Tendon development and diseases
Ludovic Gaut, Delphine Duprez

To cite this version:
Ludovic Gaut, Delphine Duprez. Tendon development and diseases. Wiley Interdisciplinary Reviews: Developmental Biology, Wiley, 2015, 5 (1), pp.5-23 <10.1002/wdev.201>. <hal-01190806>

HAL Id: hal-01190806
https://hal.sorbonne-universite.fr/hal-01190806
Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tendon Development and Diseases

Ludovic Gaut and Delphine Duprez*

- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, F-75005 Paris, France.
- Inserm U1156, F-75005 Paris, France.

* Corresponding author

Key words: Tendon, Scleraxis, Collagen, Tenomodulin, Development
Abstract

Tendon is a uniaxial connective tissue component of the musculoskeletal system. Tendon is involved in force transmission between muscle and bone. Tendon injury is very common and debilitating but tendon repair remains a clinical challenge for orthopedic medicine. In vertebrates, tendon is mainly composed of type I collagen fibrils, displaying a parallel organization along the tendon axis. The tendon-specific spatial organization of type I collagen provides the mechanical properties for tendon function. In contrast to other components of the musculoskeletal system, tendon biology is poorly understood. An important goal in tendon biology is to understand the mechanisms involved in the production and assembly of type I collagen fibrils during development, postnatal formation and healing processes in order to design new therapies for tendon repair. In this review we highlight the current understanding of the molecular and mechanical signals known to be involved in tenogenesis during development, and how development provides insights into tendon healing processes.
Introduction

I - Tendon structure in vertebrates
 - Tendon proper/tendon midsubstance
 - Tendon to muscle attachment (myotendinous junction)
 - Tendon to bone attachment (enthesis)

II - Scleraxis is the main tendon marker during vertebrate development

III - Embryological origins of tendons
 - Head, limb and trunk tendons in vertebrates
 - Drosophila tendons

IV - Tendon interactions with other components of the musculoskeletal system
 - Muscle/tendon interactions
 - Tendon/bone interactions

V - Intrinsic genes involved in tendon development (other than Scleraxis)
 - Mohawk (Mkx)
 - Early growth response (Egr1)
 - Zn finger transcription Stripe (Drosophila)

VI - Signaling pathways involved in tendon development
 - Tendon cell specification
 - Tendon cell differentiation
 - Signaling pathways involved in Drosophila tendon development

VII – Mechanical forces in tendon development

VIII- Tendon pathologies
 - Cancer and genetic diseases
 - Chronic tendon injury/tendinopathy
 - Acute tendon injury/partial and complete tendon tears

IX - Tendon development as tool for understanding tendon healing

Concluding remarks
Introduction

The musculoskeletal system confers the ability to move. Muscle, tendon and bone are the main components of the musculoskeletal system. Muscle generates forces that are transmitted to bone to allow body motion. Tendon links muscle to bone and is the essential organ of the musculoskeletal system that transmits forces. Tendon is a specialized connective tissue displaying a specific spatial organization of type I collagen fibrils that are organized parallel to the tendon axis. The specific organization of collagen fibrils confers tendon mechanical properties. The molecular and mechanical factors driving collagen production and organization during tendon development, postnatal formation and repair are not fully understood.

Tendon collagen fibrillogenesis consists in the progressive assembly of collagen fibrils that form a functional and mature tendon. Successive and overlapping phases of collagen fibril assembly and growth have been described in tendons\(^1\). Collagen fibril assembly occurs mostly during fetal stages, while collagen fibril growth and maturation occurs at postnatal stages\(^1\). The collagen fibril growth and maturation during postnatal stages are accompanied by a dramatic change of tendon mechanical properties. There is a 40,000-fold increase of the elastic modulus between adult tendons versus fetal tendons in chick\(^2\). Many components of the extracellular matrix (ECM) have been shown to be involved in collagen fibrillogenesis in tendons. Collagens, such as the fibrillar collagens III and V and the non fibrillar FACITs (fibril-associated collagens with interrupted triple helices) collagens XII and XIV, are important for collagen fibril formation, growth, and integrity in tendons (Table 1 and references therein). In addition to fibrillar and FACIT collagens, small leucine-rich proteoglycans (SLRPs) are also involved in type I collagen fibrillogenesis in tendons, mainly by regulating lateral collagen fibril growth\(^3,4\). Mutations of one SLRP or combination of SLRPs systematically lead to a tendon phenotype in mice (Table 1 and references therein).

