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PAPER
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Abstract
Wepropose a novel and robust technique to realize a beam splitter for trapped Bose–Einstein
condensates (BECs). The scheme relies on the possibility of producing different potentials
simultaneously for two internal atomic states. The atoms are coherently transferred, via a Rabi
coupling between the two long-lived internal states, from a single well potential to a double-well.We
present numerical simulations supporting our proposal and confirming excellent efficiency and
fidelity of the transfer process with realistic numbers for a BECof 87Rb.We discuss the experimental
implementation by suggesting state-selectivemicrowave (MW)potentials as an ideal tool to be
exploited formagnetically trapped atoms. Theworking principles of this technique are tested on our
atom chip device which features an integrated coplanarMWguide. In particular, the first realization
of a double-well potential by using aMWdressing field is reported. Experimental results are presented
together with numerical simulations, showing good agreement. Simultaneous and independent
control on the external potentials is also demonstrated in the twoRubidium clock states. The transfer
between the two states, featuring respectively a single and a double-well, is characterized and it is used
tomeasure the energy spectrumof the atoms in the double-well. Our results show that the spatial
overlap between the two states is crucial to ensure the functioning of the beamsplitter. Even though
this condition could not be achieved in our current setup, the proposed technique can be realizedwith
current state-of-the-art devices being particularly well suited for atom chip experiments.We
anticipate applications in quantum enhanced interferometry.

1. Introduction

In recent years, Bose–Einstein condensates (BECs) have proven to be appealing systems for the realization of
atom interferometers, owing to their properties ofmacroscopic phase coherence [1]. Furthermore the
possibility to interact with the environment, including electro-magnetic radiation, and their inertial nature
promote them as powerful sensors. Interparticle interactions are also a fundamental ingredient as they are
responsible formulti-particle entanglementwhich is known to lead to a phase estimation uncertainty below the
standard shot-noise limit. Recently, a few experiments with BECs have initiated this path by exploiting spin
squeezing [2–4]. Even though they are not yet better performing than the best state-of-the-art atom
interferometers, which aremainly limited by shot-noise (the standard quantum limit), BECbased in-trap
interferometers will be crucial for local probing on the scale of fewmicrons, due to their small size, and for
application requiring a relatively low atomnumber. Possible usages include compact electro-magnetic and
inertial forces sensing devices. State-of-the-art BECs interferometers suffer from technical noise as finite
temperature effects, excitations, detection noise as well as phase diffusion in configurations workingwith
trapped atomic ensembles [5] which limit the phase sensitivity above the standard quantum limit. Reducing
technical noise in the process of beam splitting and read out aswell as elaborating new strategies that can lead to
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reach and also beat the shot-noise limit are nowadays crucial topics. In particular, commonly employed
techniques to split the atomic cloud in a trap can cause excitations limiting the coherence time [6, 7] and involve
dynamics affecting the initial phase coherence between the two separated clouds in a non-trivial way [8].Much
effort has been dedicated through the years to optimize these same techniques while novel ones, capable of
definitely solving these problems, have not been found yet.

To accomplish this task, we propose here a novel scheme for a robust and fast beam splitter with trapped
BECswhich does not require a dynamical variation of the trapping potential, neither amomentum transfer to
the atoms. The atoms are initially prepared in an internal state 1∣ 〉 in a single well potential. At the same time a
double-well potential is generated selectively for a second internal state 2∣ 〉. The splitting is realized by
transferring the atoms from state 1∣ 〉 to state 2∣ 〉bymeans of a π-pulse of coherent electromagnetic radiation.We
performnumerical simulations of this scheme, demonstrating nearly unitary efficiency in the transfer to the
ground state of the double-well potential. As it concerns the experimental implementation, this requires the
realization of external potentials which are different for the two internal states, 1∣ 〉 and 2∣ 〉, and to create a
double-well for the state 2∣ 〉. Few techniques exist to drive state-dependent potentials: radio-frequency dressing
ormicrowave (MW)dressing ofmagnetically trapped states and dipole forces by optical beamswith proper
wavelength and polarization. The solutionwhichwe consider here implies the use of state-selectiveMW-dressed
potentials.We report experimental results showing that the proposed splitter can be notably realized on a
compact atom chip device, by aMWnear-field.

This paper is organized as follows: in section 2we discuss the proposed scheme in a detailedway, analysing
its features and constraints.We present numerical simulations based on coupledGross–Pitaevskii equations,
demonstrating the feasibility of the proposal under realistic experimental conditions.We consider, in particular,
BECs of 87Rb in their two hyperfine ground states. In section 3we investigate the use ofMWdressing to shape
the underlyingmagnetic trap and to obtain independently controlled external potentials for the two different
internal states.We exploit our atom chip device to experimentally prove theworking principles of this strategy.
We report, in particular, on the first realization and characterization of aMW-dressed double-well potential. In
section 4wefinally prove independent and simultaneous control over the external potentials for the two
hyperfine states F m1, 1F∣ = = − 〉 and F m2, 1F∣ = = 〉 of 87Rb on our atom chip.We characterize the atom
transfer between these two levels andwe demonstrate the importance of independently dressing the two states in
order to adjust the spatial overlap of the clouds to optimize the process. Ameasurement of the atomic energy
spectrum in the double well potential can be derived for different intensities of the dressing field. Finally we
discuss further experimental developments bymeans of state-of-the-art devices and possible applications of the
presented technique.

