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ABSTRACT  

Background: In the adult brain, structural plasticity allowing gain or loss of synapses remodels 

circuits to support learning. In Fragile X Syndrome (FXS), the absence of Fragile X Mental 

Retardation Protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master 

regulator of local translation but its implication in learning-induced structural plasticity is unknown.   

Methods: Using an olfactory learning task requiring adult-born olfactory bulb (OB) neurons and cell-

specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology 

during their synaptic integration and its dependence on FMRP. We used �CaMKII mutant mice with 

altered dendritic localization of �CaMKII mRNA as well as a reporter of �CaMKII local translation to 

investigate the role of this FMRP mRNA target in learning-dependent structural plasticity.  

Results: Learning induces profound changes in dendritic architecture and spine morphology of adult-

born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an 

mGLUR5 antagonist. Moreover, dendritically translated �CaMKII is necessary for learning and 

associated structural modifications and learning triggers an FMRP-dependent increase of �CaMKII 

dendritic translation in adult-born neurons.  

Conclusion: Our results strongly suggest that FMRP mediates structural plasticity of OB adult-born 

neurons to support olfactory learning through �CaMKII local translation. This reveals a new role for 

FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of 

clinical relevance for the understanding of critical periods disruption in autism spectrum disorder 

patients, among which FXS is the primary monogenic cause. 
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INTRODUCTION  

In the adult brain, the plasticity involved in learning and memory includes modifications of the 

strength of existing synapses as well as structural plasticity allowing the gain or loss of synapses (1). 

Although local dendritic mRNA translation is a major determinant of the synaptic plasticity 

underlying learning and memory (2), its role in structural plasticity remains unclear. Data pointing to 

its role in activity-induced structural plasticity stem from animal models deficient for the Fragile X 

Mental Retardation Protein (FMRP). Fragile X Syndrome (FXS), the most common monogenic form 

of intellectual disability (3) and autism spectrum disorder (ASD), results from the absence of FMRP 

due to the silencing of the  FMR1 gene (4). FMRP is an RNA-binding protein expressed in neurons 

and a key regulator of the local dendritic mRNA translation associated with synaptic plasticity (5). In 

addition, Fmr1
-/-
 mice display disrupted critical periods of experience-dependent plasticity in the 

somatosensory and visual cortex (6, 7) and increased spine instability and insensitivity to 

environmental changes (8-10). This suggests a role for FMRP in experience-dependent structural 

plasticity but direct cell-specific demonstrations of the role of FMRP in learning-induced structural 

plasticity are lacking. 

The olfactory system expresses significant functional and structural plasticity, including the 

integration of new neurons into the adult olfactory bulb (OB). We previously showed that the 

morphological differentiation of new neurons in the adult OB is regulated by FMRP (11). We also 

demonstrated that olfactory activity regulates the dendritic transport and translation of the alpha 

subunit of the Calcium Calmodulin-dependent Kinase II (�CaMKII) mRNA, one of FMRP's 

translational mRNA targets and a major player in synaptic plasticity (12). However, how learning 

shapes the morphology of new neurons in the OB during their integration into circuits and whether 

FMRP and �CaMKII mRNA local translation play a role in learning-induced structural plasticity is 

unknown. 

Using genetic tools and animal models, we show that olfactory perceptual learning induces profound 

morphological changes in adult-born neurons with an increase in dendritic complexity, spine density 

and modifications of spine morphology. FMRP deficiency in new neurons leads to learning deficits 

and defects in associated structural modifications. Interestingly, these defects are rescued by the 

mGluR5 antagonist MPEP, tested in clinical trials for FXS (13, 14). In addition, learning induces 

FMRP-dependent increases of �CaMKII mRNA local translation in dendrites of adult-born neurons, 

which is necessary for learning and associated structural plasticity. 

Collectively, our results reveal a molecular cascade by which FMRP regulation of �CaMKII local 

translation mediates structural plasticity of adult-born neurons underlying olfactory learning. This 

highlights a new role of dendritic local translation in learning-induced structural plasticity, necessary 

for dendrite morphogenesis and spinogenesis, which might be of clinical relevance for understanding 

disrupted critical periods in ASD patients (15-17). 
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METHODS AND MATERIALS 

Animals 

Two-month-old male mice were housed in a 12h light/dark cycle, in cages containing 2 to 6 

individuals. Animal care was conducted in accordance with standard ethical guidelines (NIH 

publication no.85-23, revised 1985 and European Committee Guidelines on the Care and Use of 

Laboratory Animals 86/609/EEC). The experiments were approved by the local ethic committee 

«Comité d’Ethique en Expérimentation Animale Charles Darwin C2EA-05 ». All mouse lines were in 

a C57BL6 background. Fmr1 knock-out and conditional knock-out mice (1), Nestin::CreERT2 mice 

(2) and �CaMKII 3‘UTR mutant mice (3) were genotyped according to the original protocols. 