The main challenge to decipher the molecular mechanisms underlying tenogenesis is to understand the intrinsic and extrinsic regulators of type I collagen production (transcript and protein levels), collagen fibril assembly and maturation during development. Developmental studies on the musculoskeletal system have focused mainly on muscle, cartilage and bone. The master genes driving the skeletal muscle and cartilage lineages have been identified as the bHLH transcription factors Myf5, MyoD and Mrf4 (muscle) as well as the SOX transcription factor Sox9 (cartilage). The absence of the 3 myogenic regulatory factors, Myf5, MyoD and Mrf4 leads to a loss of skeletal muscle in mice\(^5\), while the
overexpression of each myogenic regulatory factor induces myoblast conversion in vitro or in vivo6,7. A loss of Sox9 activity results in a complete absence of cartilage8, while overexpression of Sox9 converts cells to chondrocytes9. The master regulator gene(s) of the tendon lineage has (have) not yet been identified. The task is made more difficult because of a lack of specific markers for tendon progenitors and differentiated cells (tenocytes). The main structural and functional component of tendon, type I collagen, is not specific to tendon and is expressed in many other tissues such as bone, skin and cornea. None of the ECM components involved in type I collagen fibrillogenesis during tendon formation is specific to tendon; since they are also involved in collagen fibrillogenesis in other tissues3,4. Tendons are characterized by the spatial and parallel organization of collagen fibrils. To date, the molecular and cellular mechanisms driving this tendon-specific spatial organization of type I collagen remain completely unknown. It has been shown that fibroblasts, responsible for type I collagen synthesis and organization, cell-autonomously spatially arrange themselves according to their \textit{in vivo} origins10. Fibroblasts isolated during fetal stages from tendon, cornea and skin and cultured in the same conditions, adopt a parallel, orthogonal or random organization, respectively10. This experiment suggests that fetal tendon fibroblasts intrinsically contain tissue-specific information that drives the parallel organization of type I collagen fibrils. We believe that the identification of genes involved in the early steps of tenogenesis during development will benefit the understanding of the type I collagen fibrillogenesis in tendons, in normal and pathological conditions.

In this review, we describe the current knowledge of tendon development in vertebrates and refer to drosophila tendon development when appropriate to establish parallels between invertebrates and vertebrates. We define the embryological origins of tendon versus the other components of the musculoskeletal system and highlight the intricate development of tendon with that of muscle and cartilage/bone tissues. We list the intrinsic and extrinsic molecular players known to be involved in tendon development and highlight the importance of mechanical forces in tendon development. Finally, we emphasize the parallel between tendon development and tendon healing.

\textbf{Tendon structure in vertebrates}

Tendon is a highly organized hypocellular connective tissue displaying a specific spatial organization of type I collagen fibers (Figure 1). The collagen molecules are synthetized by tendon fibroblasts or tenocytes, which display an elongated shape lying between the collagen
fibers11. The cellular composition and collagen organization are not homogenous along the tendon axis and are different at both ends, close to the muscle (myotendinous junction) and the bone (enthesis) interfaces.

Tendon proper/tendon midsubstance

Type I collagen is composed of a triple helix of 2 chains of $\alpha1$ and one chain of $\alpha2$ molecules, which are encoded by 2 different genes, \textit{Colla1} and \textit{Colla2}. In tendon, type I collagen displays a specific spatial organization that can be visualized at different scales (Figure 1). Collagen molecules assemble together successively forming collagen fibrils, collagen fibers, collagen bundles or fascicles and the tendon unit12. Parallel collagen fascicles are separated by the endotenon, a loose connective tissue that also contains fibroblasts as well as blood vessels and nerves11. The whole tendon is surrounded by the epitenon and then by a synovial sheath, the paratenon, composed of collagen fibers organized in a perpendicular direction to those of tendon11,12. Tendon stem cells have been isolated from mouse, human and rabbit tendons based on colony-forming unit assays13,14. However, there is no available marker to allow the visualization of these stem cells \textit{in vivo}.

Tendon and muscle interface (myotendinous junction).

Tendon is attached to muscle via the myotendinous junction. Structurally, the myotendinous junction has been well described. The interface between tendon and muscle cells consists of interdigitations of the plasma membranes of both tendon and muscle cells, named finger-like processes, which dramatically increase the interface between both cell types15. At a molecular level, collagen fibrils produced by tendon cells bind to laminin or integrins present at the level of sarcolemma and produced by muscle cells16. The developmental process of the myotendinous junction formation is not well characterized in vertebrates17. In contrast, myotendinous junction formation has been well studied in \textit{Drosophila}18.

