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Abstract. This paper deals with the modeling of a wound healing disease under a therapeutic action by employing the

methods of the thermostatted kinetic theory for active particles. In particular, in order to test therapeutic actions against

keloid formation and the possible development of a cancer, an external force field coupled to a Gaussian thermostat is

introduced into a mathematical model recently proposed. Specifically the model depicts the competition of the immune

system cells with a virus, the mutated fibroblast cells, and the cancer cells. Employing a computational analysis, the

effects of three different external forces mimic therapeutic actions is analyzed: A vaccine for the virus, the PUVA

therapy for the keloid and a vaccine for the cancer. The results are in agreement with the evidence that the sole action

of the immune system is not sufficient to obtain a total depletion of keloid thus requiring the definition of a therapy.

Further refinements and developments of the model are also discussed into the paper.

PACS. 02.30.Jr Partial differential equations – 02.50.Cw Kinetic theory – 02.60.Nm Integral and integrodifferential

equations

1 Introduction

Wound healing is a dynamic process consisting of four continuous, overlapping, and precisely programmed phases: Hemostasis,
the inflammation phase, the proliferation phase, and the remodelling phase, see the review paper [1]. The events of each phase
must happen in a precise and regulated manner. Interruptions, aberrancies, or prolongation in the process can lead to delayed
wound healing or a non-healing chronic wound, such as keloid. Keloid is a hyperproliferative response of connective tissue in
response to skin trauma. The causes which trigger this phenomenon are poorly understood and currently no successful treatment
have been developed [2]. In particular the defective control mechanisms in keloid result in the excessive cell proliferation and
extracellular matrix synthesis: keloid-derived fibroblasts have a greater proliferative capacity than normal derived fibroblasts [3].
Even if fibroblasts have a major role, other cells like keratinocytes and melanocytes can be involved [2], and the causes can be
also the presence of a virus [4] and a generic susceptibility [5]. The possible therapy for keloid strictly depends on the location,
size, depth of the lesion and the age of the patient. Therapeutic treatment includes occlusive dressings, compression therapy,
intralesional corticosteroid injections, cryosurgery, excision, radiation therapy, laser therapy, interferon therapy, 5-fluorouracil,
doxorubicin, bleomycin, verapamil, retinoic acid. Other promising therapies include antiangiogenic factors, including vascular
endothelial growth factor inhibitors, phototherapy, tumor necrosis factor (TNF)-alpha inhibitors, and recombinant human inter-
leukin, which are directed at decreasing collagen synthesis.

Recently the defective induction of stress-induced premature senescence during wound healing has been proposed as a possi-
ble mechanism of keloid formation [6]. Specifically keloid fibroblasts undergo senescence at a rate lower than that of normal scar,
thus depositing collagen and other extracellular matrix proteins beyond that expected in normal wound healing. The proposed
mechanism could lead to new treatment possibilities for keloid, e.g. a therapy that induce senescence could be used to prevent
the formation of keloid, and consecutively enable the formation of a normal scar.

From the modeling point of view, the fibro-proliferative disease has been widely studied at macroscopic level, but insight at
cellular and sub-cellular level scale is still lacking, see the review paper [7] and references cited therein. Therefore, there is a
remarkable need of developing the necessary modeling approach that can handle the full range of time and length scales required
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to model complex biological systems, with emphasis on spatially distributed systems, and apply this framework to fibrosis disease
such as keloid.

The keloid formation has been recently modeled in [8] and further analyzed in [9]. The model, which refers to the keloid
formation triggered by a virus and its possible malignant effects under the immune system surveillance, is based on the kinetic
theory for active particles [10]. At the basis of the methods there is the decomposition of the whole system into different functional
subsystems composed by particles, called active particles, able to express a function or strategy. Therefore the microscopic state
of the active particles includes, in addition to the classical geometrical and mechanical variables, also the activity variable. The
description of each functional subsystem is obtained by the definition of a distribution function over the microscopic state of
interacting particles. The evolution of the system is determined by microscopic nonlinear interactions, which take into account
not only mechanical rules but also modifications of the biological state. It is worth stressing that the kinetic theory for active
particles has been also employed for the modeling of other biological systems, see, among others, papers [11–14].

This paper is concerned with a further refinement of the mathematical model proposed in [8]. Specifically in order to take
into account possible therapeutical actions, the model [8] is generalized by introducing different external forces, which mimic a
therapy at the macroscopic scale. The introduction of an external force field moves the system out of equilibrium and in order
to have a steady state a Gaussian thermostat is coupled to the external force field. The Gaussian thermostat is thus a damping
term adjusted to control the energy into the system, the interested reader in a more deeper understanding of the thermostat and
its applications in molecular dynamics simulations is referred to the book [15] and to the recent review paper [16]. The resulting
framework is thus a thermostatted kinetic model where the excess of energy introduced by the external force field is removed by
the thermostat. This new framework acts as a general paradigm for the derivation of a specific model for keloid. In particular the
thermostatted kinetic model proposed in the present paper is the object of a computational analysis to test a recent hypothesis
of therapeutic action against keloid formation and the possible development of a cancer. The model depicts the competition of
the immune system cells with a virus, the mutated fibroblast cells, and the cancer cells by means of the density function and the
distribution function of cells. Three different external forces, mimic therapeutic actions, are taken into account: a vaccine for the
virus, the PUVA therapy for the keloid and a vaccine for the cancer cells. The results are in agreement with the evidence that the
sole action of the immune system is not sufficient to obtain a total depletion of keloid, thus the introduction of a therapy is an
essential step.