2. A beam splitter based on state-selective potentials

A commonway to split a BEC for interferometric purposes consists of dynamically raising a potential barrier in
the centre of the atomic distribution. The potential inwhich the atoms sit thus gradually evolves from a
harmonic one to a double-well. For a given barrier height, the properties of the final state strongly depend on the
duration of the splitting ramp and on the interatomic interactions [9–11]. Long ramping-up times are generally
required to reduce unwanted excitations,making the process as adiabatic as possible. Note that during the
ramping-up the energy of the first excited state progressively approaches the one of the ground state to the point
of becoming degenerate. An ideally adiabatic transfer cannot thus be reached even for long times, i.e. longer than
the typical BEC lifetimes of standard experiments [10], and excitations are produced. As a consequence
subsequentmanipulations and interrogation of the atomic systems should be performed faster than the
timescales of the detrimental processes initialized during the splitting. On the other hand, the preservation of the
phase coherence between the two separated clouds imposes some stringent limitation on themaximum
duration of the ramping-up dynamics [11]. In order to avoid both to excite the cloud and to compromise its
phase coherence, herewe propose a novel, robust beam-splitter inwhich the double-well potential is not
gradually raised up but the atoms are instead transferred from a single-well potential to a double-well by a π-like
pulse between two different long-lived internal states 1∣ 〉 and 2∣ 〉, as depicted infigure 1. This procedure allows
the atoms to reach their final split state 2∣ 〉without passing through a deformation of the trapping potential itself,
thus avoiding intrinsic excitations.

By using coherent electro-magnetic pulses to transfer the atoms to the double-well potential, we can address
the exactfinal vibrational states whichwewant to populate, e.g. the ground state as required in this proposal, by
properly tuning the frequency of the pulse. To perform a transfer to single eigenstates of the double-well
potential, one additionally requires the duration of the pulse τ to be sufficiently longwith respect to the
timescales set by the confining potentials 1 hoτ π Ω ω∼ ≫ , whereΩ is the frequency of the Rabi coupling and

hoω is the trapping frequency along the splitting direction.
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The phase coherence between the separated clouds in the internal state 2∣ 〉does not depend on the details of
the dynamics that they follow during the splitting but is ideally set by the Rabi couplingwhich phase-locks each
of them to the atomic cloud in the other internal state 1∣ 〉. This guarantees the final split state to be prepared in a
coherent superposition of two spatialmodeswhich are localized at eachwell of a double-well potential in
absence of significant direct inter-site tunnelling. This technique can be of great benefit for atom interferometry:
the phase coherence between the spatialmodes is preservedwhile the coherent coupling to the state 1∣ 〉 is active
and is ideally decoupled from the dynamics of the splitting cloud.Moreover, realizing an ideal coherent state in a
separated double-well potential would give the possibility to observe interaction induced squeezing, over-
squeezing and the formation of phase cat states [12, 13].

Depending on the ratioΛ between the effective interaction energy and the Rabi frequency, different regimes
are expected [14], in the approximation of identical spatialmodes of the coupled states. In particular, for 1Λ <
in the so-called Rabi regime the linear coupling is governing the time evolution and single-particle coherence is
preserved [15]. For 1Λ > interactions start to play an important role, the Josephson regime is entered and for

2Λ > self-trappingmodes (alsowith running-phase) appear. Atom transfer within internal states is
progressively inhibited and also single-particle coherence is gradually lost [15]. An ideal coherent atom transfer
would thus require 2Λ ≲ . As hoΩ ω π≪ to guarantee the absence of unwanted excitations during the process,
the above condition is fulfilled only for small enough interaction energies. These are achievable in current
experiments, for example, with the use of Feshbach resonances [14]. Another possibility consists of dynamically
varying the detuning of the Rabi pulse t( )δ in order to compensate for the effects of the interparticle
interactions, as wewill show.

In the case we consider in this paper, the two spatialmodes of the states 1∣ 〉 and 2∣ 〉 are different and their
wavefunction overlap plays an important role in the transfer dynamics, see figure 2. This is responsible for the
vibrational states that the atoms preferably occupy once they are transferred, for a given detuning of the pulse. It
also strongly affects the effective time of the transfer and the overall fraction of atoms that can bemoved to state
2∣ 〉, when dealingwith interacting particles. In a simple single-atompicture, the amplitude of the transfer

probability to the nth-vibrational state of the double-well potential n2,∣ 〉 can bewritten as Pn
C

C( )

n

n n
2 2

= Ω

Ω Δ+

where C n2, 1n = ∣〈 ∣ 〉∣ is thewavefunction overlap of the nth-state with the initial state 1∣ 〉 and nΔ the pulse
detuning to the nth-state, see also [16]. Thus, in order tomainly occupy the ground state (n= 0), one requires
Cn nΔ Ω≪ for n 1, 2, 3 ..= . This imposes a condition on the trap frequencies in 1∣ 〉, on the barrier height and

Figure 1. Schematics of the beam-splitter: atoms are transferred from a single to a double-well by coherently coupling (with Rabi
frequencyΩ) two long-lived internal states in the presence of a state-selective potential.

