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Abstract

Experiments have shown that in porous ductile materials, cyclic loadings lead to lower fracture
strains than monotone ones. The effect has been tentatively ascribed to a continued increase of
the mean porosity during each cycle with the number of cycles (“ratcheting of the porosity”).
In this work, we first perform finite-element-based micromechanical simulations of elementary
hollow cells. These cells are initially spherical, contain an initially spherical void and are loaded
cyclically through conditions of homogeneous boundary strain rate; the triaxiality is held con-
stant throughout in absolute value. These simulations fully confirm the interpretation of the
reduced fracture strains under cyclic loadings just mentioned. The modelling of the ratcheting
of the porosity is then discussed. Gurson (1977)’s classical model is shown not to be able to
predict such an effect, the evolution of the porosity being stabilized right from the first semi-
cycle. The so-called LPD model due to Leblond et al. (1995), an improved variant of Gurson
(1977)’s model with a more refined description of strain hardening, makes a better job but fails
to accurately reproduce the results of the micromechanical simulations. One explanation of the
discrepancy is the assumption of positively proportional straining made in this model, which is
basically inadequate for cyclic loadings. An improved version of the LPD model is introduced;
this version discards this assumption, at the expense of introduction and radial discretization
of an underlying spherical “microcell” at each material point. It is not significantly more com-
putationally expensive than the old one and permits a satisfactory reproduction of the results
of the micromechanical simulations. This paves the way to simulations of ductile rupture under
cyclic loadings within the framework of Gurson-like models.

Key words: Porous ductile materials, cyclic loadings, ratcheting of the porosity, numerical
simulations, theoretical modelling
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1 Introduction

Experiments performed on both CT specimens (Kobayashi et al., 1991) and cracked pipes
(Schmidt et al., 1991) have clearly shown that in ductile metals, the strain to fracture is
considerably lower, for a given load level, if this load is reached under cyclic conditions
than if it is reached monotonically. The experiments depicted in Schmidt et al. (1991)’s
report emphasize the influence of strain hardening upon this reduction of ductility: it is
more important for stainless steels, exhibiting considerable strain hardening, than for less
hardenable low-alloy steels.

The problem was investigated from a more theoretical point of view by Gilles et al. (1992).
After due elimination of other possible explanations, they concluded that the reduction
of ductility under cyclic loadings probably arises from an effect of gradual increase of
the mean porosity during one cycle with the number of cycles. This effect will be termed
ratcheting of the porosity in the sequel, by analogy with the more usual ratcheting of the
strain. To support their conclusion, Gilles et al. (1992) performed finite-element based
micromechanical simulations of cylindrical elementary cells made of some hardenable von
Mises material. These cells contained an initially spherical void and were subjected to
cyclic loadings under conditions of fixed triaxiality in absolute value. The simulations
confirmed the existence of the ratcheting of the porosity anticipated by the authors.
This finding was however somewhat impaired by the fact that the simulations involved
fluctuations of the triaxiality of the order of a percent. Since the porosity rate is highly
sensitive to the value of the triaxiality (as was shown in numerous works starting with the
seminal one of Rice and Tracey (1969)), such fluctuations might be sufficient to explain
a small increase of the mean porosity from one cycle to the next one.

Gilles et al. (1992)’s micromechanical simulations and analysis were improved by Devaux
et al. (1997). First, these authors performed simulations analogous to those of Gilles et
al. (1992) but with a much better control of the triaxiality, thus eliminating any possi-
ble doubts on the accuracy of the results. The new simulations confirmed the existence
of the ratcheting of the porosity in a definitive way. Second, they showed that Gurson
(1977)’s classical model for porous ductile materials does not predict this phenomenon,
but stabilization of the evolution of the porosity right from the first semi-cycle. This wrong
prediction was shown to arise from a too crude modelling of strain hardening within the
model. Its weak point was shown to be the fact that the same “average yield stress of
the matrix” appears in both the “square” and “cosh” terms of Gurson’s yield function.
Finally Devaux et al. (1997) compared the results of their simulations to the predictions
of the so-called LPD model (Leblond et al., 1995). This is a variant of Gurson (1977)’s
model with an improved description of strain hardening, involving distinct “average yield
stresses of the matrix” in the “square” and “cosh” terms of the yield function. It was con-
cluded that the predictions of the LPD model for cyclic loadings are qualitatively better
than those of Gurson’s model, but quantitatively still liable to improvement.

In spite of the points it made, Devaux et al. (1997)’s conference proceedings paper was not
deemed conclusive enough by the authors to warrant publication in a scientific journal.
Its main drawback was judged to be its lack of proposal of a Gurson-like model able
to accurately reproduce the results of micromechanical simulations of the ratcheting of
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the porosity. Such a model is indispensable for future finite-element based simulations of
ductile rupture of full-size specimens or structures under cyclic loadings.