The contents of the present paper are outlined as follows: After this introduction, Section 2 is concerned with the presentation
of the thermostatted kinetic theory for active particles and specifically with the derivation of a mathematical structure that acts as
a general paradigm for the derivation of specific models. The framework includes an external force field coupled with a Gaussian
thermostat that allows the control of the global activation energy. Section 3, after a short phenomenological analysis with the
aim of understanding who are the main actors that are responsible for the keloid formation, is devoted to the derivation of our
model for keloid formation and specifically to the definition of the functional subsystems, the interactions among the cells and
the introduction of the external forces. Section 4 deals with a computational analysis on a test case obtained by setting a value
to the different parameters of the model. The computational analysis consists of a sensitivity analysis on the magnitude of the
external forces when the rate of heterogeneity of keloid cells is let vary. Finally Section 5 concludes the paper by suggesting
possible further refinements and developments of the model, to be regarded as future research directions.

2 The thermostatted kinetic framework

This section is concerned with the underlying thermostatted kinetic framework that acts as a general paradigm for the derivation
of specific models. Specifically the framework aims at modeling a complex biological system composed of a large number of
cells (active particles) that interact in nonlinear manner. A constant force field F is assumed to extent an action on the cells.
The microscopic state of a cell is the variable u ∈ Du ⊂R, which means that the cell at time t ∈ [0,∞) is able to express a strategy
modeled by the variable u (activity variable). Cells expressing the same function are grouped into a subsystem, called functional

subsystem. The evolution of each functional subsystem is depicted by the distribution function fi(t,u) : [0,∞)×Du → R
+, for

i ∈ {1,2, . . . ,n}, and such that, for any fixed time t, the quantity fi(t,u)du represents the density of cells in the elementary
volume du centered at u. In general, the macroscopic variables are defined as moments weighted of the distribution function fi.
Specifically the pth-order moment of fi reads:

Ep[ fi](t) =
∫

Du

up fi(t,u)du, (2.1)

where, in particular, the density (mass), the activation-momentum (linear-momentum), and the activation energy (kinetic energy)
of the functional subsystem fi is obtained for p = 0, p = 1 and p = 2, respectively.

Let f = f(t,u) = ( f1(t,u), . . . , fn(t,u)) be the vector whose components are the distribution functions of the functional sub-
systems and

f̃ (t,u) =
n

∑
i=1

fi(t,u). (2.2)
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The evolution equation for the ith functional subsystem is obtained by equating the time derivative of fi to the balance of the
inlet and outlet flows in the elementary volume du. Accordingly we have:

∂t fi(t,u)+ ∂u

(
Fi

(
1− u

∫

Du

u f̃ (t,u)du

)
fi(t,u)

)
= Ji[f](t,u), (2.3)

where Fi denotes the external force acting on the cells of the ith functional subsystem, Ji[f](t,u) denotes the following operator
that models the gain-loss of cells due to transitions in the activity variable:

Ji[f](t,u) =
n

∑
j=1

∫
Du×Du

ηi j Ai j(u∗,u
∗
,u) fi(t,u∗) f j(t,u

∗)du∗ du∗− fi(t,u)
n

∑
j=1

∫
Du

ηi j f j(t,u
∗)du∗. (2.4)

where
• ηi j models the probability that a cell of the ith functional subsystem, with activity u∗, interacts instantaneously with a cell of

the jth functional subsystem, with activity u∗;
• Ai j = Ai j(u∗,u

∗,u) : Du ×Du ×Du → R
+ is the density function modeling the probability that cells of the ith functional

subsystem, with activity u∗, interacting with cells of the jth functional subsystem, with activity u∗, reach the activity u. In
particular Ai j(u∗,u

∗,u) satisfies the following identity:

∫
Du

Ai j(u∗,u
∗
,u)du = 1, ∀u∗,u

∗ ∈ Du.

In what follows, the transport term in (2.3) that models the introduction of the external force coupled to the Gaussian thermostat
[17,18], will be denoted as

TFi
[f](t,u) := ∂u

(
Fi

(
1− u

∫
Du

u f̃ (t,u)du

)
fi(t,u)

)
. (2.5)

In particular (2.5) is a damping operator adjusted to control the global activation energy:

E2[f](t) =
n

∑
i=1

∫
Du

u2 fi(t,u)du =

∫
Du

u2 f̃ (t,u)du.

