24,502 100 99,522 66,871 4,0375 26,496 110 111,40 76,919 5,0927 30,622	30	14.294	10.568	0.16819	4.9614
40 24,048 15,970 0.35,833 7.0118 45 29,625 19,120 0.49234 8,1793 50 35,575 22,547 0.65522 9,4423 55 41,791 26,227 0.84855 10,799 60 48,177 30,136 1,0734 12,246 65 54,660 34,248 1,305 13,779 70 61,189 38,537 1,6201 15,393 75 67,724 42,982 1,9424 17,083 80 74,236 47,561 2,2973 18,844 85 80,695 52,255 2,6847 20,671 90 97,078 57,049 31,041 22,558 95 93,361 61,925 3,5553 24,502 100 99,522 66,871 4,0375 26,496 110 11,140 76,919 5,0927 36,622 120 12,260 87,098 6,2633 34,904	35	18.933	13.113	0.25107	5.9399
15 $29,625$ $19,120$ 0.49234 $8,1793$ 50 $35,575$ $22,547$ 0.65522 $9,4423$ 55 $41,791$ $26,227$ 0.84855 $10,799$ 60 $48,177$ $30,136$ 1.0734 $12,246$ 65 $54,660$ $34,248$ 1.305 $13,779$ 70 $61,189$ $38,537$ 1.6201 $15,393$ 75 $67,724$ $42,982$ 1.9424 $7,083$ 80 $74,236$ $47,561$ 2.2973 $18,844$ 85 $80,695$ $52,255$ $2,6847$ $20,671$ 90 $87,078$ $57,049$ $3,1041$ $22,558$ 95 $93,361$ $61,925$ $3,5553$ $24,502$ 100 $99,522$ $66,871$ 4.0375 $26,496$ 110 $111,40$ $76,919$ 5.0927 $30,622$ 100 $133,03$ $97,328$ $7,541$ $39,312$ 140 $142,68$ $107,54$ $8,9213$ $43,821$ 140 $142,68$ $107,54$ $8,9213$ $43,821$ 160 $159,61$ $127,74$ $11,949$ $53,053$ 170 $166,97$ $137,64$ $13,583$ $57,738$ 180 $173,66$ $47,77$ $15,286$ $62,448$ 190 $179,74$ $156,93$ $17,054$ $67,170$ 200 $185,25$ $166,29$ $18,879$ $71,893$ 200 $180,26$ $156,55$ $20,757$ $76,697$	40	24 048	15 970	0 35833	7 0118
50 35.55 22.547 0.65522 9.4423 55 41.791 26.227 0.84855 10.799 60 48.177 30.136 1.0734 12.246 65 54.660 34.248 1.3305 13.779 70 61.189 38.537 1.6201 15.393 75 67.724 42.982 1.9424 17.083 80 74.236 47.561 2.2973 18.844 90 87.078 57.049 3.1041 22.558 95 93.361 61.925 3.5553 24.502 100 99.522 66.871 4.0375 26.696 110 11.40 76.919 5.0927 30.622 120 122.60 87.098 6.2633 34.904 130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408	45	29.625	19 120	0 49234	8 1793
55 41.791 26.227 0.84855 10.799 60 48.177 30.136 1.0734 12.246 65 54.660 34.248 1.3305 13.779 70 61.189 38.537 1.6201 15.393 75 67.724 42.982 1.9424 17.083 80 74.236 47.561 2.2973 18.844 85 80.695 52.255 2.6847 20.671 90 87.078 57.049 3.1041 22.558 100 99.522 66.871 4.0375 26.496 110 111.40 76.919 5.0927 30.622 120 122.60 87.098 6.2633 34.904 130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053	50	35 575	22,547	0.65522	9 4423
6048.17730.1361.073412.2466554.66034.2481.330513.7797061.18938.5371.620115.3937567.72442.9821.942417.0838074.23647.5612.297318.8448580.69552.2552.684720.6719087.07857.0493.104122.5589593.36161.9253.555324.50210099.52266.8714.037526.496110111.4076.9195.092730.622120122.6087.0986.263334.904130133.0397.3287.542139.312150151.52117.6910.39348.408160159.61127.7411.94953.053170166.97137.6413.58357.738180173.66147.3715.28662.448190179.74156.9317.05467.170200185.25166.2918.87971.893210100.26175.4520.75776.677	55	41.791	26.227	0.84855	10.799
6554.66034.2481.33051.3.7797061.18938.5371.620115.3937567.72442.9821.942417.0838074.23647.5612.297318.8448580.69552.2552.684720.6719087.07857.0493.104122.5589593.36161.9253.555324.50210099.52266.8714.037526.496110111.4076.9195.092730.622120122.6087.0986.263334.904130133.0397.3287.542139.312140142.68107.548.921343.821150151.52117.6910.33348.408160159.61127.7411.94953.053180173.66147.3715.28662.448190179.74156.9317.05467.170200185.25166.2918.87971.893210190.66175.4520.75776.607	60	48 177	30.136	1 0734	12.246
7061.8938.5371.620115.3937567.72442.9821.942417.0838074.23647.5612.297318.8448580.69552.2552.684720.6719087.07857.0493.104122.5589593.36161.9253.555324.696110111.4076.9195.092730.622120122.6087.0986.263334.904130133.0397.3287.542139.312140142.68107.548.921343.821150151.52117.6910.39348.408160159.61127.7411.94953.053170166.97137.6413.58357.738180173.66147.3715.28662.448190179.74156.9317.05467.170200185.25166.2918.87971.893210190.26175.4520.75776.607	65	54 660	34 248	1 3305	13 779
