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Abstract 

We present here a study of the recombination at the hetero-interface of solar cells based on amorphous silicon / crystalline silicon 
(a-Si:H/c-Si). The volume defects in the amorphous silicon are modeled with the defect-pool model and we study whether the 
surface defects in c-Si at the a-Si:H/c-Si interface can be considered as a projection of the defects in a-Si:H close to the surface. 
We study the impact of the defect-pool model parameters on the surface defect density and on the effective lifetime. We show 
that the calculation of interface defects from the defect-pool model is compatible with experimental results only if the width of 
the valence band tail is decreased when the thickness of the buffer layer is increased.  
 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Thin film heterojunction solar cells combining hydrogenated amorphous silicon (a-Si:H) and crystalline silicon 
(c-Si) have attracted broad research interest and market share due to their high stability, high efficiency and low 
temperature fabrication process which leads to a fabrication cost reduction in comparison with the high temperature 
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diffused homojunction technology. The efficiency record of a-Si:H/c-Si heterojunction solar cells has been broken 
by Panasonic in April 2014 reaching 25.6% [1]. One of the key steps in this device optimization is the insertion of an 
intrinsic (i)a-Si:H buffer layer which results in a decrease of surface defects at the c-Si/a-Si:H interface. These 
surface defects attributed to silicon dangling bonds are still a limiting parameter to reach higher efficiency. The bulk 
defect distribution in a-Si:H is governed by the defect-pool model [2,3] which describes the density of dangling 
bonds (DB) in a-Si:H according to the position of the Fermi level, thus leading to a non uniform spatial DB 
distribution due to the band bending. The band bending in a-Si:H close to the a-Si:H/c-Si interface leads to 
modifications of the DB density according to the position in the a-Si:H layer. 

We have developed a calculation program to self consistently solve Poisson’s equation and determine the DB 
density profile in a-Si:H using the defect-pool model [4]. The surface defect density Dit(E) is then inferred from the 
obtained DB density at the interface. This model allows us to study the impact of the parameters of the defect-pool 
model and the thickness of the (i)a-Si:H buffer layer on the Dit(E), and consequently on the effective lifetime 
minority carriers.  

2. Simulation method  

In order to study whether the surface defects at the a-Si:H/c-Si interface that determine carrier recombination in 
c-Si can be considered as a projection of the defects in a-Si:H, we followed the following steps : (1) we used our 
calculation program to self consistently solve Poisson’s equation and determine the DB density profile, (2) we 
modeled the DB density by monovalent state distributions, (3) we calculated the surface defect density at the a-
Si:H/c-Si interface as a projection of the defects in a-Si:H close to the surface, (4) we studied the influence of the 
calculated a-Si:H/c-Si defect density and of the (i)a-Si:H buffer layer thickness on the effective carrier lifetime in 
symmetrical structures through a 1D numerical simulation (Silvaco Atlas). 

2.1. Structure 

We modeled a symmetrical (p)a-Si:H/(i)a-Si:H/(n)c-Si/(i)a-Si:H/(p)a-Si:H structure. The (n)c-Si absorber was 
standard 280 m thick with a donor density of 1.7 × 1015 cm-3. The (p)a-Si:H emitter thickness was set to 10 nm. The 
(i)a-Si:H thickness d(i) was varied between 0 nm (no (i) a-Si:H) and 10 nm. The band gap was set to 1.7 eV in all the 
a-Si:H layers and to 1.12 eV in c-Si. The total density of states (DOS) in the a-Si:H was considered as the sum of the 
amphoteric DB states calculated using the defect-pool model, and the monovalent band tail distributions. 

 
In the studied structure, the Fermi level in a-Si:H is always much closer to the valence band edge than to the 

conduction band edge, even close to the hetero-interface. The defect-pool provides, in this case, an important DB 
distribution in the upper part of the gap that can be reproduced by a Gaussian distribution D(E). Moreover, this DB 
distribution can be approximated in terms of one-electron density of states by two monovalent states distributions, 
one being of acceptor type, gA(E), the other being of donor type, gD(E), so that the total monovalent DOS g(E) can be 
represented by  with  and  
where  is the energy,  is the Boltzmann constant,  the temperature and  the correlation energy.  

Fig 1 shows the calculated DOS in a-Si:H at the a-Si:H/c-Si interface with the standard defect-pool parameters 
given in Table 1. In order to represent the surface defect density as described in the third step above, we have 
introduced a very thin defective (n)c-Si layer (<0.5nm). The DOS in this defective layer has been evaluated as the 
volume DOS calculated at the second step restricted to the bandgap of c-Si with a band offset  [5].  

 
The effective lifetime was calculated from the ratio pav/Utot, where Utot is the total recombination rate and pav is 

the difference between the average concentration of minority carriers in c-Si under illumination and the average 
concentration in the dark. The total recombination is given by Utot = UAuger + Urad + USRH where UAuger is the Auger 
recombination, Urad is the radiative recombination and USRH is the Shockley-Read-Hall recombination [6,7] with a 
volumic lifetime . Band-to-band and Auger recombinations are taken into account according to the 
parameterization of Kerr and Cuevas [8]. 
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Fig. 1. One-electron density of states in a-Si:H at the hetero-interface. Two Gaussian distributions (DB donor and DB acceptor) represent the 
monovalent states transcription of the amphoteric dangling bonds calculated here with standard defect-pool parameters, VBT (CBT) is the valence 
(conduction) band tail distribution. The vertical dotted lines indicate the valence and conduction band edge for the c-Si defective layer. 