Remark 21 If the external force depends on the activity variable, namely Fi = Fi(u), then the thermostatted term (2.5) reads:

TFi
[f](t,u) = ∂u

((
Fi(u)− u

∫
Du

uFi(u) f̃ (t,u)du

)
fi(t,u)

)
. (2.6)

The framework (2.3) can be further generalized by introducing the role of nonconservative processes. Specifically, interactions
among the cells may generate proliferation/destruction of other cells (birth-death process). This type of interaction is modeled
by the following operator:

Ni[f](t,u) = fi(t,u)
n

∑
j=1

∫
Du

ηi j µi j f j(t,u
∗)du∗, (2.7)

where µi j denotes the net proliferative/destructive rate.
Cell mutations can occur because of DNA corruptions, thus generating a new functional subsystem. Accordingly, mutations are
modeled by the following operator:

Mi[f](t,u) =
n

∑
h=1

n

∑
k=1

∫
Du×Du

ηhk ϕi
hk fh(t,u∗) fk(t,u

∗)du∗du∗. (2.8)

where ϕi
hk denotes the net mutative rate into the ith functional subsystem, due to interactions that occur with rate ηhk between the

cells, with activity u∗, of the hth functional subsystem and the cells, with activity u∗, of the kth functional subsystem.
Bearing all above in mind, the thermostatted kinetic framework with proliferative/destructive and mutative interactions reads:

∂t fi(t,u)+TFi
[f](t,u) = Ji[f](t,u)+Ni[f](t,u)+Mi[f](t,u). (2.9)

It is worth stressing that the parameters of the model can be function of the activity, namely ηi j(u∗,u
∗), µi j(u,u

∗) and

ϕi
hk(u∗,u

∗
,u). However in order to simplify our model these functions will be assumed as constants.

From the mathematical point of view, the Cauchy problem related to the general framework (2.9) has been analyzed and the
existence and uniqueness of the solution has been proved, including the existence of stationary solutions [19]. Therefore we are
allowed to develop the appropriate computational methods to obtain simulations of a specific model.
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3 A thermostatted kinetic model for the treatment of keloid

This section is concerned with the derivation of a specific thermostatted kinetic model for the treatment of keloid by means of a
therapy. According to the general framework (2.9), the first step is the definition of the functional subsystems. Following [8], we
assume that keloid formation involves the following five interacting functional subsystems (see Table 1):

1. Fibroblast cells (Fc): The activity variable represents the proliferation ability and the distribution function is denoted by
f1(t,u);

2. Virus (V): The activity variable is a magnitude of their aggressiveness related to their proliferation ability. The distribution
function is denoted by f2(t,u);

3. Keloid-fibroblast cells (KFc): The activity variable represents the proliferation ability. The keloid-fibroblast cell is a fibrob-
last cell that, because of a mutation, has acquired a significant advantage with respect to the proliferation rate. The distribution
function is denoted by f3(t,u);

4. Cancer cells (Cc): The activity variable is a magnitude of their progression ability and the distribution function is denoted
by f4(t,u);

5. Immune system cells (ISc): The activity variable u is a magnitude of the activation and thus of the response to foreign
agents. The distribution function is denoted by f5(t,u).

In what follows the cells of the functional subsystems 2, 3, and 4 will be called non-self cells.
Bearing formula (2.1) in mind, the local density and the local activation of the ith functional subsystem, for i ∈ {1,2,3,4,5}, read
respectively:

E0[ fi](t) =

∫ ∞

0
fi(t,u)du, E1[ fi](t) =

∫ ∞

0
u fi(t,u)du . (3.10)

The term Ai j defined in (2.4) is assumed to be defined by a delta Dirac function (deterministic output di j(u∗,u
∗) of a pair

interaction) depending on the microscopic state of the interacting pairs. Specifically, let α be a positive parameter which models
the heterogeneity rate of the KFc, and ε< 1 a scale parameter that is introduced to evaluate the difference among the heterogeneity
rates of the V and the Cc with respect to the KFc, then Ai j reads:

Ai j(u∗,u
∗
,u) = δ(u− di j(u∗,u

∗)), (3.11)

where

di j(u∗,u
∗) =






u∗+ εα if j = 1 and i = 2,
u∗+α if j = 2 and i = 3,

u∗+ ε2α if j = 2 and i = 4,
u∗ otherwise.

(3.12)

FUNCTIONAL SUBSYSTEMS ACTIVITY DISTRIBUTION FUNCTION

Fibroblasts cells (Fc) Proliferation f1(t,u)

Virus (V) Aggressiveness f2(t,u)

Keloid-fibroblasts cells (KFc) Proliferation f3(t,u)

Cancer cells (Cc) Progression f4(t,u)

Immune system cells (ISc) Activation f5(t,u)

Table 1. The Functional subsystems, the activity variable, and the distribution functions.