3

New J. Phys. 17 (2015) 083022 VGuarrera et al



separation of theminima of the double-well potential in 2∣ 〉, and on the Rabi frequency. In particular one
configuration appears preferably suited for our proposal: the overlapwith the ground state 1∣ 〉 is higher for the
lower lying energy states in 2∣ 〉, i.e. d R(2 ) 1≲ with d theminima separation in the double well andR the
Thomas–Fermi radius of the BEC in 1∣ 〉, and 1nΔ Ω ≫ to guarantee the occupation of the ground statewith
highfidelity. In the case where the overlap is higher for the higher lying energy states in the double-well,
d R(2 ) 1≫ , and nΔ Ω is large enough, occupation of the sole ground state can still take place but at the price of
long transfer times, according to the low values ofC0.

The absolute value of τ π Ω∼ should indeed be safely smaller than typical timescales of irreversible
dephasing due to technical and intrinsic reasons, including instabilities of themagnetic fields andfinite lifetime
of the atomic samples in the traps. Fromprevious experimental observations, we can estimate this limit for 87Rb
atomswith typical trapping configurations to be given by the shortest lifetime in the usual clock states, which is
∼100ms.

2.1. Numerical simulations
In order tomore precisely characterize and to test ourmethod, we numericallymodel the dynamics of twowave
functions 1ψ and 2ψ with two coupled 1DGross–Pitaevskii equations including the linear coupling due to the
field driving Rabi oscillations:

t m
V g g

t m
V g g

i
2 2 2

i
2 2 2

, (1)

1

2 2

1 11 1
2

12 2
2

1 2

2

2 2

2 22 2
2

21 1
2

2 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

  

  





ψ ψ ψ δ ψ Ω ψ

ψ ψ ψ δ ψ Ω ψ

∂
∂

= − + + ∣ ∣ + ∣ ∣ − −

∂
∂

= − + + ∣ ∣ + ∣ ∣ + −

wherem is themass of the atom and δ the detuningwith respect to the considered atomic transition [17]. The

effective one-dimensional interaction parameters are gij

a

m a

4 1ij
2

2


=

π

⊥
with aij the intra-state (i= j) and inter-state

(i j≠ ) scattering lengths and a⊥ the average harmonic oscillator length in the radial direction of the trap.
Numerical calculations are performed bymeans of the time-splitting spectralmethod developed in [18]. In
figure 3we show results for a BECwithN=500 atoms of 87Rb, where the internal states 1∣ 〉 and 2∣ 〉
correspond respectively to the hyperfine ground states F= 1 and F=2. The initial trapV x( )1 is harmonic with
frequency 2 500π × Hz and the double-well potential is approximated by the simple expression
V x x d( ) ( ( 2) )V

d2 ( 2)
2 2 2

4= − with barrier heightV 6.62μ = , where 2μ is the chemical potential in the double-

well. Thefinal trapping frequency is 2 2100ω π≃ × Hz. The distance between the two potentialminima is

Figure 2.Real part of the symmetric wavefunctions for a BEC in the single trap and for different vibrational states in the double well. It
appears clear that a better spatial overlap of the two external potentials in 1∣ 〉 and 2∣ 〉would lead to a bettermatching of the initial BEC
with the low lying energy states in the double-well. Higher energy separation between the eigenstates, En, and lower values ofΩ reduce
the contribution of the higher excited states in the transfer dynamics. Thewavefunctions shownhere refer to the set of parameters
used in section 2.1.
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taken to be d= 2 μm.The frequencies in the radial direction are 2 (50, 500)π × Hz, setting d R(2 ) 0.9= .We
transfer the atoms from the F=1 to the F=2 ground state in 14mswith a pulse of Rabi frequency 2 100Ω π= ×
Hz ( 1.9Λ ∼ ). A compensation of the energy shift due to interactions is accomplished by varying δ tomaximize
the number of atoms transferred at each computational time step. In this way, by dynamically varying the
detuning as shown infigure 3, we can transfer 100%of the atoms to the internal state F=2. The chirping of the
transfer pulse compensates also for the change in the interspeciesmean-field energy described by the third terms
on the right-hand side of both equations (1). In particular, as can be seen infigure 3(a), for small t themeanfield
potential exerted by the atoms in 1∣ 〉produces a small shift of the centers of thewells for the atoms in 2∣ 〉. As the
atoms are progressively transferred this potential terms gradually vanishes and the final potential coincides with
V2. In order to characterize thefidelity of thewavefunction transfer [19], we calculate f x x td ( , ) ·2

*∫ ψ= ∣ ∣
x t( , )gs2,ψ∣ ∣, where x t( , )gs2,ψ corresponds to thefinal ground state in F=2, calculated for the same atom

number. For the case presented above the fidelity oscillates between f=0.99994 and f=0.99998, after the transfer
has been completed.We have additionally verified that our technique is robust against noisefluctuations that are
usually present in real experiments and that could lead to small asymmetries between the twowells. Even for
fluctuations of the zero-point energies of the twowells of 0.2 ω× we have obtained 100% transfer efficiency
andfidelities that oscillate between 0.9996 and f=0.99995. The system,whichwe have numerically studied, is an
emblematic realization, with realistic experimental parameters, of the beam splitter whichwe propose in the
present paper. Provided that thewavefunction overlap between the two coupled states is good, and that the ratio
between the energy spacing of the low-lying eigenstates of the doublewell and the Rabi frequency is large
enough, we have demonstrated that the ground state of the double well can be populatedwith excellent efficiency
andfidelity. As a result no unwanted excitation have occurred during the transfer and the final state is ideally
phase coherent.