10101010201102017567.72442.9821.942417.0838074.23647.5612.297318.8448580.69552.2552.684720.6719087.07857.0493.104122.5589593.36161.9253.555324.50210099.52266.8714.037526.496110111.4076.9195.092730.622120122.6087.0986.263334.904130133.0397.3287.542139.312140142.68107.548.921343.821150151.52117.6910.39348.408160159.61127.7411.94953.053170166.97137.6413.58357.738180173.66147.3715.28662.448190179.74156.9317.05467.170200185.25166.2918.87971.893210190.66175.4520.75776.607	70	61 189	38 537	1 6201	15 393
80 74.236 47.561 2.2973 18.844 85 80.695 52.255 2.6847 20.671 90 87.078 57.049 3.1041 22.558 95 93.361 61.925 3.5553 24.502 100 99.522 66.871 4.0375 26.496 110 111.40 76.919 5.0927 30.622 120 122.60 87.098 6.2633 34.904 130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	75	67 724	42 982	1 9424	17.083
8580.69552.2552.684720.6719087.07857.0493.104122.5589593.36161.9253.555324.50210099.52266.8714.037526.496110111.4076.9195.092730.622120122.6087.0986.263334.904130133.0397.3287.542139.312140142.68107.548.921343.821150151.52117.6910.39348.408160159.61127.7411.94953.053170166.97137.6413.58357.738180173.66147.3715.28662.448190179.74156.9317.05467.170200185.25166.2918.87971.893210190.26175.4520.75776.607	80	74 236	47 561	2 2973	18 844
S0 87.078 57.049 3.1041 22.558 95 93.361 61.925 3.5553 24.502 100 99.522 66.871 4.0375 26.496 110 111.40 76.919 5.0927 30.622 120 122.60 87.098 6.2633 34.904 130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	85	80.695	52.255	2,6847	20.671
35 37.51 37.51 24.502 100 99.522 66.871 4.0375 26.496 110 111.40 76.919 5.0927 30.622 120 122.60 87.098 6.2633 34.904 130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	90	87 078	57 049	3 1041	22 558
bb bbb bbb bbb bbb 100 99,522 66,871 40,375 26,496 110 111,40 76,919 5.0927 30,622 120 122,60 87,098 6,2633 34,904 130 133,03 97,328 7,5421 39,312 140 142,68 107,54 8,9213 43,821 150 151,52 117,69 10,393 48,408 160 159,61 127,74 11,949 53,053 170 166,97 137,64 13,583 57,738 180 173,66 147,37 15,286 62,448 190 179,74 156,93 17,054 67,170 200 185,25 166,29 18,879 71,893 210 190,26 175,45 20,757 76,607	95	93 361	61 925	3 5553	24 502
11011.4076.9195.092730.622120122.6087.0986.263334.904130133.0397.3287.542139.312140142.68107.548.921343.821150151.52117.6910.39348.408160159.61127.7411.94953.053170166.97137.6413.58357.738180173.66147.3715.28662.448190179.74156.9317.05467.170200185.25166.2918.87971.893210190.26175.4520.75776.607	100	99 522	66 871	4 0375	26.496
110 111.40 76.15 30.022 120 122.60 87.098 6.2633 34.904 130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	110	111.40	76 919	5 0927	30.622
130 133.03 97.328 7.5421 39.312 140 142.68 107.54 8.9213 48.408 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	120	122.60	87.098	6 2633	34 904
140 142.68 107.54 8.9213 43.821 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	130	133.03	07.000	7 5421	30 31 2
1.0 1.10 10.04 0.0215 40.021 150 151.52 117.69 10.393 48.408 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	140	142.68	107 54	8 9213	43 821
160 151.02 117.05 160.35 46.405 160 159.61 127.74 11.949 53.053 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	150	151 52	117.69	10 393	48 408
100 15.01 127.74 11.545 55.035 170 166.97 137.64 13.583 57.738 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	160	159.61	127.74	11 949	53 053
170 100.07 157.04 153.55 57.758 180 173.66 147.37 15.286 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	170	166.07	127.77	12 5 8 2	57 738
150 17.00 147.57 15.260 62.448 190 179.74 156.93 17.054 67.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	180	173.66	1/7 27	15.286	62 448
150 17.74 150.55 17.054 07.170 200 185.25 166.29 18.879 71.893 210 190.26 175.45 20.757 76.607	100	170.74	156.02	17.054	67 170
200 10.23 10.29 10.679 (1.893) 210 190.26 175.45 20.757 76.607	200	1/5./4	166 20	19970	71 902
	200	103.23	175 45	20.757	76.607