The assumption (3.12) means that the functional subsystems V, KFc, and Cc are the only subsystems subject to transitions
into the activity variable, namely J1[f](t,u) = J5[f](t,u) = 0. The terms J2[f](t,u), J3[f](t,u), and J4[f](t,u) are derived under the
assumption that the non-self cells have a tendency to increase their microscopic state. Bearing all above in mind we have
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Ji[f](t,u) =






E0[ f1](t) [ f2(t,u− εα)− f2(t,u)] if i = 2,

E0[ f2](t) [ f3(t,u−α)− f3(t,u)] if i = 3,

E0[ f2](t)[ f4(t,u− ε2α)− f4(t,u)] if i = 4,

0 otherwise.

(3.13)

Let β be the proliferation rate of the KFc, and βi the proliferation rate of the ISc. The modeling of proliferative events is
based on the following assumption for the proliferation rate of cells:

µ+i j(u,u
∗) =






ε2β if j = 1 and i = 1,
εβ if j ∈ {1,5} and i = 2,
β if j ∈ {1,2} and i = 3,
εβ if j = 2 and i = 4,
βi if j ∈ {2,4} and i = 5,

ε2βi if j = 3 and i = 5,
0 otherwise.

(3.14)

According to (3.14), the V proliferates because of encounters with the Fc and the ISc; the KFc proliferate because of encounters
with the Fc and the V; the Cc proliferate because of encounters with the V; the ISc proliferate because of encounters with V, KFc,
and Cc. It is worth stressing that according to (3.14), the proliferation rate of the KFc is greater than the proliferation rates of Fc,
V, and Cc; the proliferation rate of the ISc, when encounter the V and the Cc, is greater than the proliferation rate of the ISc when
encounter the KFc. The proliferation term thus writes:

Pi[f](t,u) =





ε2β f1(t,u)E0[ f1](t) if i = 1,

εβ f2(t,u) [E0[ f1](t)+E0[ f5](t)] if i = 2,

β f3(t,u) [E0[ f1](t)+E0[ f2](t)] if i = 3,

εβ f4(t,u)E0[ f2](t) if i = 4,

βi f5(t,u) [E0[ f2](t)+ ε2
E0[ f3](t)+E0[ f4](t)] if i = 5.

(3.15)

Let δi be the inhibition (destruction) rate of the ISc because of encounter with the V and the Cc, and δ the destruction rate of
the V and the Cc because of the action of the ISc. In order to model the interactions that have as result the destruction of cells,
we define the following destruction rate:

µ−i j(u,u
∗) =






−εδ if j = 2 and i = 1,
−δ if j = 5 and i ∈ {2,4},

−ε2δ if j ∈ {2,5} and i = 3,

−ε2δiu
∗ if j = 3 and i = 5,

−δiu
∗ if j ∈ {2,4} and i = 5,

0 otherwise.

(3.16)

According to (3.16), the Fc are destroyed because of interactions with the V; the V and the Cc are destroyed because of
interactions with the ISc; the KFc are destroyed because of interactions with the V and the ISc; the ISc are destroyed because
of interactions with V, KFc, and Cc; the ISc are able to eliminate the V and the Cc more efficiently than the KFc; the latter are
destroyed by the V less efficiently than the Fc.

The assumption (3.16) takes into account that the non-self cells with a high level of activity have the ability to inhibit or destroy
the ISc (immune suppression or immune-subversion). In particular we assume that the Cc and the V have a more efficiently action
of inhibition on the ISc with respect to the KFc (inhibited immune cells do not play a relevant role in the competition and may
be equivalently assumed as eliminated). Accordingly the destructive terms read:
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Di[f](t,u) =





−εδ f1(t,u)E0[ f2](t) if i = 1,

−δ f2(t,u)E0[ f5](t) if i = 2,

−ε2δ f3(t,u) [E0[ f2](t)+E0[ f5](t)] if i = 3,

−δ f4(t,u)E0[ f5](t) if i = 4,

−δi f5(t,u) [E1[ f2](t)+ ε2
E1[ f3](t)+E1[ f4](t)] if i = 5.

(3.17)

Bearing all above in mind, we have

µi j = µ+i j + µ−i j , Ni[f] = Pi[f]+Di[f].

Let γ be the mutation rate of a fibroblast cell, which measures the possibility that a Fc undergoes a mutation and becomes a
keloid-fibroblast cell, and λ the mutation rate that measures the possibility that a keloid-fibroblast cell undergoes a mutation and
becomes a cancer cell. The genetic mutations are modeled by defining the following mutative rate:

ϕi
hk(u∗,u

∗
,u) =





εγδ(u− u∗) if h = 1, k = 1, and i = 3,
γδ(u− u∗) if h = 1, k = 2, and i = 3,
λδ(u− u∗) if h = 3, k = 2, and i = 4,
0 otherwise.

