G. Zhang, Development of tendon structure and function: Regulation of collagen fibrillogenesis, J. Musculoskelet. Neuronal Interact, vol.5, pp.5-21, 2005.

N. R. Schiele, J. E. Marturano, and C. K. Kuo, Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis, Current Opinion in Biotechnology, vol.24, issue.5, pp.834-840, 2013.
DOI : 10.1016/j.copbio.2013.07.003

S. C. Juneja and C. Veillette, Defects in Tendon, Ligament, and Enthesis in Response to Genetic Alterations in Key Proteoglycans and Glycoproteins: A Review, Arthritis, vol.38, issue.3, p.154812, 2013.
DOI : 10.1038/nrrheum.2010.79

J. Halper, Proteoglycans and Diseases of Soft Tissues, Adv. Exp. Med. Biol, pp.49-58, 2014.
DOI : 10.1007/978-94-007-7893-1_4

L. Kassar-duchossoy, Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice, Nature, vol.127, issue.7007, pp.466-471, 2004.
DOI : 10.1083/jcb.113.6.1255

H. Weintraub, The MyoD family and myogenesis: Redundancy, networks, and thresholds, Cell, vol.75, issue.7, pp.1241-1244, 1993.
DOI : 10.1016/0092-8674(93)90610-3

M. Delfini and D. Duprez, Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube, Development, vol.131, issue.4, pp.713-723, 2004.
DOI : 10.1242/dev.00967

H. Akiyama, M. C. Chaboissier, J. F. Martin, A. Schedl, and B. De-crombrugghe, The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6, Genes & Development, vol.16, issue.21, pp.2813-2828, 2002.
DOI : 10.1101/gad.1017802

A. Takimoto, M. Oro, Y. Hiraki, and C. Shukunami, Direct conversion of tenocytes into chondrocytes by Sox9, Experimental Cell Research, vol.318, issue.13, pp.1492-1507, 2012.
DOI : 10.1016/j.yexcr.2012.04.002

J. Doane and D. E. Birk, Fibroblasts retain their tissue phenotype when grown in three-dimensional collagen gels*1, Experimental Cell Research, vol.195, issue.2, pp.432-442, 1991.
DOI : 10.1016/0014-4827(91)90394-A

M. Benjamin and J. R. Ralphs, The Cell and Developmental Tendons and Ligaments, Int. Rev. Cytol, 2000.

H. R. Screen, D. E. Birk, K. E. Kadler, F. Ramirez, and M. F. Young, Tendon Functional Extracellular Matrix, Journal of Orthopaedic Research, vol.3, issue.6, 2015.
DOI : 10.1002/jor.22818

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507431

Y. Bi, Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche, Nature Medicine, vol.277, issue.10, pp.1219-1227, 2007.
DOI : 10.1038/nm1630

J. Zhang and J. H. Wang, Mechanobiological response of tendon stem cells: Implications of tendon homeostasis and pathogenesis of tendinopathy, Journal of Orthopaedic Research, vol.89, pp.639-682, 2010.
DOI : 10.1002/jor.21046

J. G. Tidball and C. Lin, Structural changes at the myogenic cell surface during the formation of myotendinous junctions, Cell and Tissue Research, vol.257, issue.1, pp.77-84, 1989.
DOI : 10.1007/BF00221636

C. Bökel and N. H. Brown, Integrins in Development, Developmental Cell, vol.3, issue.3, pp.311-321, 2002.
DOI : 10.1016/S1534-5807(02)00265-4

B. Charvet, F. Ruggiero, and D. Le-guellec, The development of the myotendinous junction. A review, Muscles. Ligaments Tendons J, vol.2, pp.53-63, 2012.

E. D. Schejter and M. K. Baylies, Born to run: creating the muscle fiber, Current Opinion in Cell Biology, vol.22, issue.5, pp.566-574, 2010.
DOI : 10.1016/j.ceb.2010.08.009

M. Benjamin, The skeletal attachment of tendons???tendon ???entheses???, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.133, issue.4, pp.931-945, 2002.
DOI : 10.1016/S1095-6433(02)00138-1

E. Zelzer, E. Blitz, M. L. Killian, and S. Thomopoulos, Tendon-to-bone attachment: From development to maturity, Birth Defects Research Part C: Embryo Today: Reviews, vol.209, issue.Suppl, pp.101-112, 2014.
DOI : 10.1002/bdrc.21056

A. G. Schwartz, J. D. Pasteris, G. M. Genin, T. L. Daulton, and S. Thomopoulos, Mineral Distributions at the Developing Tendon Enthesis, PLoS ONE, vol.42, issue.11, 2012.
DOI : 10.1371/journal.pone.0048630.g007

URL : http://doi.org/10.1371/journal.pone.0048630

R. Schweitzer, Analysis of the tendon cell fate using Scleraxis , a specific marker for tendons and ligaments, Development, vol.3866, pp.3855-3866, 2001.