Tendon to bone attachment (enthesis)

The region where tendon attaches to bone is called the enthesis. Depending on the attachment sites, fibrous and fibrocartilaginous entheses have been described19. Histologically, the fibrocartilaginous enthesis is characterized by different cellular zones, proceeding from tendon to bone: tenocytes, uncalcified fibrocartilage cells, calcified fibrocartilage cells and osteocytes. This cellular arrangement yields a direct connection between soft tissue (tendon) and hard tissue (bone). The part of the bone where the tendon will attach forms an eminence providing a stable anchoring. The development of the interface between tendon and bone has been recently addressed20. The maturation of this interface occurs at postnatal stages, leading to mineralization of the enthesis21.
The different cellular and collagen compositions of the myotendinous junction, tendon proper and enthesis confer the different biomechanical properties of each part of the tendon. Consequently, tendon ruptures can be observed in the tendon midsubstance and at the enthesis but rarely at the myotendinous junction.

Scleraxis is the main tendon marker during vertebrate development

The main structural and functional tendon component, type I collagen, is expressed in many tissues and organs (Figure 2). Consequently, tendon development cannot be studied just by following type I collagen expression. To date, the only early tendon marker in vertebrates is the bHLH transcription factor Scleraxis (Scx)22,23 (Figures 2, 3). Scx has been shown to regulate positively \textit{Collal} transcription in mouse tendons24,25. However, Scx is not the unique transcription factor driving \textit{Collal} transcription in tendons, since in Scx-deficient mice \textit{Collal} transcription is diminished but not abolished in developing tendons25. Scx is recognized to be a powerful marker for tendons during chick, mouse and zebrafish development22,26,27. Scx is also expressed in postnatal tendons28 but is restricted to epitenon from 4 months postnatally29 (Figure 3). At early stages, Scx is expressed in tendon presumptive regions at the level of branchial arches, somites and limbs22,26,30. Scx labels tendon progenitor cells and the Scx-positive cell population gives rise to tendons31,32. However, Scx is not the master regulatory gene of the tendon lineage as the myogenic regulatory factors are for the skeletal muscle lineage, since tendons retain their capacity to attach muscle to bone in Scx mutant mice25. Scx mutant mice are viable and mobile25. It is possible that Scx needs one or several partners to fulfill the function of master gene for tenogenesis. However, in the absence of Scx activity, force-transmitting tendons (limb and tail tendons) and intermuscular tendons are severely disrupted, while anchoring tendons (back tendons) are moderately affected25. The first tendon defects are observed from E13.5 in mouse limbs, and \textit{Collal4a1} and \textit{Tnmd} expression is completely lost in tendons from E16.5 in Scx mutant mice25. \textit{Tnmd} encodes a type II transmembrane glycoprotein and is considered a highly specific marker of differentiated tenocytes23,31,33 (Figure 3). \textit{Tnmd} mutant mice display an altered structure of collagen fibrils (shift towards large diameters) in tendons at postnatal stages34. \textit{Tnmd} deficient mice also display reduced self-renewal and increased senescence properties of tendon progenitors35. In addition to being required for \textit{Tnmd} expression, Scx is also sufficient for \textit{Tnmd} expression36. In summary, \textit{Tnmd} is a key marker for differentiated
tenocytes and Scx is the unique early tendon marker that provides a powerful tool to study early stages of tendon development.

Embryological origins of tendons

Tendons can be organized into three main groups according to their position in the body, head, trunk and limb tendons (Figure 4). Even if functionally similar, tendons of the different parts of the whole organism have distinct embryological origins, which have been studied mainly using the quail and chick chimera system\(^\text{37}\). Using this technique, it has been shown that vertebrate tendons originate from mesoderm or mesectoderm (neural crest cells). The craniofacial tendons originate from neural crest cells, in mouse, chick and zebrafish\(^\text{27,30,38}\). Axial tendons derive from a somitic compartment, named the syndetome\(^\text{26}\). Limb tendons originate from limb lateral plate\(^\text{39}\).

Whatever the tendon group, tendons share the same embryological origins with skeletal tissues such as cartilage and bone, and have origins distinct from those of skeletal muscles. In somites, the syndetome is a subregion of the sclerotome, which gives rise to the axial skeleton, while axial muscles originate from the dermomyotome\(^\text{26}\). In the head, neural crest cells give rise to facial skeleton and tendons, while skeletal muscles originate from head mesoderm\(^\text{38,40}\). In limbs, both skeleton and tendons originate from limb lateral plate, while skeletal muscles derive from somites\(^\text{41,42}\). It should be noted that in the head, tendon progenitors migrate into muscle-containing regions, whereas in limbs, muscle progenitors undergo a migration step towards the limb lateral-plate containing skeleton and tendon progenitors. In contrast to the mesoderm or mesectoderm origins of vertebrate tendons, *Drosophila melanogaster* tendons originate from the ectoderm\(^\text{43,44}\). However, like in vertebrates, drosophila tendons along with the exoskeleton share the same embryological ectoderm origin, which is distinct from that of skeletal muscles derived from mesoderm\(^\text{43}\).