(3.18)

Accordingly to (3.18), we assume that the Fc may mutate into KFc because of encounters with the Fc; the Fc may mutate into
KFc because of encounter with the V; the KFc may mutate into Cc because of encounters with the V. In particular, we have
assumed that is more likely that the Fc become KFc when they encounter the V. It is worth noting that (3.18) implies that the
microscopic state of the cells does not change during the mutation. The mutation term thus writes:

Mi[f](t,u) =






γ f1(t,u) [εE0[ f1](t)+E0[ f2](t)] if i = 3,

λ f3(t,u)E0[ f2](t) if i = 4,

0 otherwise.

(3.19)

Finally we assume that a constant external force field Fi, for i = {2,3,4}, acts on the ith functional subsystem and mimics a
specific therapy.

The thermostatted kinetic model, which consists in a system of evolution equations for each distribution function fi, for
i ∈ {1,2,3,4,5}, thus reads:
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∂t f1 = ε
(

εβ

∫ ∞

0
f1(t,u)du− δ

∫ ∞

0
f2(t,u)du

)
f1(t,u) ,

∂t f2 + ∂u

(
F2

(
1− u

∫
Du

u f̃ (t,u)du

)
fi(t,u)

)
=
(

εβ

∫ ∞

0
[ f1(t,u)+ f5(t,u)]du− δ

∫ ∞

0
f5(t,u)du

)
f2(t,u)

− f2(t,u)
∫ ∞

0
f1(t,u)du+ f2(t,u− εα)

∫ ∞

0
f1(t,u)du ,

∂t f3 + ∂u

(
F3

(
1− u

∫
Du

u f̃ (t,u)du

)
fi(t,u)

)
=
(

β

∫ ∞

0
f1(t,u)du− (1−β+ ε2δ)

∫ ∞

0
f2(t,u)du

)
f3(t,u)

−ε2δ f3(t,u)
∫ ∞

0
f5(t,u)du+ f3(t,u−α)

∫ ∞

0
f2(t,u)du

+γ
(

ε

∫ ∞

0
f1(t,u)du+

∫ ∞

0
f2(t,u)du

)
f1(t,u) ,

∂t f4 + ∂u

(
F4

(
1− u

∫
Du

u f̃ (t,u)du

)
fi(t,u)

)
=
(
(εβ− 1)

∫ ∞

0
f2(t,u)du− δ

∫ ∞

0
f5(t,u)du

)
f4(t,u)

+λ f3(t,u)
∫ ∞

0
f2(t,u)du+ f4(t,u− ε2α)

∫ ∞

0
f2(t,u)du ,

∂t f5 = βi

(∫ ∞

0
[ f2(t,u)+ f4(t,u)]du+ ε2

∫ ∞

0
f3(t,u)du

)
f5(t,u)

−δi

(∫ ∞

0
u [ f2(t,u)+ f4(t,u)]du+ ε2

∫ ∞

0
u f3(t,u)du

)
f5(t,u).

(3.20)

The model (3.20) is characterized by 11 parameters which are positive constants (eventually equal to zero), small with respect
to unity and having the following biological meaning:

• α is the heterogeneity rate of the KFc;
• β is the proliferation rate of the KFc;
• βi is the proliferation rate of the ISc;
• δ is the destruction rate of the V and the Cc by the ISc;
• δi is the destruction rate of the ISc by the V and the Cc;
• γ is the mutation rate of the Fc into KFc;
• λ is mutation rate of the KFc into Cc;
• ε is the scale factor.
• Fi, for i = {2,3,4}, is the external force that acts on the ith functional subsystem and mimics a therapy.

It is worth pointing out that the α-parameter refers to transition into the activity variable, the β-parameters refer to proliferative
events, the-δ parameters refer to destructive interactions, the parameters γ and λ refer to mutations, and ε is a scale parameter,
see Table 2. The all parameters have to be tuned by suitable experiments.

4 Computational analysis: Mimic therapeutic actions

This section is concerned with the computational analysis of the model (3.20) and specifically with the evolution of the different
functional subsystems when an external action acts on the system as a therapeutic action. The main aim is to simulate the prompt
response against the formation and evolution of keloid and the possible onset of cancer. The computational analysis is thus
addressed to analyze the effects of three different therapeutic actions: An action which mimics a vaccine against the virus, an
action which mimics a vaccine against cancer cells, and an action which can also mimic surgery on keloid. It is important to note
that, according to our model, the onset of cancer cells is a consequence of mutations in the keloid cells because of the virus, the
latter in part also responsible for mutations in the fibroblasts cells which generate the keloid (remember that according to our
assumptions, the genetic susceptibility is also responsible for keloid formation). Therefore the main role of the external actions



8 Carlo Bianca, Julien Riposo: Mimic Therapeutic Actions Against Keloid by Thermostatted Kinetic Theory Methods

Interactions Fc V KFc Cc ISc

Fc

Proliferative ε2β
Destructive −εδ
Mutative εγ γ

V

Conservative εα
Proliferative εβ εβ
Destructive −δ

KFc

Conservative α
Proliferative β β

Destructive −ε2δ −ε2δ
Mutative λ

Cc

Conservative ε2α
Proliferative εβ
Destructive −δ

ISc
Proliferative βi ε2βi βi

Destructive δi −ε2δi δi

Table 2. The functional subsystems, the interaction terms, and the related parameters of the model (3.20).

should be to act on the functional subsystems of virus and keloid cells. However in order to have a more global view of what the
model developed in the present paper is able to reproduce, we will consider also an external action on the cancer cells.