TABLE 11 (continued)

T/K	$C_{p,m}^{o}/(J \cdot K^{-1} \cdot mol^{-1})$	$S_{\rm m}^{\rm o}/({\rm J}\cdot{\rm K}^{-1}\cdot{ m mol}^{-1})$	$H^{\rm o}_{\rm m}(T)-H^{\rm o}_{\rm m}(0)/(\rm kJ\cdot mol^{-1})$	$\phi_{\mathrm{m}}^{\mathrm{o}}(T)/(\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1})$
220	194.81	184.41	22.683	81.304
230	198.94	193.16	24.652	85.978
240	202.71	201.71	26.661	90.623
250	206.14	210.05	28.705	95.234
260	209.28	218.20	30.782	99.807
270	212.15	226.15	32.890	104.34
273.15	213.00	228.62	33.559	105.76
280	214.77	233.92	35.025	108.83
290	217.18	241.50	37.185	113.27
298.15	219.01	247.54	38.962	116.86
300	219.40	248.90	39.368	117.67

^{*a*} The combined standard uncertainties in the values of the fitted heat capacities are determined from the experimental and fitted uncertainties to be $u_r(C_{p,m}) = 0.03$ for T/K < 10, $u_r(C_{p,m}) = 0.011$ for 10 < T/K < 70, $u_r(C_{p,m}) = 0.02$ for 70 < T/K < 100, $u_r(C_{p,m}) = 0.025$ for 100 < T/K < 150, and $u_r(C_{p,m}) = 0.03$ for T/K > 150. The standard uncertainty on the pressure is u(p) = 5 kPa.

FIGURE 4. Deviation of the fitting equations from the experimental data for Na_4UO_5 (\circ) and Na_4NpO_5 (\bigstar).