Later papers on the subject included the works of Besson and Guillemer-Neel (2003),
Brocks and Steglich (2003), Rabold and Kuna (2005), Steglich et al. (2005) and Mbiakop
et al. (2014). They were essentially devoted to further micromechanical simulations along
the lines initiated by Gilles et al. (1992) and Devaux et al. (1997), sometimes for more
complex (cubical) elementary cells. An effort was made in most papers to compare the
results of the new simulations to various model predictions. However the match was not
generally better than that found by Devaux et al. (1997) for the LPD model, and no new,
more satisfactory model was proposed. Thus the conclusions reached merely confirmed
those of Devaux et al. (1997).

It is obvious from the description of these studies that they still leave considerable room
for improvement. Among other things:

• If the goal is to define a new Gurson-type model better fit for cyclic loadings, it is
preferable to perform micromechanical simulations for spherical elementary cells, rather
than cylindrical ones. Indeed such models are based on approximate homogenization of
the former type of cell. 1

• Similarly, micromechanical simulations with artificially enhanced values of Young’s
modulus are desirable. Indeed the homogenization procedure underlying the derivation
of Gurson-type models is always based on neglect of elasticity.

• More importantly, the mitigated success of the LPD model evidenced by Devaux et
al. (1997), in the case of cyclic loadings, essentially arose from the hypothesis made in
this model of positively proportional straining of the elementary cell considered. This
simplifying assumption is completely unrealistic for cyclic loadings. It was introduced in
order to get an analytic expression of the distribution of strain hardening within the cell
resulting from the previous mechanical history. The development of computer storage
capabilities permits to now drop this unrealistic hypothesis and analytical calculation.
This may be done at the expense of numerical calculation and storage of a large but
still reasonable number of internal variables.

The aim of this paper is to improve the numerical study and the theoretical modelling
of the ratcheting of the porosity under cyclic loadings along these lines. The paper is
organized as follows:

• Section 2 presents some new micromechanical simulations of an elementary porous cell
subjected to cyclic loadings. These simulations differ from previous ones essentially
through the shape of the cell (spherical instead of cylindrical or cubical) and the very
high value of Young’s modulus.

• Section 3 recalls Devaux et al. (1997)’s proof of absence of ratcheting of the porosity
under cyclic loadings within Gurson (1977)’s original model. This proof is provided for

1 Of course, spherical cells are less easily “stacked up” than cylindrical ones to build a fully dense
material, and in this sense less “realistic”. But they are nevertheless preferable in a first step
for the sake of accurate assessment of the model; later adjustment to other cell shapes is always
possible for instance through introduction of Tvergaard (1981)’s famous heuristic q-parameter.
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completeness and because Devaux et al. (1997)’s work is not easily accessible.

• Section 4 briefly expounds the equations of the LPD model in its original version
(Leblond et al., 1995). A minimum but indispensable presentation of the underlying
homogenization procedure is included.

• Finally Section 5 presents the improved version of the LPD model proposed, together
with a comparison of its predictions with the results of the micromechanical simulations.

2 Micromechanical simulations of void growth under cyclic loadings

2.1 Preliminary remarks

Before embarking on any micromechanical simulation of elementary hollow cells loaded
cyclically, it is useful to make some qualitative remarks. These remarks are independent
of any “homogenized” model used to approximately describe the behaviour of such cells.

• In the absence of strain hardening and elasticity, the evolution of the porosity must
stabilize instantaneously (that is right from the first semi-cycle) under conditions of
proportional overall straining or stressing. To establish such a property, note that if the
stress tensor changes sign, the von Mises equivalent stress remains unchanged whereas
the plastic strain rate tensor changes sign. (This results from the symmetry of the
yield locus with respect to the origin, combined with the normality property of the
plastic flow rule). It follows that given some velocity and stress fields satisfying the in-
stantaneous equations of elastoplasticity on a given configuration, one obtains another
possible instantaneous solution by simply changing the signs of these fields. The con-
clusion follows through integration in time during the tensile and compressive phases of
each cycle: the full sequence of cell geometries and porosities met during the first tensile
or compressive semi-cycle is met in reverse order during the following compressive or
tensile semi-cycle. 2

• Strain hardening destroys the symmetry of the tensile and compressive phases of each
cycle. Indeed the continuous increase of the yield stress (for isotropic hardening), or
the displacement of the center of the yield surface (for kinematic hardening), introduce
some irreversibility. In the case of isotropic hardening for instance, closing a pre-opened
void requires a higher stress in absolute value than closing a pristine one, because of
the increased yield stress of the surrounding matrix.

• Elasticity also destroys the symmetry of the tensile and compressive phases of each cycle.
Indeed it introduces, upon each change of sign of the load, a change of regime from a
plastic loading phase to an elastic unloading phase. Thus the beginning of a tensile or
compressive semi-cycle is not symmetrical to the end of the preceding compressive or
tensile semi-cycle.

2 This somewhat paradoxical reversibility property for rigid-ideal-plastic solids is the analog,
for solid mechanics, of the classical reversibility property of Stokes’s equations, for extremely
viscous fluids.
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A consequence of what precedes is that the ratcheting of the porosity, if present, is fun-
damentally tied to two features of the material behaviour: strain hardening and elasticity.
With regard to strain hardening, there is a connection here with Schmidt et al. (1991)’s
observation that the steeper the hardening curve, the stronger the reduction of the fracture
strain in cyclic experiments. On the other hand, the effect of elasticity upon the ratcheting
of the porosity, although strictly nonzero, may be considered as minor, because elastic
strains are generally much smaller than plastic ones in problems of ductile rupture.