Perceptual learning  

During 10 days, mice were daily exposed to swabs with 100 µL of pure limonene+ or limonene- in 

two tea-balls in the home cage for one hour.  

Discrimination test 

To assess discrimination between limonene+ and limonene-, mice were subjected to a 

habituation/dishabituation test. After an initial 50-second presentation of mineral oil, the habituation 

phase consisted in 4 consecutive 50-second presentations of the same odorant, allowing 5-minute 

intervals (hab1 to hab4), followed by a 50-second presentation of a second odorant (test). Odorants 

diluted to 1Pa vapor pressure in mineral oil were presented on a swab in a tea-ball. Investigation time 

was recorded as active sniffing within 1 cm from the tea-ball. The investigator was blind regarding the 

genotype of animals during the tests. 

Supplemental information 

See Supplement for stereotaxic injections, histology, image analysis, tamoxifen and MPEP 

administration, and statistical analysis sections. 

 

RESULTS 

FMRP in adult-born neurons is necessary for olfactory perceptual learning 

To investigate the role of FMRP in learning-induced structural modifications of new OB neurons, we 

used an olfactory perceptual learning paradigm, in which mice learn to discriminate two perceptually 

similar odorants, Limonene + and Limonene - (Lim+, Lim-). Importantly, this learning paradigm 

depends on OB plasticity (18) and requires adult neurogenesis in the OB (19). Naive WT mice cannot 

discriminate Lim+ from Lim- as tested by a habituation/dishabituation test (hab/dishab, four 

habituation trials with one member of the pair followed by a test trial with the other member, Fig.1B 

and Supplementary Fig.S1A). The significant decrease in investigation times from the first habituation 

trial to the fourth (Hab1 to Hab4; Supplementary Fig.S1A) shows that the mice habituate to one 

odorant of the pair. The stable investigation time between Hab4 and Test shows that naive mice cannot 

discriminate Lim+ from Lim- (Fig.1B). Subsequently, the learning phase includes a 10-day 
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enrichment period, where mice are exposed one hour per day to both odorants simultaneously 

(Fig.1A). After this enrichment period, mice are tested again for their capacity to discriminate Lim+ 

from Lim- through a hab/dishab test (Fig.1C, supplementary Fig.S1B). As in the pre-enrichment tests, 

mice habituate properly (supplementary Fig.S1A). However, the significant difference in investigation 

times between Hab4 and Test (Fig.1C) shows that WT mice can now discriminate Lim+ from Lim-, as 

described (19). In contrast, Fmr1
-/y mice (20) did not learn to discriminate the two odorants after a 10-

day enrichment period (Fig.1D and supplementary Fig.S1C). This was not due to a general olfactory 

discrimination defect of the knocked-out (KO) mice since they spontaneously discriminated two 

perceptually distinct odorants (Octanal/Carvone, supplementary Fig.S1D) and as previously described 

(21). This suggests that FMRP is necessary for the perceptual learning underlying discrimination of 

similar odorants. 

To assess the role of FMRP selectively in new neurons, we used genetically modified 

Nestin::CreERT2/ Fmr1
flox/y

 mice (20, 22)(hereafter called cKO mice, for conditional KO), in which 

Fmr1 ablation can be induced in adult-born neuron progenitors and their progeny through CRE 

activation with tamoxifen (Fig.2A). In our conditions, tamoxifen induces Fmr1 ablation in 37% of 

new OB neurons in the cKO mice (Supplementary Fig.S1G-I, p < 0.0001 Fischer exact test).  cKO 

mice injected with tamoxifen did not learn to discriminate Lim+ from Lim- after the enrichment 

period (Fig.1F and supplementary Fig.S1F). In contrast, tamoxifen-injected control cKO mice, not 

carrying the Cre allele, discriminated Lim+ from Lim- after the 10-day enrichment period (Fig.1E and 

supplementary Fig.S1E). Decreased neurogenesis in the adult hippocampus of the cKO mice was 

previously reported (23). While this is unlikely to affect olfactory perceptual learning, which relies on 

OB mechanisms (18), it was important to verify that Fmr1 mutation did not alter OB adult 

neurogenesis, which could explain the observed learning deficit. Control cKO and cKO mice were 

BrdU-injected and the number of BrdU-positive OB neurons in the granule cell layer after learning 

was quantified. There was no significant difference in the density of BrdU-positive OB neurons 

between control cKO and cKO mice (control cKO: 222 ± 27 cells/mm2, cKO: 261 ± 28 cells/mm2, n=4 

mice/group, Kruskal–Wallis test p =0.622) showing that OB neurogenesis is not affected in cKO mice. 