Thus in both vertebrates and invertebrates, tendons and skeleton have the same embryological origin, which is different from that of skeletal muscles.

Tendon interactions with other components of the musculoskeletal system

Tendon/muscle interactions

Despite the distinct embryological origins of the components of the musculoskeletal system, the development of muscle, tendon and cartilage/bone occurs in close spatial and temporal
association. Tendon development requires the presence of muscle, but the modalities of muscle requirement vary with the anatomic locations of tendons (Figure 5). Muscle is required for the initiation of tendon development at the axial level. Scx expression is not initiated in the absence of axial muscles. Surgical ablation of dermomyotomes prior to myotome formation leads to an absence of Scx expression in chick somites26. In E10.5 Myf5-/-; MyoD-/- double mutant embryos, Scx expression is absent in mouse somites47. In myod1-myf5-deficient zebrafish embryos, scxa expression is never initiated in myosepta27. In contrast, limb and head tendons initiate their development independently of muscle. In the absence of muscle, Scx expression is initiated normally in mouse and zebrafish craniofacial tendons27,30. Scx expression is also initiated and proceeds normally in muscleless limbs until E12 in Pax3 mutant mice22,45 and until E6 in surgically manipulated chick embryos46. Similarly with observations in the chick and mouse, Scxa is expressed normally in fins of 53-58hpf myod1-myf5-deficient zebrafish embryos27. The absence of muscle eventually prevents further tendon development and leads to a loss of Scx expression in head and limb tendons, in mouse, chick and zebrafish embryos22,27,30,45. This demonstrates that muscles are not required for the initiation but are necessary for the maintenance of Scx expression in craniofacial and limb tendons (Figure 5).

Muscle is therefore important for the induction of Scx expression in axial tendons and for the maintenance of Scx expression in cranial and limb tendons, in mouse, chick and zebrafish embryos. This pattern of muscle requirement has been conserved across these vertebrate species. Despite different embryological origins between vertebrates and invertebrates tendon cells (mesoderm versus ectoderm), two phases of tendon formation have been described in fruit fly. In Drosophila, the development of epidermal-derived tendon cells is initiated independently of muscles, but the final differentiation of tendon cells depends on specific interaction with muscles43,48,49, indicating that drosophila tendon development shares characteristics with that of head and limb vertebrate tendons.

Thus, muscle is required for full tendon formation in vertebrate and invertebrate tendons. We believe that the muscle requirement is related to a requirement for mechanical forces during tendon development.

\textit{Tendon/bone interaction}

While the role of muscle in tendon development is well demonstrated, the role of cartilage in tendon development is more difficult to address, mainly because tendon and cartilage cells have the same embryological origins. Sox9a-sox9b-deficient zebrafish embryos display abnormal craniofacial tendons based on scxa and tnmd expression27, suggesting that cartilage
is necessary for the proper organization of tendon cells. However, it is difficult to dissociate tendon and cartilage defects. In somites, cartilage differentiation seems to repress tendon development. It has been observed that *Scx* is upregulated in *Sox5/Sox6* mouse mutant embryos (exhibiting cartilage defects)\(^{47}\), while overexpression of *Pax1* (known to promote cartilage formation) in sclerotome inhibits *Scx* expression in chick somites\(^{26}\). In limbs, cartilage and tendon cell fates also appear to be mutually exclusive. During limb development, the *Scx+*/*Sox9+* progenitors repress *Sox9* (while sparing *Scx*) expression to form the tendon side and downregulate *Scx* (and keep *Sox9*) expression to form the cartilaginous side of the tendon-bone interface\(^{31,32}\). However, *Sox9* depletion in *Scx*+ cells does not affect tendon formation other than by altering the bone side of enthesis formation\(^{31,32}\), suggesting a relative independence of skeleton and tendon formation. However, at the digit levels, it has been reported that tendon blastema formation requires the presence of cartilage\(^{50}\), indicating differences in tendon development according to proximo-distal position in limbs.