We shall therefore concentrate hereafter on the sole effect of strain hardening by consid-
ering rigid-hardenable materials. In addition, hardening will be assumed to be of isotropic
type, following the hypothesis made in most theoretical homogenized models and notably
that of Gurson (1977). The study of kinematic hardening will be envisaged in some future
work.

2.2 Principle of the simulations

The micromechanical simulations are quite analogous to those performed by Koplik and
Needleman (1988), the initiators of such numerical studies of elementary cells in porous
ductile materials, except for the cyclic character of the loadings. An initially spherical cell
Ω of centre O, radius b, containing an initially concentric spherical void ω of radius a, is
subjected to some axisymmetric loading with axis of rotational symmetry Oy (Figure 1).

Fig. 1. Schematic view of the cell and its loading

The loading is imposed through conditions of homogeneous boundary strain rate. These
conditions, defined by Mandel (1964) and Hill (1967), were used by various authors in the
derivation of homogenized, Gurson-type models. They read:

v(x) = D.x ∀x ∈ ∂Ω , Dxx = Dzz 6= Dyy, other Dij = 0, (1)

where v denotes the velocity, x the current position, D the overall (symmetric) strain
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rate tensor, and ∂Ω the boundary of Ω. The nonzero components Dxx = Dzz, Dyy of D
are continuously adjusted so as to respect conditions of proportional overall stressing:

Σ(t) = λ(t)Σ0. (2)

Here Σ denotes the overall (symmetric) stress tensor, λ(t) a time-varying, positive or
negative scalar, and Σ0 a fixed, axisymmetric, symmetric tensor. The overall triaxiality
T is defined by

T ≡
Σm

Σeq
(3)

where Σm ≡ 1
3
trΣ and Σeq ≡

(

3
2
Σ′ : Σ′

)1/2
denote the overall mean and von Mises

equivalent stresses (Σ′ is the deviator of Σ). Conditions (2) ensure constancy of this
triaxiality in absolute value.

The porosity (void volume fraction) f is defined by

f ≡
vol(ω)

vol(Ω)
=

a3

b3
(4)

where vol(ω) denotes the volume of the void and vol(Ω) that of the cell (including the
void). It is studied as a function of the overall algebraic (signed) equivalent strain Ēeq.
This quantity is defined by the formula

Ēeq ≡
∫ t

0
sgn (Σm(τ))Deq(τ)dτ (5)

where sgn(x) denotes the sign of x and Deq ≡
(

2
3
D′ : D′

)1/2
the overall von Mises equiva-

lent strain rate (D′ is the deviator of D). Note that Ēeq increases in tension but decreases
back in compression, unlike the usual equivalent strain rate. Each cycle is composed of
two semi-cycles. The first is tensile (Σm > 0, T > 0) and involves an increase of Ēeq from
0 to some prescribed maximum value Ēmax

eq . The second is compressive (Σm < 0, T < 0)
and involves a decrease of Ēeq back from Ēmax

eq to 0.

The 2D, axisymmetric mesh used is represented in Figure 2 in its initial, undeformed con-
figuration. The sole upper half of the structure is discretized, thanks to symmetry about
the horizontal mid-plane. The mesh is made of 1640 bilinear selectively subintegrated
quadrilaterals and 1681 nodes. The initial porosity is f0 = 10−3.

The elastic constants of the material considered are E (Young’s modulus) = 1, 500 GPa
and ν (Poisson’s ratio) = 0.3. The value of E is artificially enhanced so as to simulate a
quasi-rigid material, following the remark made in the Introduction. Strain hardening is
assumed to be purely isotropic. The stress-strain curve in uniaxial tension is that of the
A508 Cl.3 steel used in nuclear components; it is represented in Figure 3. The yield stress
is regarded as constant for equivalent strains larger than 0.85 (largest value considered in
the figure).

At each step of the calculation, the volumes of the void and the cell are deduced from the
positions of the nodes lying on the internal and external surfaces of the mesh, accounting
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Fig. 2. Initial mesh of the hollow sphere - f0 = 10−3
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Fig. 3. Stress-strain curve of the A508 Cl.3 steel in uniaxial tension

for axisymmetry; the value of the porosity follows. The nonzero components of the overall
stress tensor are obtained from the formula

Σij =
1

vol(Ω)

∫

Ω−ω
σij(x) dΩ (6)

where the σij denote the components of the local stress tensor. A dichotomy is used to
adjust the value of the ratio Dxx/Dyy so as to respect the prescribed value of the ratio
Σxx/Σyy within an accuracy of 10−3. This method is rustic but robust. In practice the
prescribed value of Σxx/Σyy is positive and smaller than unity, so that Σyy > Σxx > 0
in tension and Σyy < Σxx < 0 in compression: the largest overall principal stress in
absolute value is the axial one, Σyy. Three values of the absolute value of the triaxiality
are considered, |T | = 1, 2 and 3. In view of the very different corresponding porosity rates,
different maximum values of the overall algebraic equivalent strain Ēmax

eq are considered
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for the various values of |T |: Ēmax

eq = 0.4, 0.2 and 0.08 for |T | = 1, 2 and 3 respectively.
Four cycles are simulated in each case.