A. H. Huang, H. H. Lu, and R. Schweitzer, Molecular regulation of tendon cell fate during development, Journal of Orthopaedic Research, vol.125, issue.6, 2015.
DOI : 10.1002/jor.22834

V. Léjard, Scleraxis and NFATc Regulate the Expression of the Pro-??1(I) Collagen Gene in Tendon Fibroblasts, Journal of Biological Chemistry, vol.282, issue.24, pp.17665-75, 2007.
DOI : 10.1074/jbc.M610113200

N. D. Murchison, Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons, Development, vol.134, issue.14, pp.2697-708, 2007.
DOI : 10.1242/dev.001933

A. E. Brent, R. Schweitzer, and C. J. Tabin, A Somitic Compartment of Tendon Progenitors, Cell, vol.113, issue.2, pp.235-248, 2003.
DOI : 10.1016/S0092-8674(03)00268-X

J. W. Chen and J. L. Galloway, The development of zebrafish tendon and ligament progenitors, Development, vol.141, issue.10, pp.2035-2080, 2014.
DOI : 10.1242/dev.104067

B. A. Pryce, A. E. Brent, N. D. Murchison, C. J. Tabin, and R. Schweitzer, Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene, Developmental Dynamics, vol.128, issue.6, pp.1677-82, 2007.
DOI : 10.1002/dvdy.21179

C. L. Mendias, J. P. Gumucio, K. I. Bakhurin, E. B. Lynch, and S. V. Brooks, Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts, Journal of Orthopaedic Research, vol.22, issue.4, pp.606-612, 2012.
DOI : 10.1002/jor.21550

J. Grenier, M. Teillet, R. Grifone, R. G. Kelly, and D. Duprez, Relationship between Neural Crest Cells and Cranial Mesoderm during Head Muscle Development, PLoS ONE, vol.134, issue.2, p.4381, 2009.
DOI : 10.1371/journal.pone.0004381.g008

URL : https://hal.archives-ouvertes.fr/hal-00409364

Y. Sugimoto, Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament, Development, vol.140, issue.11, pp.2280-2288, 2013.
DOI : 10.1242/dev.096354

E. Blitz, A. Sharir, H. Akiyama, and E. Zelzer, -positive progenitors, Development, vol.140, issue.13, pp.2680-90, 2013.
DOI : 10.1242/dev.093906

URL : https://hal.archives-ouvertes.fr/jpa-00212587

S. A. Jelinsky, J. Archambault, L. Li, and H. Seeherman, Tendon-selective genes identified from rat and human musculoskeletal tissues, Journal of Orthopaedic Research, vol.67, pp.289-297, 2010.
DOI : 10.1002/jor.20999

D. Docheva, E. B. Hunziker, R. Fa, and O. Brandau, Tenomodulin Is Necessary for Tenocyte Proliferation and Tendon Maturation, Molecular and Cellular Biology, vol.25, issue.2, pp.699-705, 2005.
DOI : 10.1128/MCB.25.2.699-705.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC543433

P. Alberton, Loss of Tenomodulin Results in Reduced Self-Renewal and Augmented Senescence of Tendon Stem/Progenitor Cells, Stem Cells and Development, vol.24, issue.5, pp.597-609, 2015.
DOI : 10.1089/scd.2014.0314

C. Shukunami, A. Takimoto, M. Oro, and Y. Hiraki, Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes, Developmental Biology, vol.298, issue.1, pp.234-281, 2006.
DOI : 10.1016/j.ydbio.2006.06.036

E. Dupin and N. Le-douarin, The neural crest, A multifaceted structure of the vertebrates, Birth Defects Research Part C: Embryo Today: Reviews, vol.29, issue.3, 2014.
DOI : 10.1002/bdrc.21080

J. F. Crane and P. Trainor, Neural Crest Stem and Progenitor Cells, Annual Review of Cell and Developmental Biology, vol.22, issue.1, pp.267-286, 2006.
DOI : 10.1146/annurev.cellbio.22.010305.103814

M. Kieny and A. Chevallier, Autonomy of tendon development in the embryonic chick wing, J. Embryol. exp. Morph, vol.49, pp.153-165, 1979.

