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, the contrast of volatile element contents between a depleted upper mantle and an enriched transition zone could be maintained over geological time scales. Previous estimates of the fluorine content of the Bulk Silicate Earth (BSE), such as 25 ppm by mass, have assumed a homogeneous mantle. Although we do not know whether the TZ is F saturated or not, we used our new experimental data and estimates of the lower mantle F content from ocean island basalts, to estimate a maximum BSE fluorine content of 59 ppm by mass for a hydrous, F-saturated TZ. This upper bound on the range of possible BSE F content emphasizes the challenges when explaining the origin of volatile elements in the Earth from a carbonaceous chondrite late veneer.

Introduction

The exceptional finding of a diamond inclusion made of hydrous ringwoodite [START_REF] Pearson | Hydrous mantle transition zone indicated by ringwoodite included within diamond[END_REF] has definitively proved that the mantle transition zone (410-660 km depth) is a major deep repository for water. This discovery validates decades of experimental work devoted to the study of the solubility of water in the major nominally anhydrous silicate minerals of the transition zone, wadsleyite and ringwoodite (see the review after [START_REF] Smyth | Nominally anhydrous Minerals and Earth's deep Water Cycle[END_REF]. These two phases can host up to 3.3 wt % structural water equivalent (hydroxyl groups), through incorporation processes involving Mg vacancies for ringwoodite [START_REF] Blanchard | Incorporation of water in iron-free ringwoodite: A first-principles study[END_REF] and a combination of Mg and Si vacancies, depending on the water content, for wadsleyite [START_REF] Blanchard | Infrared signatures of OHdefects in wadsleyite: A first-principles study[END_REF]. While the deep water cycle has been extensively studied these last decades, almost nothing is known about the behavior of the most abundant halogen element: fluorine. This element has been intensively studied for igneous processes (see the review after Pyle and Mather, 2009 and references therein), particularly for volcanic degassing [START_REF] Schilling | Halogens in the Mantle Beneath the North Atlantic[END_REF][START_REF] Déruelle | Iodine abundances in oceanic basalts: implications for Earth dynamics[END_REF][START_REF] Jambon | Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle[END_REF]. F affects directly the silicate melt properties such as magma viscosity [START_REF] Dingwell | Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation[END_REF] or crystallization [START_REF] Wood | Effect of fluorine on near-liquidus phase equilibria of a Fe-Mg rich basalt[END_REF], and fluorine was for a long time believed to be stored in accessory phases such as phosphates, (apatite) or clinohumite or minor silicate minerals such as amphibole or phlogopite [START_REF] Smith | Halogen and phosphorus storage in the Earth[END_REF]. Moreover, fluorine has been shown to be in slight excess in the bulk silicate Earth compared to Carbonaceous Chondrites [START_REF] Mcdonough | The composition of the Earth[END_REF]. These estimates are based on concentrations measured in natural basalts and peridotites. A direct consequence is that the resulting budget (25 ppm F in the BSE, after [START_REF] Mcdonough | The composition of the Earth[END_REF] is too high to fulfill a model based on a volatile-rich chondrite origin for the late veneer. Indeed, [START_REF] Marty | The origins and concentrations of water, carbon, nitrogen and noble gases on Earth[END_REF] has calculated that the contribution of 2% of carbonaceous chondrite material would fulfill the carbon and water abundances of the Earth. This would also fulfill the natural estimated abundances for heavy halogen elements (Cl, Br, I), but the abundance of F requires a much higher contribution of 17%.

For these reasons it seems necessary to determine how F is stored within potential reservoirs of the mantle, and to consider whether the fluorine content in the BSE may have been over or underestimated. Therefore in an attempt to put constrains on the fluorine content in the upper mantle, fluorine concentrations have recently been measured in nominally anhydrous mantle minerals [START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF]Mosenfelder and Rossman, 2013a, b). These studies have demonstrated that up to 47 ppm of fluorine can be incorporated in natural olivine and pyroxene. By comparison, experimental studies performed to determine fluorine solubility in these major mantle mineral phases yielded maximum contents of fluorine of 4500 ppm to 1900 ppm in olivine [START_REF] Bromiley | Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals[END_REF][START_REF] Bernini | Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones[END_REF], 626 ppm in pyroxenes [START_REF] Dalou | Experimental determination of F and Cl partitioning between lherzolite and basaltic melt[END_REF], and 1110 ppm in pyrope [START_REF] Bernini | Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones[END_REF]. Like water, that is stored in silicate minerals as hydroxyl species, it has been proposed that the mantle fluorine budget can be entirely accommodated by these mineral phases [START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF][START_REF] Crépisson | Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle[END_REF]. Based on the observation of clumped fluoride-hydroxyl defects in pure-Mg olivine, the major upper mantle mineral, it is likely that fluorine and water cycles may be strongly coupled through the nominally anhydrous minerals [START_REF] Crépisson | Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle[END_REF].