All computations use the Large Strain Plasticity option of the SYSTUSr finite element
programme developed by ESI-Group.

2.3 Results

Figure 4 is included to facilitate understanding of the next, more essential ones. It con-
siders the typical case |T | = 3. First, Figure 4(a) displays the calculated evolution of
the overall algebraic equivalent strain Ēeq in time. During each cycle, this strain increases
from 0 to some maximum value, then decreases back to 0. Second, Figure 4(b) displays the
evolution of the normalized porosity f/f0 in time. Again, during each cycle, this porosity
increases from some minimum value to some maximum one, then decreases back. However
the maximum reached increases with the number of cycles.

Figures 5, 6 and 7 combine such figures by eliminating time and now displaying the
evolution of the normalized porosity f/f0 directly as a function of the overall algebraic
equivalent strain Ēeq. These figures are for the values |T | = 1, 2, 3 respectively. A specific
colour is used for each cycle for ease of identification. The ratcheting of the porosity is
conspicuous in all cases. It is however much more important for the higher values of |T |,
obviously because of the larger values of the porosity rate. In fact, the minimum value of
f is almost invariable from one cycle to the next one, but its maximum value gradually
increases. This increase is an important feature since what governs the possible onset of
coalescence of voids (leading to formation of a macroscopic crack) during one specific cycle
is precisely the maximum porosity reached during this cycle.

A complementary simulation of the first two cycles has also been performed in the absence
of strain hardening (ideal-plastic material), for the value |T | = 3. Figure 8 compares the
results of this simulation to those obtained when including it. There is almost no ratcheting
of the porosity for the ideal-plastic material. This provides a double check:

• On the values of the elastic constants used. Indeed it has been noted in Section 2.1 that
elasticity may generate a ratcheting of the porosity even in the absence of strain hard-
ening. Absence of this ratcheting is therefore a confirmation that the value of Young’s
modulus used is high enough for the material to be safely considered as elastically
quasi-rigid, as desired.

• On the control of the triaxiality. Indeed spurious variations of |T | between the tensile
and compressive parts of a cycle may generate some asymmetry between them. There-
fore absence of ratcheting of the porosity, that is symmetry between the tensile and
compressive parts of a cycle, implies that the accuracy of 10−3 used in the control of
the ratio Σxx/Σyy is small enough to warrant absence of such variations.
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Fig. 4. Evolutions of the algebraic equivalent strain and the normalized porosity as functions of
time - Numerical simulation, |T | = 3

3 Absence of ratcheting of the porosity in Gurson’s original model

The first step in the theoretical analysis of the ratcheting of the porosity is to note that
Gurson (1977)’s homogenized model, in its original form, fails to predict such an effect.
This stems from the following property (Devaux et al., 1997):

Consider an elementary porous cell made of some rigid-hardenable material and subjected
to some cyclically, proportionally varying overall stress tensor Σ(t). Let f0 denote the
initial porosity and |T | the prescribed, constant absolute value of the triaxiality. Gurson

9



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
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Fig. 5. Evolution of the normalized porosity as a function of the overall algebraic equivalent
strain - Numerical simulation, |T | = 1 - Cycle 1: violet; 2: red; 3: orange; 4: yellow
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Fig. 6. Evolution of the normalized porosity as a function of the overall algebraic equivalent
strain - Numerical simulation, |T | = 2 - Cycle 1: violet; 2: red; 3: orange; 4: yellow

(1977)’s model, when applied to this cell considered as a homogeneous volume element,
asserts that its present porosity f is a function of the sole parameters f0 and |T | plus the
algebraic equivalent strain Ēeq defined by equation (5).

A consequence of this property is that the curve composed of the successive points (Ēeq, f)
must be identical for all successive semi-cycles, since these semi-cycles all have the same
values of f0 and |T |. This means that the evolution of the porosity must be stabilized
right from the first semi-cycle, which (erroneously) rules out ratcheting.