Intrinsic genes involved in tendon development (other than Scleraxis)

To date three transcription factors have been shown to be involved in vertebrate tendon development (Table 1): the bHLH transcription factor *Scx*\(^{25}\), the homeobox Mohawk (*Mkx*)\(^{51,52}\) and the Zinc finger transcription factor Early growth response 1 (*Egr1*)\(^{53}\). All of them have been shown to regulate *Col1a* gene transcription and type I collagen fibril organization in developing tendons\(^{24,25,51–53}\). Each of the three transcription factors *Scx*, *Mkx* and *Egr1* is alone able to induce tenogenesis in stem cells, based on *Tnmd* expression\(^{54–57}\). However, in contrast to *Scx*, *Mkx* and *Egr1* are not specific to tendon, since they display numerous expression sites in addition to developing tendons\(^{53,58,59}\).

Mohawk (Mkx)

Mkx\(^{-}\) mutant mice exhibit smaller tendons than wild-type mice and display defects in postnatal growth of tendon collagen fibrils\(^{51,52,60}\). The first tendon defects in *Mkx*\(^{-}\) mice are observed at E16.5 fetal stages\(^{52}\). In addition to the reduction of *Colla1* gene expression, *Mkx*\(^{-}\)-mice display significant reduction in *Tnmd*, *Fmod*, and *Dcn* gene expression in neonatal tendons\(^{51}\). Notably, *Mkx* is expressed in early somites, in progenitor cell populations of skeletal muscle, tendon, cartilage and bone, downstream of the somitic paraxis transcription factor\(^{58}\). *Mkx* has been shown to inhibit muscle differentiation in mouse cell culture and to impair muscle development in zebrafish embryos by directly repressing *MyoD* transcription\(^{61–}\)
This would be consistent with a Mkx role in repressing the muscle lineage and promoting the tendon lineage. However, Mkx mutant mice do not display any obvious skeletal muscle defects. Scx and Mkx expression in developing tendons appears to be normal in Mkx^{−/−} and Scx^{−/−} mutant mice, respectively, suggesting that Scx and Mkx act in different genetic cascades during tendon development.

Early growth response 1 (Egr1)

During fetal development, Egr1 is sufficient for the expression of Scx, Tnmd and tendon associated collagens (Cola1, Col5a1, Col12a1 and Col14a1) in chick embryos. Egr1^{−/−} mice display defects in collagen fibril organization in tendons at fetal and postnatal stages. Egr1-deficient tendons show a mechanical weakness and a deficiency in their capacity to heal following injury. In addition to the reduction of Colla1 and Colla2 gene expression, Egr1^{−/−} also displayed significant reductions in the expression of tendon-associated collagens (Col3a1, Col5a1, Col12a1 and Col14a1) and tendon-associated molecules Tnmd, Fmod and Dcn in fetal limbs and adult tendons. Scx expression is downregulated, while Mkx is not modified in Egr1-deficient tendons.

Stripe (Drosophila)

In Drosophila, the transcription factor stripe is the key gene for tendon development. Stripe is the homolog of the vertebrate Egr gene family. The stripe gene produces two isoforms stripeA and stripeB. StripeB has been shown to be involved in tendon progenitor induction, while stripeA is involved at a later muscle-dependent stage of tendon differentiation.

Other transcription factors have been identified as being expressed in developing tendons, either by in situ hybridization experiments or by global transcriptomic or RNA sequencing studies of mouse tendon cells during development. Among them, the sine oculis-related homeobox, Six2 displays a specific expression in chick and mouse autopod tendons. However, there is currently no functional data available relating these transcription factors to tendon development.

Although transcription factors have been identified as being involved in tendon development, the intrinsic program driving tenogenesis in vertebrates remains to be fully characterized.

Signaling pathways involved in tendon development
In addition to intrinsic regulators of tenogenesis, the TGF-β and FGF signaling pathways have been shown to be involved in tendon development in mouse and chick embryos26,46,47,69,70. Bioinformatics analysis of a transcriptome of tendon cells also highlighted that these two were the main pathways displaying significant regulation during mouse limb development67.

Tendon cell specification

TGF-β ligand is a potent inducer of *Scx* expression in embryonic mouse limbs, tendon progenitors and mesenchymal stem cells. \textit{Tgfb2} and \textit{Tgfb3} are expressed in early chick and mouse limbs to fulfill a role in *Scx* induction67,69,71. In mice, TGF-β2 is sufficient to increase *Scx* expression in E10.5 limbs, tendon progenitors and mesenchymal stem cells67,69,72. Moreover, the canonical TGF-β intracellular pathway, SMAD2/3, has been shown to be required for *Scx* expression in E10.5 mouse limbs during the muscle-independent phase of limb tendon formation67. Blocking classical TGF-β intracellular pathway using chemical inhibitors also decreases *Scx* expression in zebrafish embryos27. However, *Scx* expression appears to be normal in E11.5 limbs of \textit{Tgfb2}-/-;\textit{Tgfb3}-/- double mutant mouse embryos69, suggesting that other TGF-β ligands might be responsible for the initiation of *Scx* expression in mouse limbs. Another TGF-β ligand, myostatin (GDF-8), is a putative candidate to be involved in tendon development, since tendons are small, brittle and hypocellular in *Mstn*-/- mice73. Moreover, myostatin treatment of primary culture of mouse tendon fibroblasts increases cell proliferation, in addition to increasing *Scx* and *Tnmd* expression73.