FIGURE 5. C_{p,m}/T for Na₄NpO₅ (\circ) measured in zero magnetic field below *T* = 30 K, and fitting using a combination of a Schottky function (dotted line) and harmonic lattice contribution (short dotted line). The configuration (1) corresponds to $\varepsilon_1 = 14 \text{ cm}^{-1}$ and $\alpha_S = 0.85$. The configuration (2) corresponds to $\varepsilon_1 = 15.9 \text{ cm}^{-1}$ and $\alpha_S = 0.73$.

experimental results. The sum of the heat capacities of NpO₂ [37], Na₂O [38], and Na₂O₂ [38] gives 224.6 J \cdot K⁻¹ \cdot mol⁻¹ for Na₄NpO₅. The comparison is not ideal, however, as the neptunium adopts different oxidation states in Na₄NpO₅ and NpO₂, namely (VI) and (IV),

respectively. The local structural environment around the neptunium cation is also different (6-fold coordination in Na₄NpO₅, but 8-fold coordination in NpO₂). A more appropriate comparison is with the sum of α -Na₂NpO₄ [26] and Na₂O [38], which amounts to 221.0 J·K⁻¹·mol⁻¹, in very good agreement with the experiment.

Combining our newly determined values of the standard entropies with the ones for sodium [39,15], uranium [37], neptunium [37], and oxygen [39], the standard entropies of formation of Na₄UO₅ and Na₄NpO₅ were estimated as $\Delta_f S_m^o(Na_4UO_5, cr, 298.15 \text{ K}) = -(520.8 \pm 6.3) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ and $\Delta_f S_m^o(Na_4NpO_5, cr, 298.15 \text{ K}) = -(521.0 \pm 6.3) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, respectively.

The enthalpies of formation reported for those compounds at T = 298.15 K [15] are listed in table 5. Using the aforementioned values for the standard entropies and enthalpies, the following standard Gibbs energies of formation were derived at T = 298.15 K: $\Delta_{\rm f} G^0_{\rm m} (Na_4 UO_5, cr.298.15 \text{ K}) = -(2301.7 \pm 2.9)$ kJ · mol⁻¹ and $\Delta_{\rm f} G^0_{\rm m} (Na_4 NpO_5, cr.298.15 \text{ K}) = -(2159.7 \pm 6.0)$ kJ · mol⁻¹, respectively.

Finally, considering the hypothetical dissociation reaction (7) for Na_4MO_5 (M = U, Np), the dissociation Gibbs energy is expressed by relation (8), where Na_4MO_5 and MO_2^{2+} have the same electronic state.

$$\begin{aligned} \mathsf{Na}_{4}\mathsf{MO}_{5}(\mathsf{cr}) + 6H^{+}(aq) &= 4\,\mathsf{Na}^{+}(aq) + \mathsf{MO}_{2}^{2+}(aq) + 3\,\mathsf{H}_{2}\mathsf{O}(l), \end{aligned} (7) \\ \Delta_{\mathsf{r}}G_{\mathsf{m}}^{\mathsf{o}}(T) &= 4\,\Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{Na}^{+}, aq, T) + 3\,\Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{H}_{2}\mathcal{O}, l, T), \\ &- 6\Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{H}^{+}, aq, T), \\ &+ \Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{MO}_{2}^{2+}, aq, T) - \Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{Na}_{4}\mathsf{MO}_{5}, \mathsf{cr}, T), \end{aligned} (8) \\ &= f(T) + \Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{MO}_{2}^{2+}, aq, T) - \Delta_{\mathsf{f}}G_{\mathsf{m}}^{\mathsf{o}}(\mathsf{Na}_{4}\mathsf{MO}_{5}, \mathsf{cr}, T). \end{aligned}$$