3. Experimental realization ofMW-dressed potentials

The realization of our proposal requires the BEC sample to be transferred from a single-well potential to a
doublewell, in a controlledway by a coherent pulse. Experimentally this is far frombeing a trivial task: the atoms
should hence experience two different potentials (single and double-well), acting simultaneously on two
different long-lived internal states which can be conveniently coupled by electro-magnetic radiation. The
solutionwe adopt consists in coherentlymanipulating the BECwith state dependentMWpotentials. This
technique has been employed before to selectively control the density distribution of 87Rb atoms in the clock
states F m1, 1F∣ = = − 〉 and F m2, 1F∣ = = 〉 [20, 21]. The oscillatingMWfield B r( )mw couples the different
hyperfine states of the ground state viamagnetic dipole transitions, see figure 4 for a scheme of the relevant levels
and transitions. As a result of the action of theMW fieldwhich is continuously shone on the atoms, each state is
dressed, i.e. is shifted in energy by the amountV r( )mw , effectively anAC-Zeeman shift which has a spatial
dependence. TheMWinduced potential can be approximated by

V r( ) , (2)m
m

m
m

m
m

mw 1,
2, 2

1,
2, 2

1,
2,

1
2

1
2

1
2Ω Δ Δ≈ ∣ ∣ + ∣ ∣ − ∣ ∣

where: (i) the Rabi frequency r( )m
m

1,
2,

1
2Ω depends on the projection of B r( )mw along the direction parallel

(normal), for linear (circular) polarizations, to the quantization axis set by the staticmagnetic field B r( ) and (ii)

Figure 3. (a)Density distribution of the atoms in F=1 (left) and F=2 (right) as a function of time. ARabi coupling between the two
states is applied for 14ms. (b) In the upper panel the atomnumberN1 andN2 in the two states is shown as a function of time. The
frequency of the pulse is numerically optimized tomaximize the efficiency of the transfer, in the lower panel the resulting detuning

t( )δ is reported in units of thefinal trapping frequency.

5

New J. Phys. 17 (2015) 083022 VGuarrera et al



the detuning m mr B r( ) ( ) ( ) ( )m
m

hfs B1,
2,

2 11
2Δ ω ω μ= − − − ∣ ∣, with hfsω the frequency of the field free hyperfine

transition. This energy shift is varying in space through its dependence on the spatialmode of theMWand on
the staticmagnetic field and it can be used to reshape the underlyingmagnetic potential V r( )magn used to trap the
atoms, as shown infigure 4.Moreover, in presence of a large enoughZeeman splitting of the hyperfine states, the
MW-coupling can be effective only for some sublevels, leaving the othersmainly unperturbed. This feature can
be used to create state-selective, independently tunable potentials.We note thatMWdressed potentials present
some advantages with respect to other state-selective techniques. Firstly, RF dressing techniques do not provide
independent control on the different internal states and, secondly the use of optical potentials will suffer from
spontaneous incoherent scattering by the trapping beams.

We experimentally implement theMWdressed potentials by using an atom chip device with an integrated
coplanar waveguide (CPW) for exploitation of theMWnearfield. The design of the two-layer chip has been
described in previous publications, see for example [22].We only recall here that ourCPW ismade of three gold
wires parallel to the x axis (see figure 5 for axis orientation) each of size L L( , ) (50, 10)y z = μmand centres
displaced by 150 μmalong the y direction. The two sidewires are grounded, whereas the central one is also used
to carry the dc-current which sets one of the confining axis of the Ioffe–Pritchard trap B r( ).

In ourworking configuration, which is depicted infigure 6(a), the elongated Ioffe trap is orientedwith its
weak axis orthogonal to the axis of theCPW, i.e. B yIoffe∥ . To realize a double well in one of the selected internal
states, a repulsive potential barrierVmw(y) is createdwithmaximumamplitude in the centre of the trap. This is

Figure 4. (Left) Level scheme of the 87Rb ground state in presence of an externalmagneticfield. The dressing transitionswhichwe use
in the present work are also indicated. Due to theMW field the atomic levels are shifted in energy by the amount V r( )mw , effectively an
AC-Zeeman shift with a spatial dependence. (Right) To create a double well potential a repulsive barrierVmw is grown in the center of
themagnetic trapVmagn along one of its axis. The overall potential V V Vmagn mw= + , depicted as a thick solid red line shows two
symmetric localminima forming a double-well.