BMP ligands that signal via the intracellular Smad1/5/8 pathway have the opposite effect from TGF-β-/ and restricts *Scx* expression, while inhibition of BMP signaling using the antagonist Noggin increases *Scx* expression in early chick limbs22. The antagonist roles of TGF-β and BMP signaling pathways in tendon cell specification is consistent with their antagonist role in the regulation of fetal muscle progenitors. Myostatin is a potent negative regulator of muscle growth74, while BMP positively regulates muscle progenitors75 during embryonic development.

FGF has been shown to be required and sufficient for the initiation of *Scx* expression in somites during axial tendon development. An ectopic source of FGF induces ectopic expression of *Scx* in chick and mouse somites and chick limbs26,46,47, while inhibition of FGF signaling prevents *Scx* expression26,47. \textit{Pea3} (ERK MAPK effector) and \textit{Sprouty2} (ERK MAPK modulator) are both expressed in tendon progenitor regions in chick syndetome and FGF has been shown to act on somitic tendon progenitors via the ERK MAPK intracellular pathway70,76. In mouse limbs, the ERK MAPK signaling pathway appears to have a different
effect, since a down-regulation of ERK MAPK was sufficient to increase Scx expression in mouse limb explants and in mouse mesenchymal stem cells67. Consistent with this result, FGF inhibited Scx expression in mouse mesenchymal stem cells67.

Tendon cell differentiation

In addition to being involved at early stages of tendon induction, the TGF-β and FGF extracellular signals have been shown to be involved in tendon differentiation during the muscle-dependent phase of limb tendon formation46,67,69. In the absence of \textit{Tgfb}2 and \textit{Tgfb}3 function, there is a complete loss of Scx expression in head, axial and limb tendons, and subsequently tendons are lost69. TGF-β gain-of-function experiments in E12.5 mouse limbs lead to an upregulation of Scx and \textit{Tnmd} expression67,69. TGF-β gain-of-function experiments in a high-density cell culture system of HH25 chick hindlimbs (micromass) also lead to an upregulation of Scx and \textit{Tnmd} expression via the SMAD2/3 intracellular pathway77. SMAD-interacting \textit{Tgif}1 has been shown to promote the fibrogenic effect of TGF-β67,69 SMAD2/3 intracellular pathway in chick micromass cultures77. It has to be noted that the addition of TGF-β ligands in 2D cell culture systems activates Scx, but drastically inhibits \textit{Tnmd} expression55,57,78. This indicates that TGF-β ligands cannot induce complete tenogenesis in 2D stem cell cultures, in contrast to \textit{ex vivo} experiments, where TGF-β activates \textit{Tnmd} in addition to increasing Scx expression in mouse limb explants67.

FGF has been shown to increase the number of Scx-positive cells at the expense of muscle cells in chick limbs during fetal development46,79. The expression of the ERK effector \textit{Pea3} and modulator \textit{Spry}2 is observed in both muscle and tendon and is increased at the muscle-tendon interface in chick and mouse limbs80. However, despite similar expression in fetal chick and mouse tendons of FGF signaling components, FGF appears to have a distinct effect in mouse fetal tendon development compared to that in chick. FGF has been shown to downregulate Scx and \textit{Tnmd} expression in mouse tendon cells isolated from E13 mouse embryos at the limb or axial levels78.

To date, TGF-β67,69, BMP/SMAD1/5/8 and FGF/ERK MAPK are the signaling pathways identified as being involved in the regulation of Scx expression in vertebrate embryos, although data are still missing to prove that all these pathways play similar roles in Scx induction or maintenance in mouse, chick and zebrafish embryos. FGF appears to be crucial for Scx induction and maintenance in chick but not in mouse embryos. We also suspect that other signaling pathways are also involved in tendon cell specification or
differentiation. The Wnt pathway is significantly regulated in mouse tendon cells during limb development, according to bioinformatics analysis of a tendon transcriptome. Moreover, Wnt3a has been shown to positively regulate Six2 expression in autopod tendons in developing chick limbs.