The proof of the property announced consists of three steps. In a first step, start from the
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Fig. 7. Evolution of the normalized porosity as a function of the overall algebraic equivalent
strain - Numerical simulation, |T | = 3 - Cycle 1: violet; 2: red; 3: orange; 4: yellow
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Fig. 8. Comparison of the evolutions of the normalized porosity with and without strain hard-
ening - Numerical simulation, |T | = 3 - Cycle 1: violet; 2: red; 3: orange; 4: yellow

expression of Gurson (1977)’s criterion,

Σ2
eq

σ̄2
+ 2qf cosh

(

3

2

Σm

σ̄

)

− 1− q2f 2 = 0,

where σ̄ denotes some “average yield stress” of the matrix and q Tvergaard (1981)’s
famous parameter. Rewrite this expression in the form

X2 + 2qf cosh
(

3

2
|T |X

)

− 1− q2f 2 = 0 , X ≡
Σeq

σ̄
(7)
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(X is a dimensionless “reduced equivalent stress”). Equation (7) implicitly defines X as
a function of the sole variables |T | and f :

X ≡ Φ (|T |, f) . (8)

In a second step, combine the evolution law of the porosity and the (normal) flow rule to
get

ḟ = (1− f) trD =
3qf(1− f)

2

σ̄

Σeq
sinh

(

3

2

Σm

σ̄

)

Deq

=
3qf(1− f)

2X
sinh

(

3

2
|T |X

)

sgn(Σm)Deq.

This implies that

ḟ

sgn(Σm)Deq
=

df

dĒeq
=

3qf(1− f)

2X
sinh

(

3

2
|T |X

)

so that the derivative df/dĒeq depends only on |T |, f and X . But X depends itself only
on |T | and f by equation (8). It follows that df/dĒeq depends only on |T | and f :

df

dĒeq
≡ Ψ(|T |, f). (9)

The third, final step consists of integrating the differential equation (9) with respect to
Ēeq. Separation of variables yields

df

Ψ(|T |, f)
= dĒeq ⇒

∫ f

f0

df ′

Ψ(|T |, f ′)
= Ēeq. (10)

Equation (10)2 shows that f depends only on f0, |T | and Ēeq, as announced.

Detailed inspection of this proof reveals that it does not depend on the details of Gurson
(1977)’s expression of the yield function; nor does it depend on the evolution law of the
average yield stress σ̄. 3 In fact the only thing that really matters is that the effect of strain
hardening is summarized within a single internal variable σ̄, which permits to express the
yield function in terms of some “reduced stress tensor” Σ/σ̄. This means that any yield
criterion possessing the same feature of “reduction” of strain hardening effects to a single
internal variable, will lead to the same (erroneous) conclusion of absence of ratcheting of
the porosity under cyclic loadings.

4 The original LPD model

We now look for some homogenized description of porous ductile materials accounting for
the ratcheting of the porosity. In this search the remark just made leaves no choice but to

3 This is apparent in the fact that the precise form of the function Ψ is immaterial.
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consider a modelling of strain hardening effects involving at least two internal variables.
The LPD model proposed by Leblond et al. (1995) is of this type and is briefly reviewed
here.

Leblond et al. (1995)’s proposed overall yield function is a straightforward extension of
that of Gurson (1977):

Σ2
eq

Σ2
1

+ 2qf cosh
(

3

2

Σm

Σ2

)

− 1− q2f 2 = 0. (11)

In this expression Σ1 and Σ2 are macroscopic internal variables connected to the dis-
tribution of the local strain hardening within the heterogeneously deformed matrix. To
determine these internal variables, Leblond et al. (1995) used an approximate analytical
solution to some typical problem: namely, a hollow sphere made of some rigid-hardenable
material and subjected to some arbitrary loading through conditions of homogeneous
boundary strain rate. 4

Leblond et al. (1995)’s approximate solution accounted for the geometry changes due to
the sole hydrostatic part of the loading. Thus the cell was considered to approximately
remain spherical. The present inner radius a and outer radius b of this sphere, and the ra-
dial position r of the current point, were connected to the corresponding initial quantities
A, B and R through the following relations resulting from incompressibility:

a3 − A3 = b3 − B3 = r3 − R3 ≡ ∆ω. (12)

In this equation the quantity ∆ω represents, up to a factor of 4π/3, the additional void
volume and is given by

∆ω ≡
f − f0
1− f

B3. (13)

The derivation of the expressions of the internal variables Σ1 and Σ2 then included two
steps, each of which involved extra approximations:

(1) The determination of Σ1 and Σ2 as functions of the distribution of the local yield
stress σ(ǫeq) within the hollow sphere. The quantity ǫeq ≡

∫ t
0 deq(τ)dτ here denotes the

local cumulated equivalent strain (deq ≡
(

2
3
d : d

)1/2
is the local von Mises equivalent

strain rate).
(2) The determination of the distributions of ǫeq and σ(ǫeq) within the hollow sphere

resulting from the previous mechanical history.

In Step (1), expressions of Σ1 and Σ2 were deduced from estimations of the overall yield
stresses of the hollow sphere under purely deviatoric and purely hydrostatic loadings,

4 It is worth noting that Gurson (1977) developed his homogenization procedure for ideal-plastic
materials only; the approach he subsequently adopted to introduce strain hardening was purely
heuristic. In contrast, Leblond et al. (1995) sticked to micromechanics by extending Gurson
(1977)’s homogenization procedure to the hardenable case.
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respectively. These expressions were as follows:

Σ1 =
1

b3 − a3

∫ b3

a3
σ
(

〈ǫeq〉S(r)
)

d(r3) ; Σ2 =
1

ln(b3/a3)

∫ b3

a3
σ
(

〈ǫeq〉S(r)
) d(r3)

r3
. (14)

In this equation the symbol 〈 . 〉S(r) represents an average value over the spherical surface

S(r) of radius r, and 〈σ (ǫeq)〉S(r) has approximately been replaced with σ
(

〈ǫeq〉S(r)
)

.