Figure 5. Schematics of the chip first layer. A zoom in the centre of the chip shows the threewires which form themicrowave coplanar
waveguide. The central wire of theCPW is used, in addition, to carry the stationary current for the generation of themagnetic trap. In
the present realization the two sidewires of the CPWare grounded at the chip.
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obtained by exploiting the spatial variation of the Rabi frequency r( )1, 1
2, 1Ω −

− for F=1 ( r( )1,1
2,1Ω for F=2)which is

proportional, as explained above, to the projection of theMW field along the direction of the staticmagnetic
field B r B r B r( ) · ( ) ( )mw ∣ ∣. As in the center of the trap B B ymw ∥ ∥ , the Rabi frequency and consequentlyVmw are
maximal and decreasemoving along the y axis, creating the desired double-well potential. For the other allowed
transitions, the Rabi frequency depends instead on the component of theMWfield perpendicular to the
direction of the static field B r B r B r( ) ( ) ( )mw × ∣ ∣ and the resultingMWpotentialsmainly shift the vertical
position of the cloudwithout leading to the formation of a double-well. As thefinal dressed potential is
approximately a sumof the different contributions associatedwith all the possibleMW-induced transitions, we
minimize unwanted effects by setting theMW frequency such that B (2 ) 4B Ioffe Δ μ π≪ ∣ ∣ ≃ MHz. In our
working configuration theMW is thus blue(red)-detunedwith respect to the 1, 1 2, 1∣ − 〉 → ∣ − 〉 transition for
the atoms in F=1 ( 2, 1 1, 1∣ 〉 → ∣ 〉 transition for the atoms in F=2) as depicted infigure 4.We stress that the
dominant elements whichwe employ to engineerV r( )mw are: the spatial dependence of theMW field B r( )mw∣ ∣,
of its polarization and the spatial dependence of the Zeeman shift due to the static field B r( ). The size of the
achievable double-well potentials is thus strongly related to the geometry of theCPWand to its distance from the
position of the atoms, as well as to the frequencies of the staticmagnetic trap.Notably, by playingwith these
parameters, splitting distancesmuch smaller than thewavelength of the radiation employed can be achieved at a
suitable distance from the chip.

3.1. Characterization of theMWmode delivered by the chip
TheMWfield delivered by theCPW is characterized similarly to [20].We start preparing a cloud of 2 106×
atoms of 87Rb at a temperature ofT=10 μK in the hyperfine sublevel F m, 1, 1F∣ 〉 = ∣ − 〉.We then switch off all
the laser beams and confiningmagnetic fields, letting the atoms expand in a static homogeneousmagnetic field
B 3bias ≃ G, selectively pointing along the x, y or z axis. During expansionwe pulse theMW-fieldwith frequency
resonant on the transitions m1, 1 2, 2, 1, 0F∣ − 〉 → ∣ = − − 〉 andwe selectively image the atoms in the F= 2
hyperfine state, see figure 7 (left). Varying the pulse duration, we canmap the Rabi oscillation for the three
different polarization components with different orientations of the biasfield. The intensity of theMWfield
B r( )mw and the relative weight of the different polarizations, in particular, aremeasured.Wefit theMW-mode
bymeans of a static field calculation.We can best reproduce the experimental data by considering an asymmetry
of I0.16 mw in the current distribution of the external groundedwires of the CPW(ideally I I I 2l r mw= = −
where I I I, ,l r mw are respectively the currents in the left, right and central wires of the CPW, see also [21]) and by
assuming an induced current with amplitude I0.1 mw in one of the closest wires to theCPW.One example of the
measuredRabi frequency, on the transition 1, 1 2, 1∣ − 〉 → ∣ − 〉 (π polarization)with B ybias∥ , is shown infigure 7
(right) together with the corresponding simulation, for two different distances from the chip surface.

3.2. Realization and characterization of a double-well potential on an atom chip
In order to test the above predictions, wefirst show experimental results obtained by dressing just one of the two
ground states, 1, 1∣ − 〉. Thefinal potential to the atoms is characterized experimentally bymeasuring the