In *Drosophila*, signaling pathways have been shown to be involved in the muscle-dependent phase of tendon formation. The ligand Vein produced by muscle cells has been shown to activate the EGFR pathway in the tendon progenitors, leading to the expression of *stripeA*. The transmembrane protein Kon-tiki expressed by myotubes target tendon cell through its interaction with Dgrip. All these events lead to a more durable interaction between myotubes and tendon cells through the integrins, notably via the heterodimers αPS1βPS and αPS2βPS integrins. Integrin interactions at the muscle and tendon interface have been shown to maintain the expression of tendon-specific genes such as *stripeA* and β1-tubulin.

Mechanical forces in tendon development

Mechanical forces are known to be involved in embryonic development by regulating organ formation. Because tendon is a mechanosensitive tissue, mechanical forces are crucial for tendon development. In humans, a diminution of embryo mobility leads to severe abnormalities, including musculoskeletal defects. Mechanical forces control the formation of all components of the musculoskeletal system during embryonic development. Tendons are notably particularly sensitive to the absence of mechanical forces, since they do not form in the absence of muscles. The two main pathways known to be involved in tendon development, TGF-β/SMAD2/3 and FGF/ERK MAPK are also involved in mechanotransduction processes. It has been shown that mechanical forces regulate Scx expression through activation of the TGF-β/SMAD2/3 pathway in adult tenocyte cultures. During development, FGF4 is able to rescue the Scx expression in the absence of mechanical movements in chick muscleless limbs. This leads to the hypothesis that TGF-β and FGF signaling pathways are downstream of mechanical forces to regulate tendon development. One possible mechanosensor molecule downstream of mechanical forces and upstream of TGF-β signaling is the transcription factor Egr1. Egr1 is a mechanosensitive gene in the vascular system. Egr1 is involved in tendon development during the muscle-dependent phase in chick and mouse embryos and has been shown to activate Tgfβ2 transcription directly in adult mouse tendons. Another transcription factor, Mkx, involved in tendon
development has also been reported to activate Tgfβ2 transcription directly in mouse stem cells. Although there is no reported evidence that Mkx is a mechanosensitive gene, we speculate that transcription factors could sense mechanical forces and act upstream of TGF-β signaling during tendon development. Consistent with a mechanosensor role for Egr1, Egr1 and Egr2 expression have been reported to be increased within 15 minutes in response to loading in injured rat tendons. The role of Egr1 and Mkx transcription factors as mechanosensors upstream of TGF-β signaling remains to be demonstrated in the context of tendon development. In summary, mechanical forces are important parameters involved in tendon development but the mechanotransduction pathways downstream of forces remain to be characterized.

Tendon pathologies

Tendon is a connective tissue displaying very little cell division. Consequently, there is no cancer in tendon, consistent with the direct correlation between the number of stem cell divisions and variation in cancer risk. Cancers are nevertheless observed in tendon sheaths with the giant-cell tumor of the tendon sheaths (GCTTS). GCTTS is a non malignant condition with an unknown etiology observed mostly but not exclusively in hands. GCTTS is observed at the tendon surface but never arises from tenocytes of the tendon proper and may not arise systematically from tendon sheaths; as it has been suggested to arise from synovial cells. Genetic diseases affecting genes coding for proteins involved in type I collagen fibrillogenesis lead to tendon defects, but also to defects in all connective tissues. Most tendon pathologies involve tendon injuries (Figure 6), which range from chronic to acute. Chronic tendon injury or tendinopathy is characterized by pain and disability. The etiology and pathogenesis of tendinopathy are not well understood, although the main recognized cause of tendinopathy is abnormal mechanical loading. Acute tendon injury refers to partial or complete tears as a consequence of trauma. After acute tendon injury, tendons follow the typical wound healing process, including an early inflammatory phase, followed by cell migration, cell proliferation and remodeling phases. However, the healing process is incomplete since healed tendons never regain their original biomechanical properties. The origin of the cells and the molecular mechanisms involved in tendon repair are not well established.
Tendon development as tool for understanding tendon healing