The learning deficit in cKO mice thus suggests that FMRP in new neurons is necessary for olfactory 

perceptual learning. 

FMRP in adult-born neurons is necessary for learning-induced structural modifications of new 

neurons 

We next asked if the learning deficit in cKO mice could be related to defects in new neuron learning-

induced structural plasticity. To analyze this, we labeled a cohort of newly-generated OB neurons in 

control cKO or cKO mice by injecting a GFP-expressing lentivirus in the SVZ, where new OB 

neurons originate (Fig.2A,B). Injected mice were subjected, or not, to learning. In the learning 

paradigm, enrichment took place during integration of the labeled new neurons into the OB synaptic 

circuits (15 to 24 day post-injection (dpi), Fig.2A). The mice were subsequently sacrificed and the 
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morphology of OB GFP-labeled granule cells (GCs) was analyzed (11). GCs are anaxonic GABAergic 

interneurons, whose cell body is localized in the granule cell layer and a long, branching and spiny 

apical dendrite arborizes in the external plexiform layer (scheme Fig.1C). In our analyses, we 

considered only GFP-positive GCs with a fully developed dendritic arbor contained entirely within the 

sections. This allowed us to check FMRP immunoreactivity in cell bodies of analyzed neurons and to 

avoid underestimating the total dendritic length. The length of the primary dendrite extending from the 

cell body to the first branching point did not vary in the different conditions analyzed in this study (not 

shown, unpaired Student's t test p=0.156 n=45,72). The length of the dendritic arbor after the first 

branching point was 475 ± 13 µm for control cKO mice in basal conditions. After learning, the length 

increased significantly to 637 ± 45 µm (Fig.2D, F). Learning also induced an increase in the 

complexity of the apical dendritic arbor, as evidenced by Sholl analysis (Fig.2D,G). In comparison 

with control cKO mice under basal conditions, apical dendritic arbors of FMRP-depleted (FMRP-) 

new neurons in cKO mice displayed a similar length (Fig.2E, 523 ± 28 µm) and dendritic complexity 

(Fig.2G and H, repeated-measures ANOVA with two factors. F(1 ,23) =0.985, p =0.331, n =13-14). 

However, in contrast to control cKO mice, the learning paradigm did not induce any change in the 

dendritic arbor  length (Fig.2E, F, 510 ± 41µm) or complexity in FMRP- neurons of cKO mice  

(Fig.2H). These data strongly suggest that FMRP in new neurons is necessary for learning-induced 

dendritic remodeling. 

We analyzed spine density by counting protrusions in the dendritic arbor of labeled GCs. In control 

cKO mice, the spine density in basal conditions was 0.45 ± 0.02 /µm and was significantly increased 

to 0.6 ± 0.02 /µm following learning (Fig.3A,A'',B), consistent with the notion that learning induced 

the formation of new spines and/or increased spine stabilization. As we already observed in similar 

conditions (11), spine density in FMRP
-
 neurons from cKO mice in basal conditions was significantly 

increased compared to control cKO mice (0.55± 0.04 /µm versus 0.45 ± 0.02 /µm, Fig.3A,A',B, 

p=0,02). However, importantly, learning did not change spine density in FMRP- new neurons (0.57 ± 

0;05 /µm, Fig.3A',A''',B). This suggests that an increase in spine density does not occur in FMRP- 

neurons either because FMRP is necessary for an increase in spine density or because the maximum 

level of spine density is already attained in mutated neurons. 

We also analyzed spine length and, as we observed before in similar conditions (11), spines of FMRP
-
 

new neurons from cKO mice are significantly longer than spines of neurons from control cKO mice 

(control cKO 2.84±0.06µm versus cKO 3.09±0.09µm, p=0.032). However, learning had no effect on 

spine length, independent of the genotype (p=0.444). 

GCs spines display atypical morphologies with a long neck and variable head diameters (Fig.3A-A'''). 

We thus decided not to follow the typical categorization of mushroom, stubby and thin spines, but to 

calculate the cumulative frequency distribution of their head diameters. cKO mice were significantly 

different from control cKO with a shift towards smaller diameters (Fig.3C), consistent with what is 
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classically described for Fmr1 mutated neurons. Learning triggered a significant shift towards larger 

diameters in wild-type new neurons from control cKO mice (Fig.3D and Fig.3A,A'').�This increased 

size of spine heads, in other systems, is interpreted as a reflection of a stabilized synapse consecutive 

to learning (1). However, learning had no significant effect on spines from FMRP- new neurons of 

cKO mice (Fig.3E and Fig.3A',A'''). 

Collectively, the data suggest that FMRP is necessary for olfactory learning-induced structural 

plasticity of new neurons, by regulating both dendritic and spine structural plasticity. 