Figure 6. Schematics of the two-layer chipwith themain fields for the realization of theMWdressed doublewell potentials. The
currents I1 (I I,11 12) and I2flow in dedicatedwires in the first and second layer of the chip respectively and contribute together with the
Ioffemagnetic field BIoffe and a bias field Bbias to the formation of the staticmagnetic trapwhere the atoms are kept. TheMW field
irradiates from theCPW,which ismade of three parallel wires as sketched in thefigure, see alsofigure 5. (a)Due to the action of the
MWadoublewell is created along the longitudinal axis of the trap for the two states 1, 1∣ − 〉 and 2, 1∣ 〉when theMWfrequency is
tuned close to the π-polarization driven transitions as shown infigure 4. (b) An alternative realization of the double well potential with
our chip geometry. The splitting in this case takes place along the radial axis of the trap, forMW frequencies close to σ-polarization
driven transitions, see later in the text for discussion. In the both cases the direction of the splitting is set by the orientation of theMW
field at the position of the atoms.
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distance between the potentialminima as a function of theMWamplitude delivered by the synthesizer.We
prepare a BECof∼1000 atoms in the state 1, 1∣ − 〉. For the experiments described here, the atoms are loaded in a
harmonic trapwith frequencies 2 (160, 90, 130)π × Hz and longitudinal axis along the y direction, at 50 μm
distance from the chip surface.We switch on adiabatically theMWwith a s-shaped ramp in∼1 s andwemeasure
the density distribution of the atoms after a short time-of-flight (TOF) of fewms. For thesemeasurements, the
MWfrequency is set to be 500Δ = kHz blue-detunedwith respect to the 1, 1 2, 1∣ − 〉 → ∣ − 〉 transition, with a
Ioffefield of B 3.055y = G. Increasing the power of theMW, two separated clouds start to be resolvedwith
increasing separation distance. To correct for an asymmetric atomic population of the twowell,mainly due to
the underlying asymmetry of theMW field, a constantmagnetic gradient of 68mG cm-1 is added. Infigure 8(a)
we compare our results to the numerical simulations ofV V Vmagn mw= + performed by taking into account the
actual geometry of the chipwires andMW field, with no free parameters. The agreement with themeasurements
is good. Infigure 8(b) themeasurement of the separation distance is shown as a function of the detuningΔ, for a
power of 38.9 mW.Anon-negligible effect of theMWnear-field consists also in pushing the atoms away from
the chip due to the presence of a gradient of r( )2, 1Ω∣ ∣− along the z axis. Finally wemeasure the shift of the
resonance of the 1, 1 2, 1∣ − 〉 → ∣ 〉 transition for increasing power of theMWfield, whichwe compare to the
calculated energy shift induced by the dressing on the coupled levels, figure 8(c). The transition is driven by
electro-magnetic pulses of aMW field, 500 kHz blue detuned from the 2, 0∣ 〉 level, and an additional RFfield
with power low enough not to introduce additional dressing. The agreementwith theory is generally good for
relatively small splitting distances d 50≲ μm.The residual disagreement is to be attributed to the simple
modelling of theMW-mode (we estimate local deviations up to 20%,whose effect becomesmore important for
higherMWpowers) and, to a lower extent, of the actual chip trap. This allows us to extrapolate from the
simulations, in this range, the functional dependence of double-well barrier height on the splitting distance,
which is only smoothly affected by the precise detuning 1, 1Δ − chosen, being predominantly set by themagnetic
trap frequencies and by theMW-fieldmode. For our experimental case, we find that to completely split a
condensate with chemical potential (2 ) 100μ π ∼ Hz, a separation 30≳ μmshould be achieved. This rather
large separation is due to the smooth variation of Bmw over the size of the cloud and to the low trapping
frequency along the splitting axis, which coincides with the longitudinal axis of the trap.

4. Realization of state-selective potentials on a chip

In the previous section, we have shown that we can use a chip-deliveredMW-near field to create a double-well
potential, alternatively to the so far employed radio-frequency fields [23].Moreover a key feature of
MW-generated dressed potentials with respect to radio-frequency ones relies on the possibility of independently
addressing the internal states used in the beam splitter proposal. The RFfieldwill indeed couple to both the
states, limiting the possibilities of independently engineering thewavefunctions of the atoms in the two states.

Figure 7. (Left) Atoms imaged in F=2 after aMW-pulse resonant on the 1, 1 2, 1∣ − 〉 → ∣ − 〉 transitionwith power 10 mWand
B B y//bias≡ . The spatialmodulation of the Rabi frequency is visible for a fixed duration of the pulse. On the upper side of thefigure
the shadow cast by the chip is visible. (Right) Points:measuredRabi frequency y z( , )R 0Ω withMW-frequency resonant on the
1, 1 2, 1∣ − 〉 → ∣ − 〉 and B y//bias , here shown for two different distances from the chip z 1350 = μm(red points) and z 1850 = μm
(blue points). Solid lines: corresponding simulations of theMW-mode.
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As discussed above, the overlap between thewavefunctions plays an important role in determining the feasibility
andfidelity of the beam splitter operation and it is thus a crucial parameter to be optimized. TheMWfield,
notably, allows to create state-selective potentials, which can also be independently tuned once two different
frequencies are provided.

In order to test this, we dress the atoms by superimposing on theCPW twoMW-frequencies delivered by the
same synthesizer, which can be independently tuned. In particular we add to the dressing on the
1, 1 2, 1∣ − 〉 → ∣ − 〉 transition, which affectsmainly the atoms in F=1, a second frequency close to the
1, 1 2, 1∣ 〉 → ∣ 〉 transition for the dressing of the atoms in F=2, as shown in the level scheme of figure 4. Note
that due to the Zeeman splitting following the presence of a biasfield of∼3.055G, the two frequencies are far
enough (∼9.2 MHz) not to give rise to cross interference terms.

We prepare a BEC alternatively in the state 1, 1∣ − 〉or 2, 1∣ 〉 andwe rampup the two-tone dressing
adiabatically. Infigure 9we report themeasurements at short TOF of the splitting distancewhen a double well is
formed, with detuning 521 2Δ Δ= − = kHz and power P Pmw1 mw2= . A clear double well forms in the F=2 state
at lower powers than in F=1. This difference is due to the presence, in the dressed potential of the F=1 state, of
an additional repulsive component on the σ−-induced transitionV2, 2− which shifts the atoms along the z axis to
lower values of theMWpotentialV r( )mw,1 . Themagnetic gradient which is used to symmetrize the atomic
distributionwithin the twowells is optimized to 57mG cm−1 for the atoms in F=2. As shown infigure 9 (left) a
working configuration can be easily found inwhich the atoms in F=2 arewell split into a double-well while the
atoms in F= 1 are still trappedwithin a single well. Dressing of F=1 state can be further independently
manipulated in order to adjust the shape and position of the initial cloud.