It is worth stressing that our model is an exploratory model. Thus, at this stage, we are only interested in the emerging
phenomena that the model is able to reproduce and not in the tuning with an in-vivo or in-vitro experiment or empirical data,
which can be considered as subject of further investigations. Accordingly, the computational analysis focuses on the model (3.20)
when only one external action is applied. The dynamics of the model when the three actions can act at the same moment will be
straightforward. However to think that the three different actions may be applied at the same time can not be suitable then we
believe that our model will fit well if a combination of the three different actions will be performed at different times. Specifically
the first step is to act against the virus (F2 6= 0, F3 = F4 = 0); when the virus is killed, the reached nonequilibrium stationary
state will be the initial state for the model (3.20) with the action of a therapy for keloid (F3 6= 0, F4 = 0); when keloid cells
are eliminated, the new reached nonequilibrium stationary state will be the initial state for the model (3.20) with the therapeutic
action against the cancer cells (F4 6= 0). In particular the intermediate step can be performed thanks to the introduction of the
thermostat that allows the existence of a nonequilibrium stationary state.

The computational analysis will be addressed by fixing nine of the eleven parameters and performing a sensitivity analysis on
the parameter α and on the therapeutical action Fi, for i ∈ {2,3,4}. In the analysis we will show the evolution of the density, the
behavior of the distribution function and the activation energy. The computational scheme is that of the well-known generalized
collocation method where the variable u is discretized into a suitable set of collocation points. The integral terms are approximated
by means of algebraic weighted sums in the nodal points of the discretization. The particularization of the evolution equations in
each node and the enforcing of the initial conditions transform the model that is a system of integro-differential equations into a
systems of ordinary differential equations, describing the evolution of the values of the distribution functions in the node of the
collocation, see Section 2 of paper [9] for all the details.

The choice of the distribution functions at time t = 0 is based on the assumption that, before the formation of keloid and the
related onset of cancer, the virus infects the Fc. Our analysis starts when the number of Fc in the wound is equal to the number
of V and a number of immune system cells have reached the wound. Accordingly we assume nonzero initial conditions only for
the functional subsystem of Fc, V, and ISc.

The test case is based on the following choice of the parameters: γ = 0.4 (the rate of mutation of a fibroblast cell into a
keloid-fibroblast cell is not negligible), δ = 0.3 (the ability of the immune system cells to inhibit the non-self cells is quite low),
δi = 0.5 (the non-self cells have an intermediate ability to inhibit the response of the immune system), β = 0.4 (the non-self
cells have an intermediate ability to proliferate), βi = 0.35 (the rate of proliferation of the ISc is quite low), λ = 0.5 (the rate of
mutation of a keloid-fibroblast cell into a cancer cell is not negligible) and ε = 0.5.

It is worth stressing that the computational analysis performed in the present paper does not cover the whole variety of
conceivable dynamics but represents a useful test case.

4.1 Simulating the effects of a vaccine against the virus

This subsection deals with the computational analysis for the model (3.20) when a constant external force, mimic a vaccine
against the virus, is introduced. Following the interaction rules proposed into the model, the onset of keloid is a consequence
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of the virus, then it is expected that if the vaccine is able to reduce the action of the virus then keloid formation and cancer can
be prevented. Accordingly we have F2 6= 0, F3 = F4 = 0 and we let the magnitude of the parameter α vary from low to higher
values, namely from low to higher heterogeneity. The results of the computational analysis are summarized as follows.

Analysis for low values of α. The effect of the external action is evident by comparing the dynamics depicted by the model (3.20)
when F2 = 0 with the dynamics when F2 6= 0.

The dynamics of the model (3.20) for F2 = F3 = F4 = 0 has been widely debated in [8], therefore the new computational
analysis will be focused on the case F2 6= 0 and F3 = F4 = 0, and more precisely F2 ∈ {0,0.0005,0.01}. Looking at the left
panel of Figure 1, for α = 0.2 (low rate of heterogeneity) the heterogeneity of the virus is bounded, then the main effect of the
external force (vaccine for the virus) is to decrease the maximum of the density of V when the magnitude of the vaccine increase.
Therefore, thanks also to the action of the immune system, we can see a faster depletion of the V and consequently of the KFc
and the Cc. However, as the right panel of Figure 1 shows, the keloid cells start to increase again; this is a consequence of the
genetic susceptibility that thus requires the definition of a therapeutical action for keloid. The global energy of the system even
in the presence of the external action is preserved thanks to the thermostat.