MPEP rescues learning and dendritic arbor structural plasticity defects in mutated adult-born 

neurons 

In the absence of FMRP, signaling through group-1 metabotropic receptors is increased and 

insensitive to stimulation (24). Consequently, many therapeutic strategies for FXS are based on 

targeting the mGluR pathway (13, 14). We thus asked whether FMRP- neuron phenotype could be 

rescued by a group-1 metabotropic receptor antagonist, MPEP. cKO mice were injected with MPEP 

(20mg/kg/day) or saline daily during the period of enrichment. Saline-injected cKO mice could not 

learn the discrimination task (Fig.4A and supplementary Fig.S2A). Remarkably, MPEP injections 

rescued the learning defects in cKO mice (significant difference between Hab4 and Test, Fig.4B and 

supplementary Fig.S2B). To test if this was the consequence of a rescued structural plasticity, we 

analyzed the morphology of new neurons in saline or MPEP-injected cKO mice after learning. In 

MPEP-injected cKO mice, new FMRP
-
 neurons displayed a lengthened dendritic arbor when 

compared to saline-injected cKO mice (Fig.4C,D). In addition, FMRP- new neurons from MPEP-

injected cKO mice displayed an increased dendritic complexity as compared to neurons from saline-

injected cKO mice (Fig.4C,E). Comparison of FMRP- new neurons from MPEP-injected cKO mice 

after learning with wild-type neurons in control cKO mice after learning (Fig.2E,G) showed that 

following MPEP injections the dendritic lengths and complexity of mutated neurons was similar to 

their wild-type counterparts (p>0.05). Thus, MPEP can rescue dendritic arbor structural plasticity 

defects in mutated neurons. In contrast, spine density (Fig.4F) and morphology (Fig.4G) were 

unchanged in MPEP-injected cKO mice, as compared to saline-injected cKO mice. 

This suggests that the rescue of dendritic arbor plasticity defects induced by MPEP treatment is 

sufficient to rescue the learning phenotype. 

ααααCamKII mRNA dendritic local translation is necessary for olfactory perceptual learning and 

associated structural plasticity 

�CaMKII mRNA is one of FMRP’s mRNA targets (5) and a major actor in synaptic plasticity. 

�CaMKII mRNA is dendritically localized and locally translated in different regions of the brain, 

including the OB (12). We thus asked if αCamKII local translation is necessary for olfactory 

perceptual learning and associated structural plasticity. We used mice in which �CaMKII 3’UTR is 

replaced by the 3’UTR of an unlocalized mRNA (25)(hereafter called ∆3’UTR). We previously 

showed that, in these mice, OB dendritic localization and local translation of αCamKII mRNA are 
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severely disrupted and that olfactory associative learning is impaired (12). ∆3’UTR mice were thus 

subjected to the non-associative olfactory perceptual learning used here. Contrary to WT littermates 

(Fig.5A) and similar to Fmr1 mutated mice, ∆3’UTR mice did not learn to discriminate Lim+ from 

Lim- (Fig.5B and supplementary Fig.S3A,B). This failure in perceptual learning is not due to a general 

olfactory defect (12) and cannot be ascribed to a decreased neuronal production in the OB (density of 

BrdU-labeled cells in the GCL after learning, WT: 96 ± 7 cells/mm
2
, ∆3’UTR: 89 ± 7 cells/mm

2
, n=4 

mice per group, Mann–Whitney rank sum tests p=0.343). 

Similar to cKO mice, under basal conditions, new neurons in ∆3’UTR mice display normal dendritic 

arbor length (Fig.5C,D,E) and increased spine density compared to WT (Fig.5G,G',H)(p=0.02). 

Strikingly, after learning, new neurons in ∆3’UTR mice display structural plasticity defects 

comparable to cKO mice, with a lack of dendritic lengthening and a lack of increase in dendritic 

complexity (Fig.5C-F). Moreover, learning had no effect on ∆3’UTR mice spine density 

(Fig.5G',G''',H) and did not increase spine head diameters (Fig.5J), in contrast to their WT littermates 

(Fig.5G,G'',I). 

Collectively, these data suggest that �CaMKII local translation is necessary for olfactory perceptual 

learning and associated structural plasticity. It also suggests that �CaMKII mRNA may be the main 

FMRP mRNA target involved in olfactory learning-induced structural plasticity of new neurons. 