Clearly, as soon as the function σ(ǫeq) is not a constant, the values of Σ1 and Σ2 are
distinct. More precisely Σ2 is larger than Σ1; indeed the logarithmic measure d(r3)/r3

puts more “weight” on the vicinity of the void’s boundary, where strain hardening is
maximum, than the standard measure d(r3).

The basis of Step (2) was the following expression of the time-derivative of 〈ǫeq〉S(r):

d

dt

[

〈ǫeq〉S(r)
]

= 〈deq〉S(r) ≃
√

〈d2eq〉S(r) ≃

√

4
b6

r6
D2

m +D2
eq (15)

where Dm ≡ 1
3
trD represents the overall mean strain rate. The final approximation here

results from use of Gurson (1977)’s trial velocity fields.

To integrate this expression analytically in time, it is necessary to introduce some hypoth-
esis on the evolution of the ratio Dm/Deq. Leblond et al. (1995) made the assumption
of positively proportional straining: D(t) = µ(t)D0 where µ(t) is a positive time-varying
scalar and D0 a fixed symmetric tensor. This hypothesis implied constancy of the ratio
Dm/Deq and led to a somewhat complex expression of 〈ǫeq〉S(r), which need not be recalled
here.

As mentioned in the Introduction, Devaux et al. (1997) compared the results of their
micromechanical simulations of the ratcheting of the porosity to the predictions of the LPD
model, in the form just expounded. The results were mitigated. This may be due to several
factors but one explanation certainly lies in the hypothesis of positively proportional
straining made in the model. Such a hypothesis does not apply to cyclic loadings since
each component of the overall strain rate changes sign from one semi-cycle to the next
one. 5

Some comments pertaining to the work of Gao et al. (1998) are finally in order here. In
this work the authors showed that the void growth rate depends on the hardening law of
the material. More specifically, adopting Gurson (1977)’s model with Tvergaard (1981)’s
q-parameter, they determined the “optimal” value of this parameter and concluded that
this optimal value depends on the hardening exponent. This conclusion bears several
connections with the problem investigated here:

• There is a first connection with the earlier work of Leblond et al. (1995) where the
LPD model was proposed. Indeed Leblond et al. (1995) reviewed Koplik and Needle-
man (1988)’s numerical simulations of elementary porous cells loaded under conditions

5 Admittedly Leblond et al. (1995) did not have such loadings in mind when developing their
model.
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of positive proportional stressing. They noted that the curve composed of the points
(Eeq, f) does not only depend upon the initial porosity and the fixed triaxiality, but also
on the hardening curve of the material. Gao et al. (1998)’s conclusion that void growth
is sensitive to strain hardening was just the same statement expressed in different words.

• There is a second, more subtle connection with the phenomenon of ratcheting of the
porosity under cyclic loadings. Indeed during such loadings strain hardening varies, and
even saturates after some degree of deformation. Combining this observation with that
of Gao et al. (1998) that the porosity rate depends on strain hardening, one concludes
that this rate must be different during the first cycles and the last ones. In other words,
Gao et al. (1998)’s observation implicitly entails the impossibility of stabilization of the
porosity evolution during cyclic loadings.

• Finally, although Gao et al. (1998)’s suggested modification of Gurson (1977)’s model
- use a q-parameter depending on the hardening law - differs from that proposed by
Leblond et al. (1995) and adopted here - introduce different internal variables Σ1 and
Σ2 in the square and the hyperbolic cosine -, the two are related. Indeed in both cases
the effect of strain hardening appears in two parameters (σ̄ and q, or Σ1 and Σ2) instead
of being concentrated in a single one. Gao et al. (1998)’s suggested model is probably a
viable alternative to the LPD model presented above and improved below. But it is also
probably more cumbersome to use. Indeed in Gao et al. (1998)’s model the q-parameter
must be calibrated for each hardening law, perhaps even as a function of the cumulated
equivalent strain, whereas it is a mere easy-to-calibrate constant in the LPD model.

5 An improved LPD model for cyclic loadings

5.1 Presentation of the model

Following the remark just made, we propose to retain all elements of the LPD model except
for the hypothesis of positively proportional straining. In fact, no hypothesis is made on
the evolution of the ratio Dm/Deq in time. Analytical integration of equation (15) then
becomes impossible, and numerical integration becomes necessary. One drawback is the
necessity of considering, at each “macroscopic material point”, an underlying spherical
“microcell” discretized radially, and storing the values of 〈ǫeq〉S(r) as internal variables at
the discretization points. But the development of computer storage capabilities makes such
a procedure quite feasible nowadays, provided that the microcell is discretized radially
with a reasonable number (say . 100) of points.