Analysis for intermediate values of α. Setting α = 0.5, the heterogeneity of the non-self cells becomes less negligible with
respect the previous case. Therefore the role of the external force is now fundamental for avoiding keloid formation and onset of
cancer. The computational analysis shows that high values of the vaccine are required in order to reduce the number density of
keloid cells with high values of activity. Consequently the number density of the Cc is reduced. The vaccine for the virus has an
important role in the proliferation of the immune system cells. Indeed as Figure 2 shows, in absence of a vaccine for the V the
immune system is inhibited; the vaccine helps the immune system cells to proliferate again.

Analysis for high values of α. The heterogeneity of the non-self cells in now very high thus keloid formation and cancer need
to be inspected. As Figure 3 shows the vaccine is able to control the evolution of the virus and the depletion of the virus with
high levels of aggressiveness depends on the magnitude of the vaccine. However high values of the vaccine are necessary to
eliminate keloid and cancer, see Figure 4, then the definition of a therapeutic action against keloid formation and cancer is now
fundamental.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

t

V

0 5 10 15 20
0

10

20

30

40

50

60

70

t

K
F

c

Fig. 1. The time evolution of the density of V (left panel) and of the density of KFc (right panel) for α= 0.2 and F2 = 0 (solid line), F2 = 0.0005

(dashed line), F2 = 0.01 (dot line).

4.2 Simulating the effects of a therapy against the keloid

This subsection deals with the computational analysis for the model (3.20) when a constant external force, mimic a therapeutical
action against the keloid, is considered. Following [6], a therapy that induces senescence could be used to prevent the formation
of a normal scar. Specifically the treatment proposed in [6] is based on photodynamic and PUVA therapy, which are capable to
induce cell senescence. The therapy, based on a combination of a photosensitizer and a light source, produces oxidative stress
and thus produce higher quantity of senescent cells with the minor apoptotic and necrotic effect.

Bearing all above in mind, we assume that F3 6= 0, F2 = F4 = 0 and again we let the magnitude of the parameter α vary from
lower to higher values. Specifically for low values of α, the therapy and the immune system are capable to perform a prompt
action, see the left panel of Figure 5 where the density of the KFc is depicted for different values of the external force. Moreover,
as the right panel of Figure 5 shows, the global activation energy is controlled by thermostated. The effects of the therapy are
visualized in Figure 6, where the distribution function of the KFc is depicted in absence of therapy and in the presence of the
therapy. As Figure 6 shows, the therapy allows the depletion of cells at different stages of mutation and a bounded magnitude
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Fig. 2. The time evolution of the density of ISc for α = 0.5 and F2 = 0 (solid line), F2 = 0.0005 (dashed line).

0

0.5

1

1.5

2

2.5

3

0

5

10

15

20

0

5

10

15

20

25

30

u
t

V

0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

14

16

18

20

0

5

10

15

20

25

30

u
t

V

Fig. 3. Distribution function of V for α = 0.8 and for F2 = 0 (left panel) and for F2 = 0.0005 (right panel).

of therapy is required in order to have the total depletion of keloid. Moreover, differently from the case of a vaccine for the
virus, in this case the increase of new keloid cells, after the elimination of keloid, is not observed. For intermediate values of α,
the general effect of the therapy is that of acting homogeneously on the KFc and the Cc and thus to obtain a distribution more
uniform with respect to the degree of mutation. In particular the Fc are able to proliferate again. For high values of α, the rate
of mutation allows the onset of keloid cells with high proliferation rate and of cancer cells with high values of progression. In
particular even if the therapy allows the immune system to have a prompt response (see Figure 7) against the cancer cells (and
virus), the immune system cells are not able to prevent tumor formation at tissue scale. Therefore a high magnitude of the therapy
is required. This is the case where surgery is the only therapy that can work.

4.3 Simulating the effects of a vaccine against the cancer

This subsection deals with the computational analysis for the model (3.20) when a constant external force, mimic a therapeutical
action against the cancer, acts on the system. In the case of cancer, the vaccine strictly depends on the type of tumor developed.
Therefore the main aim of this subsection is to show that our model is able to consider the introduction of a vaccine and to
simulate the evolution of the cancer. In particular we will focus on the case of high values of α.

According to our model, the development of cancer is the final result of the keloid formation, then the vaccine against the
cancer has a fundamental action only on the Cc and the ISc. As Figure 8 shows, the vaccine is able to inhibit the formation of a
tumor at the macroscopic scale. Moreover the immune system is able to proliferate again, see the right panel of Figure 9. Finally,
as the right panel of Figure 9 shows, the action of the therapy allows to maintain bounded the global activation energy of system
(thanks to the introduction of the thermostat).
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Fig. 4. Distribution function of KFc for α = 0.8 and for F2 = 0 (left panel) and for F2 = 0.0005 (right panel).
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Fig. 5. The time evolution of the density of KFc (left panel) and of the global activation energy of the system (right panel) for α = 0.2 and

F2 = 0 (solid line), F2 = 0.0005 (dashed line), F2 = 0.01 (dot line).