Olfactory perceptual learning induces an FMRP-dependent increase of �CaMKII dendritic local 

translation in adult-born neurons 

To directly substantiate a link between �CaMKII local translation and FMRP, we used a previously 

validated reporter of �CaMKII local translation (26) in WT and Fmr1 mutated mice. In this reporter, 

the 3’UTR extremity of �CaMKII mRNA, which mediates its dendritic localization and translational 

regulation (27) and can be bound by FMRP (28), is associated to a GFP mRNA so that transport and 

translation of the GFP mRNA reflect the endogenous �CaMKII. The GFP is in an unstable and rapidly 

degraded membrane-bound form (a destabilized and myristoylated GFP, Fig.6A). Consequently, the 

presence of GFP is indicative of recently locally translated protein. To label new neurons and to 

analyze αCamKII dendritic local translation, we produced an adenovirus (AdV, serotype5) expressing 

this reporter. Given the relatively low rate of recombination in cKO mice and the low number of cells 

infected by the AdV, we injected it in the SVZ of WT and Fmr1
-/y

 mice. To normalize the staining, we 

co-injected an mCherry-expressing AdV, whose staining intensity did not vary in the different 

conditions (Sup Fig.4). We measured the intensity of GFP dendritic labeling over mCherry intensity in 

new double-infected GCs in basal and learning conditions. Learning induced a significant increase of 

the translation reporter's dendritic labeling in WT mice (Fig.5B,C,D). In KO mice, this dendritic 

labeling is increased in basal conditions as compared to WT mice (Fig.6B,C,E). This increased 

dendritic labeling of the reporter in WT mice is in line with �CaMKII mRNA being a translational 

target of FMRP, normally acting as a brake on its translation (5). However, in KO mice, the dendritic 
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labeling in new GCs was not increased after learning (Fig.6B,E,F) and, surprisingly, was even 

decreased. This might be the result of a destabilization of the reporter's mRNA and/or its decreased 

translation as a compensatory mechanism consequent to FMRP's absence. 

Collectively, our data suggest that olfactory perceptual learning induces an FMRP-dependent increase 

of αCamKII local translation in new neurons and that �CaMKII mRNA could be the main FMRP 

mRNA target involved in the structural plasticity necessary for olfactory learning. 

�

DISCUSSION 

Here, we report that new neurons of the adult OB are structurally plastic in response to olfactory 

learning and that this plasticity is FMRP and �CaMKII local translation dependent. We thus uncover a 

new and essential role for dendritic local translation in the structural modifications underlying 

learning. 

Structural plasticity is a determinant of learning, allowing spatial modifications of circuits through 

gain and loss of synapses (1). We show here that perceptual non-associative learning induces an 

increase of spine density in the apical dendritic arbor of new OB neurons. These spines are 

synaptically connected to mitral/tufted cells, the OB principal projection neurons. In recent work using 

associative olfactory learning, an increase in spine density in new OB neurons was observed (29) not 

in the apical dendritic arbor but in the deep dendritic domain of new GCs, whose spines receive top-

down inputs. This raises the interesting possibility that different types of learning might induce 

different types of structural plasticity in new OB neurons, linking their optimal connectivity to 

environmental demands. Perceptual learning also induces a lengthening of dendritic arbors 

accompanied by an increased complexity of new neurons, thus profoundly modifying their 

morphology, similar to adult-born hippocampal neurons during spatial learning (30). In most regions 

of the adult brain, the retraction or growth of dendritic branches are limited and rare, once critical 

periods of development have ended (31). Adult-born OB neurons are thus endowed with unique 

structural properties, as also suggested by two-photon live imaging studies (32) and monosynaptic 

tracing (33). As a consequence, remodeling of their geometry upon integration might allow for 

profound modifications of their connectivity. 

We show that FMRP is necessary for olfactory perceptual learning and associated structural 

modifications. The cKO mouse we used was previously shown to display reduced neurogenesis in the 

adult hippocampus and spatial learning defects (23). This learning deficit may also be the consequence 

of a lack of structural plasticity of new hippocampal neurons due to the loss of FMRP, similar to what 

we observe in the OB. A role for FMRP in activity-dependent dendritic remodeling is consistent with 

defective critical periods observed in Fmr1 KO mice (6, 7) and studies of dFMRP null flies reporting 

activity-dependent pruning deficits (15). Remarkably, we show that antagonizing mGluR signaling in 

mutated mice through MPEP injections is sufficient to rescue learning and dendritic remodeling. This 
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MPEP effect on dendritic arbor is in line with the genetic rescue of critical period plasticity defects 

observed in the visual cortex of Fmr1 KO mice with reduced mGluR5 expression (7). MPEP had no 

effect on spine density or morphology defects, which suggests that the rescue of dendritic arbor 

plasticity defects induced by MPEP treatment is sufficient to rescue the learning phenotype. However, 

one of the consequence of the dendritic arbor lengthening induced by MPEP is also a corresponding 

increase in the number of spines, which might participate in the learning rescue.  