Thus, at each material point, the initial spherical microcell is discretized using N + 1
points:

A = R0 < R1 < ... < RN−1 < RN = B. (16)

One also considers the midpoints of the segments [Ri−1, Ri]:

R′

i ≡
1

2
(Ri−1 +Ri) (i = 1, ..., N). (17)
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At an arbitrary instant, the current positions ri, r

′

i of the points Ri and R′

i are

ri ≡
(

R3
i +∆ω

)1/3
(i = 0, 1, ..., N) ; r′i ≡

(

R′

i
3
+∆ω

)1/3
(i = 1, ..., N). (18)

The additional void volume ∆ω here is given by equation (13). The internal variables to
be stored are the average values 〈ǫeq〉S(r′

i
) of the cumulated equivalent strain ǫeq over the

various spherical surfaces of radius r′i, hereafter denoted 〈ǫeq〉i for shortness.

The quantities Σ1 and Σ2 are then given in terms of the internal variables 〈ǫeq〉i by the
following discretized equivalents of expressions (14):

Σ1 =
1

b3 − a3

N
∑

i=1

σ (〈ǫeq〉i)
(

r3i − r3i−1

)

; Σ2 =
1

ln(b3/a3)

N
∑

i=1

σ (〈ǫeq〉i)
[

ln(r3i )− ln(r3i−1)
]

.

(19)
Also, the evolution in time of the internal variables 〈ǫeq〉i is governed by equation (15)
which takes the form

d

dt
〈ǫeq〉i =

√

√

√

√4
b6

r′i
6D

2
m +D2

eq . (20)

Equations (19, 20) permit to calculate the evolution of the internal variables 〈ǫeq〉i, Σ1

and Σ2 during the whole mechanical history.

5.2 Comparison with the results of the micromechanical simulations

The comparison of numerical and theoretical results for the ratcheting of the porosity
requires to make a choice for Tvergaard (1981)’s q-parameter to be used in the improved
LPD model.

Tvergaard (1981) introduced this parameter to bring the predictions of the original Gur-
son model to closer agreement with the results of various micromechanical simulations of
plastic porous media. He interpreted the necessity of this adjustment as a result of the
difference between the spherical cell geometry considered by Gurson (1977) - for which
q was unity - and the more realistic geometries he himself considered. The choice q = 1
therefore seems appropriate in the present context; indeed the micromechanical simula-
tions of Section 2 were precisely performed for a spherical cell like in Gurson (1977)’s
work.

However, Gurson (1977)’s approximate homogenization procedure was very recently re-
considered by Leblond and Morin (2014). Upon refinement of an approximation made
by Gurson, these authors concluded that even for a spherical cell, his model requires in-
troduction of a slightly non-unity value of q to accurately predict the porosity rate. The
optimum value depends weakly upon the triaxiality. It may be estimated from Leblond
and Morin (2014)’s Figure 3 to be of the order of 1.13 for T = 1, 1.08 for T = 2 and 1 for
T = 3. These values are therefore adopted in the comparisons to follow.

The calculations based on the homogenized model are for a homogeneous volume element,
so that elementary “0D” simulations would be sufficient. However future applications
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of the LPD model, in its extended form, to cyclic loading of complex components are
envisaged. With these in mind, the model has been implemented into the SYSTUSr

general purpose finite element programme developed by ESI-Group. The algorithm for
the plastic correction of the elastic stress predictor (“projection” of this predictor onto
the LPD yield locus) is very similar to that proposed by Enakoutsa et al. (2007) for Gurson
(1977)’s model. It will therefore not be detailed here. The results given below have been
obtained by radially discretizing the spherical microcells with N + 1 = 41 points defining
40 thin spherical crowns. This exactly corresponds to the number of elements in the
radial direction in the micromechanical simulations. This discretization has been checked
to be fine enough to warrant highly accurate evaluations of Σ1 and Σ2 through numerical
integration.

Figures 9, 10 and 11 compare the evolutions of f versus Ēeq obtained in the microme-
chanical simulations and predicted by the improved LPS model. The values of |T | are 1, 2
and 3 in these three figures respectively. Again, different colours are used for the various
cycles. The agreement between the simulations and the model is acceptable for |T | = 1,
good for |T | = 2 and excellent for |T | = 3. The looser agreement observed for |T | = 1
does not really matter since the increase of the porosity is relatively small in this case.
The almost perfect agreement observed for |T | = 3 is in fact not surprising. Indeed for
such a high value of |T | the loading does not differ much from a purely hydrostatic one,
for which the LPD model in its improved form provides the exact solution.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
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Micromechanical simulation
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Fig. 9. Comparison of micromechanical simulations and model predictions for the evolution of
the normalized porosity - |T | = 1, q = 1.13 - Cycle 1: violet; 2: red; 3: orange; 4: yellow