The Gibbs energies of formation of the species Na₄MO₅ and MO₂²⁺ are the only terms that differ in between the expressions of the dissociation energies of the sodium uranate and neptunate compounds. The other terms can be expressed as f(T), independent of the actinide cation. The Gibbs energies of formation of the uranium and neptunium aqua ions were reported at T = 298.15 K as $-(952.551 \pm 1.747)$ kJ · mol⁻¹ and $-(795.939 \pm 5.615)$ kJ · mol⁻¹ [15], respectively. Using the latter values and those tabulated for Na⁺(aq), H⁺(aq), and H₂O(l) [15], the Gibbs energies of dissociation are derived at T = 298.15 K as $-(410.1 \pm 3.4)$ kJ · mol⁻¹ and $-(395.5 \pm 8.2)$ kJ · mol⁻¹ for Na₄UO₅ and Na₄NpO₅, respectively. The sodium neptunate appears slightly more stable than the sodium uranate, even if the difference remains small considering the uncertainty ranges.

5. Conclusions

The heat capacities of Na_4UO_5 and Na_4NpO_5 have been measured over the temperature range (1.9 to 292)K using a

FIGURE 6. Zoom of the X-ray diffraction pattern of Na₄NpO₅ at low angles showing the asymmetric profile in opposite directions for successive *hkl* reflections, which is particularly pronounced at low angles. This is due to slight heterogeneity within the material which creates stresses. Figure taken from [13].

FIGURE 7. (a) Comparison between the observed (Y_{obs}, in red) and calculated (Y_{calc}, in black) X-ray diffraction patterns of Na₄NpO₅. Y_{obs}-Y_{calc}, in blue, is the difference between the experimental and calculated intensities. The Bragg reflections' angular positions are marked in green. Measurement at $\lambda = \text{Cu} - \text{K}\alpha 1$. (b) The inset shows a zoom between 36.9 and 43.2°. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Quantum Design PPMS calorimeter. The experimental data have been fitted using theoretical functions below T = (20.0 and 4.3) K, respectively, and a combination of one Debye and two Einstein functions above T = (20.0 and 23.2) K, respectively. The theoretical fitting required the use of a linear term for the neptunium compound, which could be related to the presence of a non negligible amount of defects, in good agreement with the peak profile shape of the corresponding X-ray diffraction pattern. A broad Schotkky anomaly has also been observed between T = (3 and 15) K, which is associated with two low-lying electronic energy levels separated by about (14 to 16) cm⁻¹ (see tables 1–3).

The fitting functions have been used to derive the heat capacities and entropies of both compounds at T = 298.15 K. Combining the data with the enthalpies of formation reported in the literature, the Gibbs energies of formation have finally been determined, and are listed in table 5. Comparing the Gibbs energy values, the sodium neptunate was found to be slightly more stable than its isostructural uranium analogue.

Acknowledgments

The authors would like to express their gratitude to D. Bouëxière for the collection of X-ray data, and to the Analytical Services of the Institute for Transuranium Elements for performing the ICP-MS analysis. They also thank the 7th Framework Program of the European Commission, and the Joint Advanced Severe Accidents Modelling and Integration for Na-cooled neutron reactors (JASMIN) programme (N°295803 in FP7). ALS acknowledges the European Commission and the Ras al Khaimah Centre for Advanced Materials for funding her PhD studentship. ALS also thanks Prof. A. K. Cheetham from the Department of Materials Science and Metallurgy of the University of Cambridge for the fruitful discussions, and his strong and continuous support.

Appendix A

The X-ray diffraction pattern of the synthesized Na₄NpO₅ material showed Bragg reflections with an asymmetric peak profile shape in opposite directions for successive *hkl* reflections, as reported in our previous work [13]. This effect is particularly pronounced at low angles. figure 6, which is taken from [13], illustrates this feature between $2\theta = 36.2$ to 42.2° . This effect was related to slight heterogeneity within the material, which creates stresses [13].

The fitting of the low temperature heat capacity data reported herein at low temperatures (T < 4.3 K) required the addition of a linear term to describe the experimental curve. The existence of an electronic contribution is ruled out, however, as Na₄NpO₅ is a lime-green insulating material. But the work of [27] suggested that such a linear term could arise due to departure from stoichiometry, oxygen vacancies, or defects within an insulating material. It is therefore suggested that the Na₄NpO₅ material shows oxygen vacancies or defects.