G. F. Couly, P. M. Coltey, and N. M. Le-douarin, The developmental fate of the cephalic mesoderm in quail-chick chimeras, Development, vol.15, pp.1-15, 1992.

B. A. Chevallier, M. Kieny, and A. Mauger, Limb-somite relationship : origin of the limb musculature, J. Embryol. exp. Morph, vol.41, pp.245-258, 1977.

B. Christ and C. P. Ordahl, Early stages of chick somite development, Anatomy and Embryology, vol.188, issue.5, pp.381-396, 1995.
DOI : 10.1007/BF00304424

T. Volk, Singling out Drosophila tendon cells: a dialogue between two distinct cell types, Trends in Genetics, vol.15, issue.11, pp.448-453, 1999.
DOI : 10.1016/S0168-9525(99)01862-4

T. Volk and K. Vijayraghavan, A central role for epidermal segment border cells in the induction of muscle patterning in the Drosophila embryo, Development, vol.120, pp.59-70, 1994.

M. Bonnin, Six1 is not involved in limb tendon development, but is expressed in limb connective tissue under Shh regulation, Mechanisms of Development, vol.122, issue.4, pp.573-85, 2005.
DOI : 10.1016/j.mod.2004.11.005

F. Edom-vovard, B. Schuler, M. Bonnin, M. Teillet, and D. Duprez, Fgf4 Positively Regulates scleraxis and Tenascin Expression in Chick Limb Tendons, Developmental Biology, vol.247, issue.2, pp.351-366, 2002.
DOI : 10.1006/dbio.2002.0707

A. E. Brent, T. Braun, and C. J. Tabin, Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development, Development, vol.132, issue.3, pp.515-543, 2005.
DOI : 10.1242/dev.01605

S. Becker, G. Pasca, D. Strumpf, L. Min, and T. Volk, Reciprocal signaling between Drosophila epidermal muscle attachment cells and their corresponding muscles, Development, vol.124, pp.2615-2622, 1997.

R. Schweitzer, E. Zelzer, and T. Volk, Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates, Development, vol.137, issue.19, pp.3347-3347, 2010.
DOI : 10.1242/dev.057885

C. I. Lorda-diez, J. A. Montero, J. A. Garcia-porrero, and J. M. Hurle, Divergent Differentiation of Skeletal Progenitors into Cartilage and Tendon: Lessons from the Embryonic Limb, ACS Chemical Biology, vol.9, issue.1, pp.72-79, 2014.
DOI : 10.1021/cb400713v

W. Liu, The Atypical Homeodomain Transcription Factor Mohawk Controls Tendon Morphogenesis, Molecular and Cellular Biology, vol.30, issue.20, pp.4797-807, 2010.
DOI : 10.1128/MCB.00207-10

Y. Ito, The Mohawk homeobox gene is a critical regulator of tendon differentiation, Proceedings of the National Academy of Sciences, vol.107, issue.23, pp.10538-10580, 2010.
DOI : 10.1073/pnas.1000525107

V. Léjard, EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation, Journal of Biological Chemistry, vol.286, issue.7, pp.5855-67, 2011.
DOI : 10.1074/jbc.M110.153106

P. Alberton, Conversion of Human Bone Marrow-Derived Mesenchymal Stem Cells into Tendon Progenitor Cells by Ectopic Expression of Scleraxis, Stem Cells and Development, vol.21, issue.6, pp.846-858, 2012.
DOI : 10.1089/scd.2011.0150

M. Guerquin, Transcription factor EGR1 directs tendon differentiation and promotes tendon repair, Journal of Clinical Investigation, vol.123, issue.8, 2013.
DOI : 10.1172/JCI67521DS1

URL : https://hal.archives-ouvertes.fr/hal-01239410

K. Otabe, Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo, Journal of Orthopaedic Research, vol.21, issue.1, 2015.
DOI : 10.1002/jor.22750

H. Liu, Mohawk Promotes the Tenogenesis of Mesenchymal Stem Cells Through Activation of the TGF b Signaling Pathway, Stem Cells, pp.443-455, 2015.