Figures 12 to 15 provide complementary checks on the validity of the model. They consider
only the more interesting values 2 and 3 of |T |. First, figures 12 and 13 show the calculated
distribution of the cumulated equivalent strain on the current, deformed configuration of
the sphere. The instant selected corresponds to the end of the 7-th semi-cycle, when the
porosity reaches its absolute maximum. Note the very high levels of straining reached,
due to the strain concentration around the void. For |T | = 2, the hypothesis of persistent
sphericity made by the model is reasonably well satisfied. Also, the cumulated equivalent
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Fig. 10. Comparison of micromechanical simulations and model predictions for the evolution of
the normalized porosity - |T | = 2, q = 1.08 - Cycle 1: violet; 2: red; 3: orange; 4: yellow
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Fig. 11. Comparison of micromechanical simulations and model predictions for the evolution of
the normalized porosity - |T | = 3, q = 1 - Cycle 1: violet; 2: red; 3: orange; 4: yellow

strain varies little in the orthoradial direction. This justifies the replacement of 〈σ (ǫeq)〉S(r)
with σ

(

〈ǫeq〉S(r)
)

in the expressions (14) of Σ1 and Σ2. For |T | = 3 the two properties are
also satisfied, with a much better degree of accuracy.

Figures 14 and 15 show the radial distribution of the average value of the von Mises
equivalent strain rate over the spherical surface of radius r. Again, the instant selected
corresponds to the end of the 7-th semi-cycle. The values obtained in the micromechanical
simulations are compared to those predicted by the theoretical formula (15). This formula
provides an acceptable approximation for |T | = 2, and an excellent one for |T | = 3.
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Fig. 12. Distribution of the equivalent cumulated strain on the deformed mesh at the end of the
7-th semi-cycle - |T | = 2
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Fig. 13. Distribution of the equivalent cumulated strain on the deformed mesh at the end of the
7-th semi-cycle - |T | = 3

6 Conclusion

The aim of this work was twofold. The first goal was to perform micromechanical sim-
ulations of the ratcheting of the porosity in elementary porous cells subjected to cyclic
loadings. The second one was to propose a homogenized, Gurson-type model incorpo-
rating this effect; such a model should account for the currently observed reduction of
ductility under cyclic loadings.

The numerical simulations considered an initially spherical cell containing an initially
spherical void. This cell was loaded cyclically through conditions of homogeneous bound-
ary strain rate. A constant absolute value of the triaxiality was imposed throughout.
These simulations differed from previous ones essentially through the spherical shape of
the cell and consideration of a very high Young’s modulus. These differences were justified
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Fig. 14. Radial variation of the average value 〈deq〉S(r) at the end of the 7-th semi-cycle - |T | = 2
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Fig. 15. Radial variation of the average value 〈deq〉S(r) at the end of the 7-th semi-cycle - |T | = 3

by the wish to perform simulations complying better with the hypotheses made in the
theoretical derivation of Gurson-type models. The results fully confirmed the existence
of a ratcheting of the porosity under cyclic loadings. They also pointed out the decisive
influence of strain hardening upon the phenomenon.

It was then shown, as a first step in the theoretical analysis of the ratcheting of the porosity,
that Gurson (1977)’s model, in its original form, fails to reproduce such an effect. The
key point in this failure is Gurson (1977)’s assumption that the effect of strain hardening
may be summarized in a single macroscopic internal variable, representing some “average
yield stress” of the heterogeneously deformed matrix.

The LPD model was then briefly described. This variant of Gurson (1977)’s model, due to
Leblond et al. (1995), is an a priori good candidate for the correct theoretical description
of the ratcheting of the porosity. Indeed it drops Gurson’s introduction of a unique macro-
scopic internal variable to represent strain hardening effects, and introduces instead two
distinct internal variables in the “square” and “cosh” terms of Gurson’s yield function.
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When applied to elementary volumes subjected to cyclic loadings, the LPD model makes
a better job than Gurson’s model. However its predictions are still not quite satisfactory.
One explanation of this mitigated success lies in the hypothesis of positively proportional
straining made by the model. This hypothesis does not apply to cyclic loadings.

We finally depicted an improved version of the LPD model discarding this hypothesis. In
this version it becomes impossible to analytically integrate, at the various points of the
spherical “microcell” associated to each macroscopic material point, the evolution equa-
tion of the cumulated equivalent strain. Numerical integration requires radial discretiza-
tion of the microcell, and storage of additional internal variables, namely the values of
the local cumulated equivalent strain at the discretization points. The storage of a not-
too-large number of internal variables is quite feasible in view of present-day computer
capabilities. A very good comparison was observed between the results of the microme-
chanical simulations and the predictions of the LPD model, in this improved version.

Future developments of the work will include:

• Further numerical micromechanical simulations for more hardenable, stainless steels.
Such simulations are desirable since strain hardening is the major factor governing the
ratcheting of the porosity under cyclic loadings.

• Applications of the LPD model, in its improved version, to finite element studies of
ductile rupture of full-scale specimens or structures loaded cyclically.

• Extension of the work to matrices exhibiting kinematic or mixed isotropic/kinematic
hardening.
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HIGHLIGHTS 

 

• Numerical simulations of porous cells evidence a « ratcheting » of the porosity under 
cyclic loadings. 

• Gurson’s model does not reproduce such an effect, due to an oversimplified 
description of strain hardening. 

• An improved variant of this model is proposed and shown to better reproduce the 
results of the simulations. 

 