FMRP has numerous mRNA targets including �CaMKII (5). In addition to regulating synaptic 

strength, �CaMKII is an important regulator of structural plasticity (34-36). However, its role in 

structural plasticity has never been correlated with its dendritic local translation. We thus used a 

reporter of translation to monitor the in vivo dendritic translation of �CaMKII in new neurons upon 

learning. This type of reporter is commonly used in cultured cells (26, 37) and was used in drosophila 

to report increased local synthesis of �CaMKII following olfactory training (38). Even if our analysis 

of the reporter in fixed tissue did not allow time-lapse analysis of the staining to clearly ascertain that 

increased fluorescence of the reporter reflects its increased local translation, our data suggest that 

olfactory perceptual learning increases �CaMKII dendritic synthesis in new neurons. This is consistent 

with our morphological data showing that learning induces an increased number of spines in new 

neurons: these supernumerary spines might trigger an elevated glutamatergic input onto these cells, 

which could lead to increased glutamate-induced dendritic translation of the reporter, as previously 

observed in cultured hippocampal neurons (39). Interestingly, dendritic synthesis of the reporter was 

elevated in new neurons of Fmr1 KO mice in basal conditions, which is in line with �CaMKII being a 

translational target of FMRP, repressing its translation in basal conditions (5), through binding to its 

3'UTR (28). Remarkably, this elevated synthesis could not be further increased by learning and was 

even decreased. As FMRP has been described as an mRNA stabilizer (40), its absence could lead to an 

instability of the reporter leading to a reduced translation, particularly visible in learning conditions. 

Alternatively, this reduction could be the consequence of a compensatory mechanism in Fmr1 KO 

mice unveiled in learning conditions through, for example, recruitment of another RNA-binding 

protein regulating local translation. 

To investigate the function of �CaMKII local translation in new OB cells, we used mice in which 

�CaMKII 3'UTR was ablated. These mice were previously shown to display deficits in forms of 

hippocampal and olfactory memory (12, 27). We show here that these mice are also defective for 

olfactory perceptual learning, which is accompanied by a lack of new OB neuron structural plasticity. 

As these mice are constitutively mutated in all �CaMKII expressing cells, it is difficult to circumscribe 

the cell-autonomous effects of the mutation. However, our reporter of translation data strongly suggest 

that �CaMKII is locally translated in new GCs upon learning, which lends support to the fact that 

defects in �CaMKII local translation might be directly related to the defective structural plasticity of 

new GCs. The similarity between the ∆3'UTR mice and the Fmr1 mutated mice is striking: they 

display the same learning deficits accompanied by similar structural plasticity defects, which point to 
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�CaMKII as the main FMRP target responsible for these phenotypes. However, paradoxically, the 

∆3'UTR mice display reduced �CaMKII local translation (12), whereas Fmr1 mutated mice display 

increased �CaMKII local translation, as seen with our reporter of translation. This suggests that what 

is important for learning and associated structural modifications is not the absolute quantity of locally 

translated �CaMKII but rather the possibility of a learning-induced increase in �CaMKII local 

translation. This FMRP-regulated increase might be essential for a function of locally translated 

�CaMKII in spinogenesis and dendritogenesis, necessary for learning. 

 

Our work reveals a central role for an FMRP-regulated dendritic translation of �CaMKII in the 

structural plasticity underlying olfactory learning. This is important in a context where impairment of 

activity-dependent circuit assembly (15, 17) and defects in critical period plasticity (16) are considered 

at the center of ASD, among which FXS is the primary monogenic cause.  
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Figure legends 

Figure 1 

A) Design of the olfactory perceptual learning paradigm. Spontaneous discrimination between 

Limonene +/- was tested through habituation/dishabituation tests before and after an odor enrichment 

period. Experimental groups were enriched by introducing Lim+ and Lim- into the home cage for 1h 

periods over 10 days.  

B) Before the enrichment period, WT mice cannot discriminate Lim+ from Lim-. They do not spend 

more time investigating the test odor than the habituation odor (p=0.735 with a Wilcoxon paired test, 

n = 10). 

C,E) After the enrichment period, WT (C) and control cKO mice (E) can discriminate Lim+ from 

Lim-indicating perceptual learning. They spend significantly more time investigating the test odor 

than the habituation odor. ((C) p = 0.004 n =10 (E) p= 0.035 n=9,  with unilateral paired Student's t 

test). 

D,F) After the enrichment period, Fmr1 KO (D) and cKO mice (E) cannot discriminate Lim+ from 

Lim-. They do not spend more time investigating the test odor than the habituation odor ((D) 

p=0.213,(F)  p= 0.674 with a Wilcoxon paired test, n = 10).  

Data are expressed as mean values ± SEM. Hab4: investigation time of the habituation odor during the 

4th trial of habituation. Test: investigation time of test odor (the other odorant of the pair). 