D. M. Anderson, is a novel homeobox gene expressed in the developing mouse embryo, Developmental Dynamics, vol.183, issue.3, pp.792-801, 2006.
DOI : 10.1002/dvdy.20671

H. Liu, W. Liu, K. M. Maltby, Y. Lan, and R. Jiang, Identification and developmental expression analysis of a novel homeobox gene closely linked to the mouse Twirler mutation, Gene Expression Patterns, vol.6, issue.6, pp.632-636, 2006.
DOI : 10.1016/j.modgep.2005.11.012

W. Kimura, Irxl1 mutant mice show reduced tendon differentiation and no patterning defects in musculoskeletal system development, genesis, vol.56, issue.1, pp.2-9, 2011.
DOI : 10.1002/dvg.20688

D. M. Anderson, B. J. Beres, J. Wilson-rawls, and A. Rawls, The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex, Developmental Dynamics, vol.89, issue.3, pp.572-580, 2009.
DOI : 10.1002/dvdy.21873

D. M. Anderson, Characterization of the DNA-binding Properties of the Mohawk Homeobox Transcription Factor, Journal of Biological Chemistry, vol.287, issue.42, pp.35351-35359, 2012.
DOI : 10.1074/jbc.M112.399386

H. Chuang, K. Hsiao, H. Chang, C. Wu, and H. Pan, expression and myoblast differentiation, FEBS Journal, vol.1, issue.13, pp.2990-3003, 2014.
DOI : 10.1111/febs.12837

G. Frommer, G. Vorbrüggen, G. Pasca, H. Jäckle, and T. Volk, Epidermal egr-like zinc finger protein of Drosophila participates in myotube guidance, EMBO J, vol.15, pp.1642-1649, 1996.

G. Volohonsky, G. Edenfeld, C. Klämbt, and T. Volk, Muscle-dependent maturation of tendon cells is induced by post-transcriptional regulation of stripeA, Development, vol.134, issue.2, pp.347-356, 2007.
DOI : 10.1242/dev.02735

Y. I. Yamamoto-shiraishi and A. Kuroiwa, Wnt and BMP signaling cooperate with Hox in the control of Six2 expression in limb tendon precursor, Developmental Biology, vol.377, issue.2, pp.363-374, 2013.
DOI : 10.1016/j.ydbio.2013.02.023

E. Havis, Transcriptomic analysis of mouse limb tendon cells during development, Development, vol.141, issue.19, pp.3683-96, 2014.
DOI : 10.1242/dev.108654

H. Liu, Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq, Journal of Orthopaedic Research, vol.377, issue.6, 2015.
DOI : 10.1002/jor.22886

B. A. Pryce, Recruitment and maintenance of tendon progenitors by TGF?? signaling are essential for tendon formation, Development, vol.136, issue.8, pp.1351-61, 2009.
DOI : 10.1242/dev.027342

A. E. Brent and C. J. Tabin, FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression, Development, vol.131, issue.16, pp.3885-96, 2004.
DOI : 10.1242/dev.01275

C. I. Lorda-diez, J. Montero, J. Garcia-porrero, and J. M. Hurle, Tgf??2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos, BMC Developmental Biology, vol.10, issue.1, p.69, 2010.
DOI : 10.1186/1471-213X-10-69

T. Maeda, Conversion of Mechanical Force into TGF-??-Mediated Biochemical Signals, Current Biology, vol.21, issue.11, pp.933-974, 2011.
DOI : 10.1016/j.cub.2011.04.007

C. L. Mendias, K. I. Bakhurin, and J. Faulkner, Tendons of myostatin-deficient mice are small, brittle, and hypocellular, Proceedings of the National Academy of Sciences, vol.105, issue.1, pp.388-393, 2008.
DOI : 10.1073/pnas.0707069105

M. Manceau, Myostatin promotes the terminal differentiation of embryonic muscle progenitors, Genes & Development, vol.22, issue.5, pp.668-681, 2008.
DOI : 10.1101/gad.454408

URL : https://hal.archives-ouvertes.fr/hal-00306001

H. Wang, F. Noulet, F. Edom-vovard, F. Le-grand, and D. Duprez, Bmp Signaling at the Tips of Skeletal Muscles Regulates the Number of Fetal Muscle Progenitors and Satellite Cells during Development, Developmental Cell, vol.18, issue.4, pp.643-654, 2010.
DOI : 10.1016/j.devcel.2010.02.008