4.1. Transfer and spectra
In order to study the transfer of the atoms from 1, 1∣ − 〉 to 2, 1∣ 〉, when different external potentials are applied
to the two states, we drive a 2 photon transition, as written in section 3.2, while applying different two-tone
dressings.We perform, in particular, a weak pulse of duration 300ms andmeasure the relative population of the
transferred atoms P N N N( )2 2 1 2= + , where N N,1 2 are imaged in TOFbymeans of a double-state detection

Figure 8.Dressing ofF=1 state. (a)Measured cloud separationas a function of thepower deliveredby the synthesizerwith 500Δ = kHz.
Solid line represents the simulationswithout freeparameters. (b)Measured cloud separation as a functionof the detuningΔ for P 39mw =
mWwith corresponding simulations. (c)Energy shift of the transition F m F m1, 1 2, 1F F∣ = = − 〉 → ∣ = = as a function of thepower
deliveredby the synthesizer for 500Δ = kHz togetherwith simulations.
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technique. Scanning the frequency of the RF photons, we can get the spectrumof the final potential in F=2.We
repeat themeasurements for different powers of theMW-dressingwhich correspond to different realizations of
the two external potentials. Infigure 10we show the experimental results, for 521 2Δ Δ= − = kHz and
P P P 10, 10.5, 11, 11.5mw 1 mw 2 mw= = =− − mW,which are fittedwith a simple 1Dmodel.We calculate the

eigenstates y( )iψ and energy spectrum iξ of an ideal double-well potential V y y( ) ( ( ) )
V

d

d

( 2)
2

2
2 20

4= − with

separation between thewells d and barrier heightV0 as adjustable parameters. Thewavefunction of the atoms in
F=1,whichwe assume to be all in the ground state of the harmonic potential, is simplywritten as

y( ) e y y1

2
( ) (2 )0

2 2φ =
π σ

σ− − . The coupling strength is given by A( )
i

C

w1 ( )

i

i c
2 2∑Ω ν =

ν ν ν+ − −
with

C y y y( ) ( )di i
*∫ ψ φ= ∣ ∣and (2 )i i ν ξ π= , wherew is the spectral width of the pulse and cν an offset frequency.

The parameters d, y0 and σ have been experimentally determined. This simplemodel does not account for
interactions between the atoms, however it can still provide an understanding of the spectrawithout the need of
too involved calculations. In particular, it reproduces quite well themeasurements at higher values of the power
P 11.5, 11mw = mW. In this case the atoms in F=1 aremainly pushed to one side along the y axis by the dressed
potentialVmw 1− and thus better couple to just one of the two double-wells (see insets offigure 10). For lowerPmw

the atoms are less displaced from the center of the unperturbed trap, and the initial wavefunction y( )φ starts to
bemore symmetrically distributed over the twowells. Theworse agreementwith the simplemodel, which is
observed for these powers of the dressing, can be explainedwith the existence of asymmetries on the double-well
potential which are not caught by our ideal representation of the potentialV(y).We can estimate this asymmetry
to be15 20%− in the range ofMWpower considered here. Thismeasurement has been performed by fast
transferring the atoms to the top of the potential barrier of the doublewell. The cloud then fragments into two
pieces following a complete oscillation in each of the twowells, fromwhichwe can derive the trapping
frequencies. By comparisonwith the simple theorywe can, however, identify the eigenstates of the external
potential which the transfer occupies.We can also derive an estimation of the barrier height, which is plotted, for
comparison, together with the simulations of the potential infigure 11.

Finally we note that the dressing on the 1, 1∣ − 〉 state is necessary tomaintain a finite wavefunction overlap
between the atoms in F=1 and F=2 along the z axis.Without this correction to the potential of the F= 1 atoms,
the two cloudswould be displaced vertically by a distance of 15 μmfor our experimental parameters, which is
larger than their radial extension. Afine tuning of the potentialsVmw 1− andVmw 2− is shown infigure 11where
transfer spectra have beenmeasured for different detuning 1Δ . A difference in the vertical positionwithin the
two clouds dz leads to the appearance of additional sidebands corresponding to the vertical trapping frequency

with coupling elements F n F n2, 2 e 1, 1F n F n ph1, 1 2, 2 2

dz pzi




Ω Ω= 〈 = ′ = ∣ ∣ = = 〉= = → = ′= , where pz
 is the

momentum transfer along z axis. The best wavefunction overlap for the two clouds along the vertical direction is
found for 1 2Δ Δ∣ ∣ > ∣ ∣with equalMW-power P Pmw 1 mw 2=− − .

Figure 9. (Left) Simultaneous two-tone dressing of F=1 and F=2with 521 2Δ Δ= − = kHz and equal power delivered by the
synthesizer in the two tones. The atoms are all either in F=1 or in F=2, and they are detected at the sameTOF. The solid lines are fits
to the data obtained by using the numerical simulations of thefields with themw amplitude as a free parameter. (Right)Double state
detection of the atoms in F=1 and F=2.Here the atoms are prepared in the two states and simultaneously dressed by a two-frequency
MWradiation. Vertical separation is due to the different time at which the imaging is performed for the two states (15 and 17msTOF
respectively).
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Finally, by tuning the frequency of the pulse, for a π pulse duration 2 hoτ π ω≫ , we can thus address
different single external states of the double-well potential in F=2. For a given power, the transfer to the ground
state, as shown by the spectra, turns out to be significantly less consistent with respect to the high-energy states
closer to the barrier height due to badwavefunction overlap. This problem can be, to some extent, circumvented
as thewavefunction of the atoms before the transfer can be independentlymodified and thewavefunction
overlap along the y axis further optimized.