 

Figure 2 

A) Time-line of the experiment. Adult mice (cKO: Nestin::CreERT2/Fmr1
flox/y ) were injected with 

tamoxifen to induce Fmr1 mutation in Nestin positive progenitor cells and their progeny. Control mice 

(control cKO) were control littermates lacking the Cre allele. A GFP-expressing lentivirus was 

injected into their sub-ventricular zone (SVZ). Mice were exposed to the enrichment period during the 

integration of the labeled new neurons in the olfactory bulb (OB) and tested for perceptual learning 

before sacrifice. 

B) Scheme of a sagittal section of the mouse forebrain. The SVZ of the lateral ventricle (LV) 

continuously produces new neurons, which migrate along the rostral migratory stream (RMS) and 

differentiate as interneurons in the olfactory bulb (OB). Subpopulations of young neurons can be 

labeled through stereotaxic injections of GFP-expressing viruses into the SVZ, which allow their 

morphological analysis. 

C) Scheme of a newly-formed granule cell (GC) of the OB. GCs are anaxonic GABAergic 

interneurons with a long apical dendrite branching out into a dendritic arbor. 

D,E) Representative binarized pictures of the dendritic arbors of GFP labeled new GCs in basal 

conditions or after perceptual learning in control cKO mice (D) and in cKO mice (F). 

Scale Bars: 40 µm 
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F) Dendritic arbor length of new GCs in control cKO or cKO mice in basal or learning conditions. 

Perceptual learning induces a lengthening of the dendritic arbor of new neurons in control cKO mice 

(p=0.014) but not in cKO mice (p=0.99). (Two-way ANOVA: Genotype effect, F(1,47) = 1.247, 

p=0.271; Learning effect, F(1,47) = 4.43, p=0.039, Genotype - Learning interaction, F(1,47) = 6.13, 

p=0.0170, followed by LSD  post hoc test, n = 11-14-13-13) 

G) Sholl analysis of the dendritic complexity of new GCs in control cKO mice. The origin of the 

concentric radii was set at the first branching point of the apical dendrite. New GCs display 

significantly increased complexity after learning compared to basal conditions (repeated-measures 

ANOVA with two factors. F(1 ,25) = 6.92, p < 0.001,  followed by Bonferroni post hoc test, n = 13-17). 

H) Sholl analysis of the dendritic complexity of new GCs in cKO mice. New GCs display similar 

complexity in basal or learning conditions (repeated-measures ANOVA with two factors. F(1 ,24) = 

1.324, p =0.261 n = 12-15). 

 

Figure 3 

A-A''') Representative pictures showing spines of the dendritic arbor of GFP-labeled new GCs in 

control cKO or cKO mice in basal or learning conditions. 

Scale Bars: 5 µm 

B) Spine density in the dendritic arbors of new GCs in control cKO and cKO mice in basal or learning 

conditions. Perceptual learning induces an increase in spine density in control cKO mice (p =0.001) 

but not in cKO mice (p = 0.941(Two-way ANOVA: Genotype effect, F(1,50) = 0 .791, p=0.378; 

Learning effect, F(1,47) = 4.27, p=0.045 , Genotype - Learning interaction, F(1,50) = 6.13, p=0.023 

followed by LSD  post hoc test,  n = 14-14-10-17). 

C) Cumulative frequency distribution of spine head diameters of new neurons from control cKO and 

cKO mice in basal condition. The absence of FMRP in new neurons from cKO mice induces a 

significant shift towards smaller diameters, as compared to control cKO mice (Kolmogorov-Smirnov 

test, p< 0.0001). 

D,E) Cumulative frequency distribution of spine head diameters of new neurons from control cKO (D) 

and cKO (E) mice with or without learning. Learning induces a significant shift towards larger 

diameters in control cKO mice (Kolmogorov-Smirnov test, p=0.009), which is not significant in cKO 

mice (Kolmogorov-Smirnov test, p= 0.0513). 

 

Figure 4 

A) Post-enrichment discrimination test for Lim+ and Lim- in cKO mice injected with saline during the 

enrichment period of the perceptual learning. They cannot discriminate Lim+ from Lim- (paired 

Student's t test p =0.619, n=11). 

B) Post-enrichment discrimination test for Lim+ and Lim- in cKO mice injected with MPEP during 

the enrichment period of the perceptual learning. They spend significantly more time investigating the 
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test odor than the habituation odor, indicating perceptual learning (significant difference between 

investigation times for Hab4 and Test (paired Student's t test, p= 0.001 , n=10). 

C) Representative binarized pictures of the dendritic arbors of GFP labeled new GCs after learning in 

saline or MPEP-injected cKO mice 

Scale Bar: 40 µm 

D) Dendritic arbor length of new GCs in cKO mice in learning conditions after injections with saline 

or MPEP. FMRP
-
 neurons from MPEP-treated cKO mice display longer dendritic arbor than FMRP

-
 

neurons from saline-treated cKO mice (unpaired Student's t test, p=0.37, n=13,14). 