Like for water, F may be transferred at depth during subduction processes. For example, experimental studies indicate that a dense hydrous magnesium silicate phase -superhydrous phase B -stabilized at subduction zone conditions in the transition zone. This phase might incorporate significant amounts of fluorine and carry it down to the deep mantle (e.g. [START_REF] Hazen | Crystal chemistry of superfluorous phase B (Mg 10 Si 3 O 14 F 4 ); implications for the role of fluorine in the mantle[END_REF]. By analogy with water, one may speculate that a significant repository for fluorine may exist in the transition zone (TZ). This is the hypothesis we would like to test in this study.

In this work, we measure the F solubilities in wadsleyite (Wd) and ringwoodite (Rw) to assess the F storage capacity of the TZ. Indeed, it is critical to know to which extent the potential storage capacity of the transition zone may affect the global F budget and cycle, within a framework whereby F would be continuously brought in the TZ by subduction.

Materials and methods

F-bearing olivine, wadsleyite and ringwoodite were synthesized from two different powders: (a) a mixture of MgO, SiO 2 , FeO oxides, and (b) a mixture of natural pure San Carlos olivine (Fo 90 ) fine powders mixed with SiO 2 . The addition of SiO 2 provides slight excess of silica (Mg/Si atomic ratio =1.76) in order to promote the formation of a silicate melt in equilibrium with the crystals that can incorporate the excess of fluorine and water [START_REF] Demouchy | Pressure and temperaturedependence of water solubility in Fe-free wadsleyite[END_REF]. F was added as a salt: NaF (up to 5 wt% in the bulk), whereas water was added as brucite in order to get a total amount of 2 wt% H 2 O. Mixtures were prepared in order to obtain bulk compositions of about Fo 90 , corresponding to the pyrolitic composition after Ringwood (1962). Wadsleyite, ringwoodite and olivine were synthesized in a multi-anvil press at pressures between 14 and 22 GPa and in the temperature range 1100°C to 1400°C. Typical run durations were between 30 minutes and 9 hours in either Re, Pt or Au-Pd capsules (Table 1). Experiments were performed at LMV Clermont-Ferrand and BGI Bayreuth following the procedures detailed in [START_REF] Frost | Fe-Mg partitioning between ringwoodite and magnesiowüstite and the effect of pressure, temperature and oxygen fugacity[END_REF][START_REF] Demouchy | Pressure and temperaturedependence of water solubility in Fe-free wadsleyite[END_REF].

Recovered samples were then embedded in crystal bond and mirror polished on oneside. The mineral phases were characterized using Scanning Electron Microscopy (SEM) at IMPMC-UPMC. Mineral identification was realized using Raman spectroscopy. The fine structure of the minerals, imaging, diffraction, and chemical measurements were performed with a JEOL 2100F transmission electron microscope (TEM) with a field emission gun, and equipped with JEOL EDX detectors at IMPMC (UPMC). The acceleration voltage was at 200 kV and we reached a resolution of 1.8 Å. The samples for TEM were prepared by Focused Ion Beam (FIB) with the dual beam Zeiss Crossbeam Neon 40 ESB at IMPMC (UPMC). The final lamella-thickness obtain is under 100 nm for suitable electron transparency. Major element compositions of the minerals were measured using electron microprobe analyses (EPMA) with an acceleration of 15 kV and 15 µm defocused beam at 10 nA on CAMECA-SX100 at CAMPARIS facility (UPMC, France).

Fluorine and hydrogen contents were measured using ion beam analysis at the nuclear microprobe of the LEEL, CEA, Saclay, France [START_REF] Khodja | The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool[END_REF]. F was measured using Particle Induced Gamma Ray Emission (PIGE) following the procedure described in [START_REF] Crépisson | Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle[END_REF]. Hydrogen was measured using Elastic Recoil Detection Analysis (ERDA) using the procedure described in [START_REF] Raepsaet | Micro-ERDA developments in order to improve the water content determination in hydrous and nominally anhydrous mantle phases[END_REF][START_REF] Bureau | Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA)[END_REF][START_REF] Withers | Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine[END_REF].

Before any analysis, the largest crystals were selected with SEM cartographies. PIGE and ERDA measurements have been realized simultaneously with Particle Induced X-Ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS) measurements, using a 3x3µm 2 proton beam of 3 MeV for PIGE and a 4x16 µm 2 4 He beam of 3 MeV for ERDA. ERDA analyzes were performed on areas previously analyzed for F.

All measurements were performed by a scanning the beam on large selected areas from 24x50 to 150x100 µm 2 . Data acquisitions were performed with a beam current of 500-550 pA, during 1 or 2 hours depending on the concentrations. The combination of RBS and PIXE with ERDA and PIGE was useful to identify the analyzed crystals (Rw, Wd, Ol) and to detect any chemical heterogeneity such as NaF-rich fine intergrowths in the grain boundaries.

Data were first processed using the RISMIN [START_REF] Daudin | Development of "position-charge-time" tagged spectrometry for ion beam microanalysis[END_REF] to isolate any chemical heterogeneities and identify the desired crystals, This is possible thanks to the multi-detection system: PIXE, RBS and PIGE allowing the comparison of elemental repartition in the investigated areas, i.e. Na versus F maps, but also Fe and Ca versus F maps, together with SEM pictures of the investigated areas. By comparing the repartitions of these elements we can identify and select (1) Wd, Ol and Rw areas (2) Na not contaminated areas. This is illustrated in the Figure 1 that describes the selection process for sample #3588.