It was subsequently attempted in the present work to introduce a second tetragonal phase, in space group I4/m, to improve the Rietveld refinement of the experimental X-ray diffraction data. The refinement was constrained, however, with respect to a number of parameters: both tetragonal phases were forced to adopt the same atomic positional, asymmetry, and peak shape η parameters. In fact, only the cell parameters were allowed to differ from one phase to the other. The corresponding refinement is shown in figure 7. As can be seen in the latter figure, this approach allows a much better description of the peak profile shape, which is also reflected in the value of the R_{wp} factor reduced to 11.2% (as opposed to 17.7% when performing the refinement with a single tetragonal phase [13]) (table 6). The refined bond lengths, listed in table 7, are very close to the ones reported previously [13].

The refined cell parameters are found as (a = 0.7532(3) nm, c = 0.4618(3) nm) and (a = 0.7555(3) nm, c = 0.4605(3) nm) for the first and second tetragonal phases, respectively, the corresponding weight fractions being 61.8 wt% and 38.2 wt%. This yields unit cell volumes of 0.2620(2) and $0.2628(2) \text{ nm}^3$, respectively. The second phase showing a larger cell volume could correspond to the defect fraction of the material. Its rather large weight fraction (38.2 wt%) causes a similarly large linear δT contribution (~275 mJ · K⁻² · mol · ⁻¹) below T = 4.3 K in the experimental heat capacity data.

References

- [1] L. Koch, J. Less-Common Met. 122 (1986) 371–382.
- [2] C.T. Walker, G. Nicolaou, J. Nucl. Mater. 218 (1995) 129-138.
- [3] E.H.P. Cordfunke, D.J.W. IJdo, J. Solid State Chem. 115 (1995) 299-304.
- [4] S. Pillon, F. Ingold, P. Fischer, G. Andre, F. Botta, R.W. Stratton, J. Nucl. Mater.
- 206 (1993) 50–56.
- [5] I.P. Roof, M.D. Smith, H.-C. zur Loye, J. Cryst. Growth 312 (2010) 1240-1243.

70000

- [6] S. Van den Berghe, A. Leenaers, C. Ritter, J. Solid State Chem. 177 (2004) 2231– 2236.
- [7] A.L. Smith, P.E. Raison, L. Martel, T. Charpentier, I. Farnan, D. Prieur, C. Hennig, A. Scheinost, R.J.M. Konings, A.K. Cheetham, Inorg. Chem. 53 (1) (2014) 375– 382.
- [8] A.L. Smith, P.E. Raison, L. Martel, D. Prieur, T. Charpentier, G. Wallez, E. Suard, A.C. Scheinost, C. Hennig, P. Martin, K.O. Kvashnina, A.K. Cheetham, R.J.M. Konings, Inorg. Chem. 54 (7) (2015) 3552–3561.
- [9] C. Keller, L. Koch, K.H. Walter, J. Inorg. Nucl. Chem. 27 (1965) 1205-1223.
- [10] C. Keller, L. Koch, K.H. Walter, J. Inorg. Nucl. Chem. 27 (1965) 1225–1232.
- [11] A.L. Smith, P.E. Raison, R.J.M. Konings, J. Nucl. Mater. 413 (2011) 114–121.
- [12] D. Bykov, P. Raison, R.J.M. Konings, C. Apostolidis, M. Orlova, J. Nucl. Mater. 457 (2015) 54–62.
- [13] A.L. Smith, A. Hen, P.E. Raison, E. Colineau, J.-C. Griveau, N. Magnani, J.P. Sanchez, R.J.M. Konings, R. Caciuffo, A.K. Cheetham, Inorg. Chem. 54 (9) (2015) 4556–4564.
- [14] I. Grenthe, J. Fuger, R.J.M. Konings, R.J. Lemire, A.B. Muller, C. Nguyen-Trung Cregu, H. Wanner, Chemical thermodynamics of uranium. OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, France, 1992.
- [15] R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D.A. Palmer, M.H. Rand, Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium & technetium, OECD Nuclear Energy Agency, Data Bank Issy-les-Moulineaux, France, 2003.
- [16] C. Keller, in: K.W. Bagnall (Ed.), Inorg. Chem., Ser. 1, 7, Butterworths, London, 1972, p. 479.
- [17] S. Pillon, Etude des diagrammes de phases U-O-Na, Pu-O-Na et U, Pu-O-Na (PhD thesis), Université Du Languedoc, 1989.
- [18] H. Kleykamp, KfK 4701 (1990) 31.
- [19] J. Goudiakas, X. Jemine, J. Fuger, J. Chem. Thermodyn. 23 (1991) 513-520.
- [20] J. Fuger, J. Nucl. Mater. 130 (1985) 253-265.
- [21] A.L. Smith, J.-Y. Colle, O. Beneš, A. Kovacs, P.E. Raison, R.J.M. Konings, J. Chem. Thermodyn. 60 (2013) 132–141.
- [22] J. Rodriguez-Carvajal, Physica B 192 (1993) 55–69.
- [23] J.C. Lashley, M.F. Hundley, A. Migliori, J.L. Sarrao, P.G. Pagliuso, T.W. Darling, M. Jaime, J.C. Cooley, W.L. Hults, L. Morales, D.J. Thoma, J.L. Smith, J. Boerio-