E) Sholl analysis of the dendritic complexity of new GCs in cKO mice injected with MPEP or saline. 

New GCs display increased complexity in MPEP-injected cKO mice, as compared to saline-injected 

cKO mice (repeated-measures ANOVA with two factors. F(1 ,23) = 4.692, p =0041, n = 14-12) 

F) Spine density in the dendritic arbors of new GCs in cKO mice injected with saline or MPEP during 

the learning period: the MPEP treatment does not induce any change (unpaired Student's t test, 

p=0.37, n=14,10). 

G) Cumulative frequency distribution of spine head diameters of new neurons from cKO mice injected 

with saline or MPEP during the learning period: the MPEP treatment does not induce any change 

(Kolmogorov-Smirnov test, p = 0.1772). 

 

Figure 5 

A,B) Post-enrichment discrimination test for Lim+ and Lim- in WT mice (A) or mice ablated for 

�CaMKII 3’UTR (∆3’UTR)(B). WT mice can discriminate the two odorants (significant difference 

between hab4 and test, (p=0.036 with a Wilcoxon paired test, n = 8), whereas ∆3’UTR mice cannot 

((p=0.203 with a Wilcoxon paired test, n = 10). 

C,D) Representative binarized pictures of the dendritic arbors of GFP labeled new GCs in WT (C) and 

(∆3’UTR) mice. 

Scale Bar: 40 µm 

E) Dendritic arbor length of new GCs in WT and ∆3’UTR mice in basal or learning conditions. 

Perceptual learning induces a lengthening of neurons in WT mice (p= 0.018) but not in ∆3’UTR mice 

(p=0.99). (Two-way ANOVA: Genotype effect, F(1,55) = 7.748, p=0.007; Learning effect, F(1,55) = 

7.53, p=0.008, Genotype - Learning interaction, F(1,55) = 2.579, p=0.114, followed by LSD post hoc 

test, n = 14-16-16-13). 

F) Sholl analysis of the dendritic complexity of new GCs in ∆3’UTR mice. New GCs display similar 

complexity in basal or learning conditions (repeated-measures ANOVA F(1 ,21) = 0.258, p =0.616 n = 

13-10). 

G-G''') Representative pictures showing spines of the dendritic arbor of GFP-labeled new GCs from 

WT and ∆3’UTR mice in basal or learning conditions. 
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Scale Bars: 5 µm 

H) Spine density in the dendritic arbors of new GCs in WT or ∆3’UTR mice in basal or learning 

conditions. Perceptual learning induces an increase of spine density in WT mice (p=0.008) but not in 

∆3’UTR mice (p=0.865). (Two-way ANOVA: Genotype effect, F(1,63) = 8 .13, p=0.006; Learning 

effect, F(1,55) = 0.955, p=0.332, Genotype - Learning interaction, F(1,63) = 3.961, p=0.05 , followed 

by LSD post hoc test, n = 14-21-17-17). 

I,J) Cumulative frequency distribution of spine head diameters of new neurons from WT (I) and 

∆3’UTR (J) mice with or without learning. Learning induces a significant shift towards larger 

diameters in WT mice (Kolmogorov-Smirnov test, p< 0.001) but not in ∆3’UTR mice (Kolmogorov-

Smirnov test, p> 0.05). 

 

Figure 6 

A) Scheme of the �CaMKII reporter of translation. Myr-d-eGFP: myristoylated destabilized enhanced 

GFP. UTR: untranslated region. PA: polyadenylation sequence. 

B) Ratio of the dendritic labeling of new GCs by the GFP translation reporter over an mCherry 

normalizer in WT and Fmr1
-/-

 mice in basal or learning conditions (Two-way ANOVA: Genotype 

effect, F(1,68) = 9.39, p=0.247; Learning effect, F(1,68) = 1.36, p=0.257 , Genotype - Learning 

interaction, F(1,68) = 1.30, p<0.0001 followed by LSD  post hoc test,  n = 28-44-38-34). Learning 

induces an increase in the dendritic labeling of new GCs in WT mice (p < 0.01). In basal conditions, 

new GCs from Fmr1 KO mice display increased dendritic labeling as compared to WT mice 

(p=0.012). Learning does not increase this labeling and even reduces it (p=0.031). 

C-F’) Representative pictures of the dendritic labeling of new GCs doubly infected with the Myr-d-

eGFP reporter of translation (C-F)  and an mCherry normalizer (C'-F') in WT and Fmr1 KO mice in 

basal or learning conditions. 

Scale bars: 5 µm 
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