Figure 10.Relative number of transferred atoms P2 from 1, 1∣ − 〉 to 2, 1∣ 〉 for different powers of the dressing field P 11.5, 11,mw =
10.5, 10 mW, corresponding to different depths (andminima separations) of the double-well potential. Thesemeasurements are the
average over (20, 10, 5, 10) acquisitions respectively. Red solid lines arefits with a single-particle 1D theory (seemain text for details).
Insets show the potentials in F=1 (red solid line) and F=2 (black solid line) which correspond to thefits (see text).

Figure 11. (Left)Calculated energyheight of thedouble-well barrierE as a function of the separation between theminimaof the potential.
For comparisonweplot themeasurements ofE, bluepoints, obtainedbymeans of a simplefit of the spectra for atoms inF=2.Note that
the simulatedE(d) doesnot vary significantlywith the exact frequencyof thedetuning andwith the internal state. (Right)Relative number
of transferred atomsas a functionof the 2-photon frequency for different dressing of the F=1 state only.Wevary inparticular the
detuning (from left to right): ( 9)1 2Δ Δ∣ ∣ = − , ( 3)2Δ − , ( 3)2Δ + , ( 10)2Δ + kHzwith equal powerdelivered in the two tones.
Sidebands generated by the clouddisplacement are visible at frequencies compatiblewith the trapping along the vertical axis.
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On the other extreme, fast transfers 2 yτ π ω≪ lead to a rather different scenariowith the coherent
occupation of several vibrational states of the double-well in F=2.Once transferred the atoms find themselves
out of equilibriumwith respect to the new external potential: the single BEC thus splits in two fragments which
follow their own dynamics rolling down the potential hill and coming back after an oscillation period to
recombine. This configuration presents some similarities with the in-trap splitting of a BECbymeans of optical
Bragg diffraction [24], and it could be considered for amatterwave analog of a white light interferometer.

5.Discussion and conclusions

In the previous paragraphs we have demonstrated the possibility to realize double-well potentials, selectively on
the atomic internal state, by the use ofMWfields delivered by the chip structures. Furthermore, by applying
appropriate Rabi pulses we can transfer the atoms selectively to one external state of the double-well potential.
However our peculiar chip device shows some limitations due to the large separation ( 30≳ μm)between the
potentialminimawhich is needed to achieve a barrier height safely bigger than the BECs chemical potentials.
Given the relatively shallow radial frequencies, we experience a limit in the possibility of adjusting the potential
of the state 1∣ 〉due to the need ofmaintaining a sufficient wavefunction overlap along the vertical direction. As a
result, themaximumoverlap among thewavefunctions in 1∣ 〉 and 2∣ 〉 is below 1%. This requires long transfer
times and non-trivial engineering of the Rabi pulses in order to achieve an useful transfer efficiency. To obtain a
separated doublewell with smaller splitting distances of a fewmicrons, the CPW transverse dimension could be
reduced by an order ofmagnitude (as in [21]) or the trapping frequency could be increased. In this second case, a
CPWwith the same dimensions as ours can be exploited to realize a staticmagnetic trapwithweak axis parallel
to the axis of the CPW, i.e. B xIoffe∥ see figure 6. A double-well is formed along the radial direction of the trap, y
direction in the figure, by properly blue-detuning theMW-field to the σ-induced transition ( m 1FΔ = − ) for the
atoms in F= 1, 2. This configuration can be used to obtain an experimental implementation of the simulations
presented in the second paragraph.However, in the current version of the experiment we are limited to the
unique realization described here, as the sidewires of the CPWcannot be independently controlled (they are
grounded together at the chip). Conversely, a new version of our experiment, which is nowunder construction,
willmeet these requirements.Wefinally notice that the splitting direction is set by the orientation of theMW
field at the position of the atoms, thus, in order tomodify it, a different design of theCPWwould be required.

To conclude, we have proposed a novel beam splitter technique for BECswhich does not require a
dynamical deformation of the trapping potential. This allows the preparation of an initial clean coherent state in
a double-well potential without the formation of spurious, unwanted, excitations.We have numerically shown
that the ground state of a double-well potential can be coherently and rapidly populatedwith excellentfidelity
and efficiencywithout the use of optimal control techniques, with realistic simulation numbers. By studying an
experimental case, we present the first realization of aMW-dressed double-well potential selectively on one
internal state of 87Rb andwe prove at the same time independent control on the potentials of the two different
internal states.We have also characterized the transfer procedure and the addressing of different vibrational
states in the double-well. This work shows that to obtain a good transfer efficiency andfidelity in reasonable
transfer times, thewavefunction overlap between the initial and final states should be optimized. This is
achievable with current state-of-the-art experiments, promoting our technique as a very promising tool in the
field of atom interferometry with BECs, e.g. by opening the possibility tomonitor the dynamical formation of
non-trivial entangled states withmetrological gain.Wefinally note that this system constitutes a potential
realization of the long discussed spin-bosonmodel [25], whichwould allow the study of decoherence processes
in a controlled environment [26].
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