Goates, B.F. Woodfield, G.R. Stewart, R.A. Fisher, N.E. Phillips, Cryogenics 43 (6) (2003) 369–378.

- [24] P. Javorský, F. Wastin, E. Colineau, J. Rebizant, P. Boulet, G. Stewart, J. Nucl. Mater. 344 (1-3) (2005) 50-55.
- [25] D.W. Osborne, H.E. Flotow, R.P. Dallinger, H.R. Hoekstra, J. Chem. Thermodyn. 6 (1974) 751–756.
- [26] A.L. Smith, J.-C. Griveau, E. Colineau, P. Raison, R.J.M. Konings, Thermochim. Acta (2015). submitted.
- [27] J. Majzlan, A. Navrotsky, B.F. Woodfield, B.E. Lang, J. Boerio-Goates, R.A. Fisher, J. Low Temp. Phys. 130 (1-2) (2003) 69–76.
- [28] B.F. Woodfield, J. Boerio-Goates, J.L. Shapiro, R.L. Putnam, A. Navrotsky, J. Chem. Thermodyn. 31 (1999) 245–253.
- [29] B.F. Woodfield, J.L. Shapiro, R. Stevens, J. Boerio-Goates, R.L. Putnam, K.B. Helean, A. Navrotsky, J. Chem. Thermodyn. 31 (1999) 1573–1583.
- [30] S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Am. Miner. 94 (2009) 236–243.
- [31] R.A. Swalin, Thermodynamics of Solids, first edition., John Wiley & Sons, 1962.
- [32] R.D. Shannon, Acta Cryst. A32 (1976) 751-767.
- [33] Q. Shi, T.-J. Park, J. Schliesser, A. Navrotsky, B.F. Woodfield, J. Chem. Thermodyn. 72 (2014) 77-84.
- [34] E.S. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, 1966.
 [35] Q. Shi, L. Zhang, M.E. Schlesinger, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 6 (2013) 51–57.
- [36] J. Leitner, P. Voňka, D. Sedmidubský, P. Svoboda, Thermochim. Acta 497 (2010) 7-13.
- [37] R.J.M. Konings, O. Beneš, J. Phys. Chem. Ref. Data 39 (2010) 043102.
- [38] M.W. Chase, Nist-JANAF Thermochemical Tables, 4th edition., American Chemical Society, American Institute of Physics, National Bureau of Standarts, New York, 1998.
- [39] I. Ansara, B. Sundman, Scientific Group Thermodata Europe, Computer Handling and Determination of Data, North Holland, Amsterdam, 1986.

JCT 15-194