T. G. Smith, D. Sweetman, M. Patterson, S. M. Keyse, and A. Münsterberg, Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite, Development, vol.132, issue.6, pp.1305-1314, 2005.
DOI : 10.1242/dev.01699

C. I. Lorda-diez, J. Montero, C. Martinez-cue, J. Garcia-porrero, and J. M. Hurle, Transforming Growth Factors ?? Coordinate Cartilage and Tendon Differentiation in the Developing Limb Mesenchyme, Journal of Biological Chemistry, vol.284, issue.43, pp.29988-96, 2009.
DOI : 10.1074/jbc.M109.014811

J. P. Brown, V. G. Finley, and C. K. Kuo, Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin, Journal of Biomechanics, vol.47, issue.1, pp.214-222, 2014.
DOI : 10.1016/j.jbiomech.2013.09.018

F. Edom-vovard, M. A. Bonnin, and D. Duprez, Fgf8 transcripts are located in tendons during embryonic chick limb development, Mechanisms of Development, vol.108, issue.1-2, pp.203-206, 2001.
DOI : 10.1016/S0925-4773(01)00483-X

S. Eloy-trinquet, H. Wang, F. Edom-vovard, and D. Duprez, Fgf signaling components are associated with muscles and tendons during limb development, Developmental Dynamics, vol.109, issue.5, pp.1195-206, 2009.
DOI : 10.1002/dvdy.21946

T. Yarnitzky, L. Min, and T. Volk, The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment??cells, Genes & Development, vol.11, issue.20, pp.2691-2700, 1997.
DOI : 10.1101/gad.11.20.2691

F. Schnorrer, I. Kalchhauser, and B. J. Dickson, The Transmembrane Protein Kon-tiki Couples to Dgrip to Mediate Myotube Targeting in Drosophila, Developmental Cell, vol.12, issue.5, pp.751-766, 2007.
DOI : 10.1016/j.devcel.2007.02.017

M. D. Martin-bermudo, Integrins modulate the Egfr signaling pathway to regulate tendon cell differentiation in the Drosophila embryo, Development, vol.127, pp.2607-2615, 2000.

T. Mammoto, A. Mammoto, and D. E. Ingber, Mechanobiology and Developmental Control, Annual Review of Cell and Developmental Biology, vol.29, issue.1, pp.27-61, 2013.
DOI : 10.1146/annurev-cellbio-101512-122340

K. A. Ward, J. M. Caulton, J. E. Adams, and M. Z. Mughal, Perspective: Cerebral palsy as a model of bone development in the absence of postnatal mechanical factors, J. Musculoskelet. Neuronal Interact, vol.6, pp.154-159, 2006.

Y. Shwartz, E. Blitz, and E. Zelzer, One load to rule them all: Mechanical control of the musculoskeletal system in development and aging, Differentiation, vol.86, issue.3, pp.104-115, 2013.
DOI : 10.1016/j.diff.2013.07.003

S. Kook, Y. Jang, and J. Lee, Involvement of JNK-AP-1 and ERK-NF-??B signaling in tension-stimulated expression of Type I collagen and MMP-1 in human periodontal ligament fibroblasts, Journal of Applied Physiology, vol.111, issue.6, pp.1575-1583, 2011.
DOI : 10.1152/japplphysiol.00348.2011

J. Nguyen, S. Y. Tang, D. Nguyen, and T. Alliston, Load Regulates Bone Formation and Sclerostin Expression through a TGF??-Dependent Mechanism, PLoS ONE, vol.50, issue.1, 2013.
DOI : 10.1371/journal.pone.0053813.t001

J. L. Schwachtgen, P. Houston, C. Campbell, V. Sukhatme, and M. Braddock, Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway., Journal of Clinical Investigation, vol.101, issue.11, pp.2540-2549, 1998.
DOI : 10.1172/JCI1404

P. Eliasson, T. Andersson, M. Hammerman, and P. Aspenberg, Primary gene response to mechanical loading in healing rat Achilles tendons, Journal of Applied Physiology, vol.114, issue.11, pp.1519-1545, 2013.
DOI : 10.1152/japplphysiol.01500.2012

C. Tomasetti and B. Vogelstein, Variation in cancer risk among tissues can be explained by the number of stem cell divisions, Science, vol.347, issue.6217, pp.78-81, 2015.
DOI : 10.1126/science.1260825

E. F. Walsh, A. Mechrefe, E. Akelman, and A. L. Schiller, Giant cell tumor of tendon sheath, Am J OrthopBelle Mead NJ), vol.34, pp.116-137, 2005.