Natural tendon healing is thought to recapitulate tendon developmental processes. Both TGF-β and FGF signaling pathways, identified as being involved in tendon development, have been shown also to be important for tendon healing following injury. TGF-β and FGF ligands are released at the tendon injury sites in animal models. The loss of the canonical intracellular component of TGF-β pathway, Smad3, leads to reduced Colla1 transcription in healed tendons and to adhesion and scarring defects during tendon healing in Smad3⁻/⁻ mutant mice. Consequently, TGF-β ligands have been studied extensively as therapeutic candidates to promote tendon repair following tendon injury. FGF is also considered as a putative therapeutic target promoting tendon repair. However, the FGF effect on the tendon healing process is not always positive. Local FGF application following tendon injury has been shown to promote cell proliferation in rat and to increase angiogenesis in a canine model, but FGF failed to improve mechanical or functional properties of the repaired tendons. Interestingly, in a chick tendon injury model, endogenous bFGF expression was down-regulated during the early phase of tendon healing process. In addition, virally-mediated bFGF application enhanced Scx gene expression, and improved the biomechanical properties of repaired tendons in chick. The beneficial effect of FGF in the tendon healing process in the chick model is consistent with the FGF effect during chick tendon development.

The BMPs have been shown to accelerate tendon-bone junction healing in animal models. This effect is consistent with the BMP4 involvement in tendon cells at their bone insertion during deltoid tuberosity development.

Concluding remarks

We believe that the understanding of tendon development will provide a basis for the identification of effective treatments of tendon injury. Transcription factors have been identified as promoting tenogenesis using developmental or stem cell models, and have been shown to promote tendon repair in animal models of tendon injury. In addition to transcription factors, signaling pathways have been shown to be involved in tendon development and healing. The relationship between intrinsic and extrinsic regulators of tenogenesis remains to be defined in the context of tendon development and healing and correlated with mechanical forces.
Acknowledgements: We thank Sophie Gournet for illustrations. This work is supported by the FRM, ANR, AFM, INSERM, CNRS and UPMC.

References

91. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science (80-.).* 78–81 (2015).

Figures

Figure 1
Tendon organization
(A) Tendon links muscle to bone and is attached at one end to muscle by the myotendinous junction and at the other end to bone by the enthesis. Tendon is mainly composed of type collagen and of very few cells. Type I collagen displays a specific spatial organization parallel to the tendon axis. Tendon is formed of collagen fascicles, which are composed of collagen fibers, which are formed of collagen fibrils. The endotenon separates collagen fascicles. Tendon is surrounded by the tendon sheaths named the peritenon, which comprises paratenon and epitenon. (B,C) Collagen fibres and fibrils can be visualized at different scales with electron microscopy. Electron microscopy of transverse sections of a mouse Achilles tendon showing collagen fibrils (B,C).

Figure 2
Expression of Col1a1 and Scx in chick limbs
(A-D) Adjacent and transverse forelimb sections of Embryonic Day 10 (E10) chick embryos were hybridized with Col1a1 (A,B) and Scx (C,D) probes (blue) and then immunostained with the MF20 antibody, which recognizes myosins in skeletal muscles (brown). Col1a1 is expressed in tendons but also around cartilage elements, in feather buds and connective tissues (A), Scx is expressed in tendons (C). (B,D) are higher magnifications of two dorsal muscles of forelimbs. Col1a1 is expressed in tendons and muscle connective tissue (B), while Scx is expressed only in tendons (D). u, ulna; r, radius.

Figure 3
Expression of Scx and Tnmd in chick limbs and schematic representation of Scx expression in developmental, postnatal and adult tendons. (A-D) In situ hybridization to adjacent and transverse forelimb sections of Embryonic Day 9 (E9) chick embryos with Scx (A,C) and Tnmd (B,D) probes. Scx and Tnmd are expressed in tendons. (E) Scx-positive cells are schematized in green. During development, Scx expression is expressed in all tendon cells. During tendon maturation at postnatal stages, Scx is expressed in the tendon proper, endotenon and external sheaths including epitenon and paratenon, but is restricted to the epitenon by the 4th postnatal month.
Figure 4
Distinct embryological origins of vertebrate tendons. Tendons can be divided into head, axial and limb tendons. Head tendons originate from neural crest cells (orange). Axial tendons originate from somites (purple). Limb tendons originate from limb lateral plate (green).

Figure 5
Muscle-dependency for head, limb and axial tendon development. Muscle and tendon are schematized in red and green, respectively. In the head (A) and limbs (B), tendons initiate their development independently of muscle, but further tendon development requires the presence of muscle. In contrast, the initiation of axial tendon development requires the presence of muscle (C).

Figure 6
Schematic representation of tendon pathologies. (A) Normal tendons. (B) Tendons in genetic diseases affecting collagen fibrillogenesis. (C) Chronic tendon injury or tendinopathy. (D) Acute tendon injury.

Table 1
List of molecules involved in tendon development.
Tendon phenotypes reported in mice during development, postnatal or adult stages. Studies reporting a tendon phenotype performed in chick, zebrafish or Drosophila are also reported.