5 Conclusions and research perspectives

The present paper has been devoted to test the capability of a new thermostatted kinetic framework for the active particles
to model a therapy against keloid formation and the possible development of cancer. By employing different therapies on the
different functional subsystems that compose the system, we have shown that some therapies proposed in the pertinent literature
can be well described by our model. The analysis performed in this paper has been of computational kind and has been focused
on the reaching of the emerging phenomena that are typical of keloid formation. The role of the immune system has been taken
into account as a whole system without specifying who are the cells involved in the competition; this assumption is based on the
fact that its action on keloid is limited by the genetic susceptibility that does not allow to the immune system to recognize these
cells as foreign cells and thus acting for a possible total depletion.

The model developed and analyzed in the present paper is based on the introduction of an external force field, which mimics
a therapy, at the macroscopic scale but in the absence of external interactions at the microscopic scale. The therapy acts directly
on the number of foreign cells without performing an interaction at the microscopic level (in the activity variable). The modeling
of external therapy at the microscopic (cellular) scale can be performed by representing the external therapy as a functional
subsystem that have the ability to modify the state u of the cell by a particular action related to the variable ω ∈ Du. Assuming
that the ith inner functional subsystem interacts with the rth external agent, for r ∈ {1,2, . . . ,m}, and denoting by gir = gir(t,ω) :
[0,∞)× Du → R

+ the related distribution function (known function of its arguments), the microscopic external actions are
modeled by the following operator:
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Fig. 6. Distribution function of the KFc for α = 0.2 and for F2 = 0 (left panel) and for F2 = 0.01 (right panel).
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Fig. 7. The time evolution of the density of ISc for α = 0.8 and F2 = 0 (solid line) and for F2 = 0.001 (dashed line).

Qi[f,gi](t,u) =
m

∑
r=1

∫
Du×Du

ηe
ir Bir(u∗,ω

∗
,u) fi(t,u∗)gir(t,ω

∗)du∗ dω∗− fi(t,u)
m

∑
r=1

∫
Du

ηe
ir gir(t,ω

∗)dω∗
, (5.21)

where gi = (gi1, . . . ,gir) and

– ηe
ir is the inner-outer encounter rate between the rth external agent, with state ω∗, and the cell of the ith population, with state

u∗.
– Bir(u∗,ω

∗,u) is the inner-outer transition probability density which describes the probability density that a cell of the ith
population, with state u∗, falls into the state u after an interaction with the rth external agent whose state is ω∗.
The density Bir satisfies, for all r ∈ {1,2, . . . ,m} and i ∈ {1,2, . . . ,n}, the following condition:

∫
Du

Bir(u∗,ω
∗
,u)du = 1, ∀u∗,ω

∗ ∈ Du. (5.22)

Bearing all above in mind, the thermostatted kinetic framework for open systems with proliferative/destructive and mutative
interactions now reads:

∂t fi(t,u)+TFi
[f](t,u) = Ji[f](t,u)+Ni[f](t,u)+Mi[f](t,u)+Qi[f,gi](t,u). (5.23)
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Fig. 8. Distribution function of the Cc for α = 0.8 and for F2 = 0 (left panel) and for F2 = 0.0005 (right panel).
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Fig. 9. The time evolution of the density of ISc (left panel) and of the global activation energy (right panel) for α = 0.8 and F2 = 0 (solid line),

F2 = 0.0005 (dashed line).

It is worth stressing that usually the interaction domain of the cell with state u∗ is not the whole domain Du but a subset
Ωu∗ ⊆ Du, which contains the cells with activity u∗ ∈ Ωu∗ that are able to interact with the particles with activity u∗. This
is a phenomenon that is typical in tumor dynamics and specifically when the immune system is not capable to interact with
all the tumor cells (tumor escape), see the review paper [20]. Specifically the immune response fails to completely eliminate
the tumor, and the interact process results in the selection of tumor cell variants that are able to resist, avoid, or suppress the
antitumor immune response, leading to the escape phase. Accordingly, a positive function ω(u∗,u

∗) can be introduced to weight
the interactions among the cells; this function is assumed normalized with respect to integration over u∗ and it has a compact
support in the domain of influence Ωu∗ ⊆ Du of the interactions. Moreover:

∫
Du

ω(u∗,u
∗)du∗ =

∫
Ωu∗

ω(u∗,u
∗)du∗ = 1. (5.24)

The development of a model which includes a therapy against the keloid and that takes into account the above raised issues
is object of future research directions. Moreover the possibility to perform an asymptotic analysis that allows the derivation of
the dynamics at the tissue scale is a further research perspective. The asymptotic analysis can be performed by employing the
methods developed in papers [21,22].

The final goal is the identification of the parameters with the aim to compare the emerging phenomena with the experimental
data.
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