M. Nakashima, Expression of Tyrosine Kinase Receptors Tie-1 and Tie-2 in Giant Cell Tumor of the Tendon Sheath: a Possible Role in Synovial Proliferation, Pathology - Research and Practice, vol.197, issue.2, pp.101-107, 2001.
DOI : 10.1078/0344-0338-00017

S. Tozer and D. Duprez, Tendon and ligament: Development, repair and disease, Birth Defects Research Part C: Embryo Today: Reviews, vol.67, issue.3, pp.226-262, 2005.
DOI : 10.1002/bdrc.20049

J. F. Kaux, B. Forthomme, C. Le-goff, J. M. Crielaard, and J. L. Croisier, Current opinions on tendinopathy, J. Sport. Sci. Med, vol.10, pp.238-253, 2011.

S. P. Magnusson, H. Langberg, and M. Kjaer, The pathogenesis of tendinopathy: balancing the response to loading, Nature Reviews Rheumatology, vol.521, issue.5, 2010.
DOI : 10.1038/nrrheum.2010.43

D. Docheva, S. Müller, M. Majewski, and C. Evans, Biologics for tendon repair, Advanced Drug Delivery Reviews, vol.84, 2014.
DOI : 10.1016/j.addr.2014.11.015

J. Halper, Advances in the Use of Growth Factors for Treatment of Disorders of Soft Tissues, Adv. Exp. Med. Biol, pp.59-76, 2014.
DOI : 10.1007/978-94-007-7893-1_5

E. B. Katzel, Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing, Journal of Orthopaedic Research, vol.83, issue.5, pp.684-693, 2011.
DOI : 10.1002/jor.21235

B. P. Chan, Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: A rat patellar tendon model, Acta Orthopaedica Scandinavica, vol.68, issue.2, pp.513-518, 2000.
DOI : 10.1080/000164700317381234

S. Thomopoulos, The Effects of Exogenous Basic Fibroblast Growth Factor on Intrasynovial Flexor Tendon Healing in a Canine Model, The Journal of Bone and Joint Surgery-American Volume, vol.92, issue.13, pp.2285-2293, 2010.
DOI : 10.2106/JBJS.I.01601

C. H. Chen, Tendon Healing In Vivo: Gene Expression and Production of Multiple Growth Factors in Early Tendon Healing Period, The Journal of Hand Surgery, vol.33, issue.10, pp.1834-1842, 2008.
DOI : 10.1016/j.jhsa.2008.07.003

J. B. Tang, Adeno-Associated Virus-2-Mediated bFGF Gene Transfer to Digital Flexor Tendons Significantly Increases Healing Strength, The Journal of Bone and Joint Surgery-American Volume, vol.90, issue.5, pp.1078-1089, 2008.
DOI : 10.2106/JBJS.F.01188

J. B. Tang, C. H. Chen, Y. L. Zhou, C. Mckeever, and P. Liu, Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon, Wound Repair and Regeneration, vol.30, issue.Suppl. 2, pp.111-118, 2014.
DOI : 10.1111/wrr.12129

J. G. Kim, Enhancement of tendon-bone healing with the use of bone morphogenetic protein-2 inserted into the suture anchor hole in a rabbit patellar tendon model, Cytotherapy, vol.16, issue.6, pp.857-867, 2014.
DOI : 10.1016/j.jcyt.2013.12.012

C. H. Chen, Enhancement of rotator cuff tendon???bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo, Knee Surgery, Sports Traumatology, Arthroscopy, vol.242, issue.9, pp.1597-1607, 2011.
DOI : 10.1007/s00167-010-1373-0

E. Blitz, Bone Ridge Patterning during Musculoskeletal Assembly Is Mediated through SCX Regulation of Bmp4 at the Tendon-Skeleton Junction, Developmental Cell, vol.17, issue.6, pp.861-73, 2009.
DOI : 10.1016/j.devcel.2009.10.010