2.2. Set of standard parameters 

In order to study the impact of the defect-pool parameters on the DOS at the hetero-interface and then on the 
effective lifetime we have used the set of standard parameters [9] summarized in Table 1. We have varied 
independently the standard deviation of the Gaussian pool distribution , the energy correlation U, the energy 
separation  and the capture cross-section of the carriers. 

Table 1. Parameters of the a-Si:H layers. 

 Emitter 

(p)a-Si:H 

Buffer layer 

(i)a-Si:H 

Equilibration temperature   

Hydrogen concentration   

Concentration of electrons concentration in the silicon 
bonding states   

Energy separation   

Energy correlation   

Standard deviation of the Gaussian pool distribution  

Effective DOS in the cond./val. band  

Pre-exponential factors of the cond./val. band  

Urbach energy of conduction band tail  0.040 eV 0.040 eV 

Urbach energy of valence band tail  0.086 eV 0.045 eV 

Capture cross-sections 

Donor Gaussian distribution n
+ =  p

0 =  

Acceptor Gaussian distribution n
0 =  p

- =  

Valence band tail (donor) n
+ =  p

0 =  

Conduction band tail (acceptor) n
0 =  p

- =  

2.3. Impact of the defect-pool parameters 

In Fig.2, we present the effective lifetime as a function of the excess minority carrier concentration calculated 
varying several parameters, namely the correlation energy  (energy difference between acceptor and donor states), 
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the standard deviation of the Gaussian pool  and the energy separation  (difference between negatively charged 
defects in n-type a-Si:H and positively charged defects in p-type a-Si:H). Fig 2a shows the effective lifetime curves 
calculated for five values of  in the range 0  to . Fig 2b presents the impact of the modification of the 
standard deviation of the Gaussian pool  from  to  without changing the total DOS. Fig 2c shows 
effective lifetime curves calculated for three values of in the range 0  to . The simulated curves 
clearly show that these defect-pool parameters have a very small impact on the recombination and thus on the 
effective lifetime.  
 
 

 

Fig. 2. Effective lifetime versus excess minority carrier concentration for several values of (a) the correlation energy U,  
(b) the standard deviation of the Gaussian pool , and (c) the energy separation . 
 

Fig 3 shows the impact of the capture cross section on the effective lifetime. Each capture cross section of the 
Gaussian distributions has been increased by a factor of ten, keeping the others constant. We observe almost no 
effect of the capture cross section in the particular case of holes p

0 and p
- a  weaker impact is observed for the 

capture cross section of electrons of the acceptor Gaussian distribution n
0 and a significant impact is pointed out 

for the capture cross section of electrons of the donor Gaussian distribution n
+. This demonstrates that the capture 

of electrons by the donor Gaussian distribution ( ) is the process that mainly determines the 
recombination properties. The reasons are that (i) electrons are the minority carriers at the heterointerface due to the 
strong band bending, (ii) the D+/D0 transition is deeper than the D0/D- one, and (iii) the D+ states have larger capture 
cross sections for the electrons than the D0 states.  

Fig. 3. Effective lifetime versus excess minority carrier concentration for several sets of capture cross section of deep defects. 

2.4. Thickness of the buffer layer 

In order to study the impact of the interface, we chose an important value of the volumic lifetime  
in this part. We have first studied the effect of the (i)a-Si:H layer thickness d(i) without changing the other layer 
properties. To that purpose, we computed and illustrated the effective lifetime as a function of the excess carrier 
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distributions for a variation of d(i) from 0 to 8 nm as presented in Fig. 4(a). We have observed that the lifetime first 
slightly increases and then decreases when the thickness of the buffer layer increases. These simulation results can 
be explained by the fact that the decrease of defects calculated from the defect-pool model is not sufficient to 
counterbalance the decrease of the field effect passivation. However, this is in contradiction with the experimentally 
observed behavior where the effective lifetime increases with the (i) layer thickness [10]. This discrepancy can be 
linked to the electronic properties of ultra-thin (i)a-Si:H layers (< 10 nm) which are reasonable poor compared to 
thicker layers. In order to take into account this fact we proposed to parameterize the valence band tail Urbach 
energy, EU, versus d(i) :  

  

where  represents the thickness limit beyond which EU is considered unvarying (= ),  is the Urbach 
energy for d(i)=0 and  is a parameterized factor used to describe the parabolic decrease of EU . For the simulations 
we have used , ,  and .  
 

With this new parameterization, it can be seen on Fig. 4(b) that the lifetime increases with d(i), which is now in 
agreement with experimental trends.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Effective lifetime versus excess minority carrier concentration for several values of the (i)a-Si:H buffer layer thickness, d(i),  with a 
constant value of the valence band tail Urbach parameter, Eu, (Fig. 4a) and with a parabolic parameterization of Eu (Fig. 4b) 

3. Conclusion  

We have modeled surface defects at the a-Si:H/c-Si front emitter of heterojunction solar cells using the defect-
pool model. The volume defects were self-consistently calculated according to this model in both the (i)a-Si:H buffer 
layer and (p) a-Si:H emitter layer. Surface defects were then introduced as a thin defective c-Si interface layer where 
the density of states was projected from the volume defects in a-Si:H close to the surface. Our simulations show that 
the defect-pool parameters values have no strong impact on the calculation of the surface DOS and on its 
dependence with the thickness of the (i)a-Si:H buffer layer. In order to reproduce the experimentally observed trend, 
namely that the effective lifetime increases with the (i) layer thickness, it is necessary to assume that the valence 
band tail Urbach energy decreases when this thickness increases. This is mandatory to have a sufficient increase of 
chemical passivation that can compensate the loss of field-effect passivation. 
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