After the selection of areas of interest, F and H contents were obtained using SIMNRA software [START_REF] Mayer | SIMNRA User's Guide[END_REF] when PIXE spectra were processed using GUPIXWIN [START_REF] Campbell | The guelph-pixe software package-II[END_REF] software in order to get concentration with respect to elements of interest such as Fe.

PIGE analysis were performed thanks to the quantification of the 197 keV gamma ray emission resulting from 19 F(p,p'γ) 19 F reaction [START_REF] Mosbah | PIGME fluorine determination using a nuclear microprobe with application to glass inclusions[END_REF][START_REF] Jesus | Excitation function and cross-sections of the reaction 19 F(p,p'γ) 19[END_REF][START_REF] Habrioux | Nuclear microanalysis of lithium dispersion in LiFePO 4 based cathode materials for Li-ion batteries[END_REF]. Na was simultaneously quantified by this method using the 439 keV ray produced by the 23 Na(p,p'γ) 23 Na reaction. These conditions allow a depth of investigation of about 35 µm for F which is < to the larger size of the investigated crystals except for anhydrous F-bearing minerals. Indeed, when proton beam depth penetration in minerals can effectively reach up to 62 µm owing to the relatively low stopping power of protons, the gamma-ray emission from fluorine is induced only in the beginning of the path, as reaction cross-section falls close to zero for energies under 1.5 MeV as attested by a recent measurement reported in [START_REF] Jesus | Excitation function and cross-sections of the reaction 19 F(p,p'γ) 19[END_REF].

When ERDA is standard less [START_REF] Raepsaet | Micro-ERDA developments in order to improve the water content determination in hydrous and nominally anhydrous mantle phases[END_REF][START_REF] Bureau | Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA)[END_REF][START_REF] Withers | Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine[END_REF], the quantification of fluorine requires the use of F-known content samples having a bulk composition similar to the samples (i.e. silicates). Therefore we have used the pantellerite KE12 (4200 ppm F and 5.32 wt% Na, [START_REF] Métrich | Experimental-Study of Chlorine Behavior in Hydrous Silicic Melts[END_REF] for PIGE calibration. We have preferred this standard instead of a CaF 2 window or a maccusanite glass containing 1.33 wt% F and 3.11wt% Na [START_REF] Pichavant | The Macusani glasses S.E. Peru : evidence of chemical fractionation in peraluminous magmas, in "Magmatic processes : physico-chemical principles[END_REF], because the stopping power of KE12 is similar to those of our samples. We have used more analysis performed on KE12 and on the Macusanite glass to validate the fluorine quantification. Results obtained for the pantellerite glass KE12 are ranging from 4187 to 4209 ppm F.

Results

Samples have been synthesized in multi-anvil press apparatuses from 14 to 22 GPa and from 1100°C to 1400°C (see Materials and methods). This temperature range is relevant for the transition zone and commonly used in experimental studies (e.g. [START_REF] Bolfan-Casanova | Water partitioning between nominally anhydrous minerals in the MgO-SiO 2 -H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle[END_REF][START_REF] Demouchy | Pressure and temperaturedependence of water solubility in Fe-free wadsleyite[END_REF][START_REF] Smyth | Nominally anhydrous Minerals and Earth's deep Water Cycle[END_REF]. The run durations were ranging from 240 to 420 minutes, except for the references, Wd and Rw free of F and H (20 minutes).

No chemical zonation was observed in the investigated crystals and we assume that samples were at chemical equilibrium. Recovered samples contain crystals of Ol, Wd, Rw, depending on the pressure coexisting with clinoenstatite or stishovite, interstitial NaF-rich silicate glass also enriched with respect to H (Table 2). Crystal areas (20 μm 2 ), are consistently smaller for anhydrous samples, than for hydrous samples, which are typically ∼ 40 µm 2 in average (Fig 2).

No particular textural difference or abrupt increase in the amount of quenched melt were observed between hydrous experiments performed at different temperatures.

Transmission Electron Microscopy (TEM) investigation of a thin section containing F-rich Rw (H3588) recovered using focused Ion Beam (FIB) shows that the structure revealed by selected area electron diffraction (SAED) is consistent with a pure single Rw crystal (Fig. 3). This observation also shows that no inclusion of salt or melt is present, and that F and water are incorporated in the crystal lattice. EDX analyses and elemental cartography performed using PIXE (Particle Induced X-Ray Emission) and PIGE (Particle Induced Gamma Ray Emission) do not indicate any chemical heterogeneity in the bulk crystals. Moreover, the Na/F ratios measured by PIGE in Rw and Wd is systematically << 1.21 (NaF ratio), confirming that the detected F is corresponding to a structural concentration and not to the presence of any sub-micron NaF inclusions. Na contents are high, from 713 to 3230, however, such high Na contents have already been reported in wadsleyites (2100-2400 ppm, [START_REF] Gudfinnsson | The effect of trace elements on the olivine-wadsleyite transformation[END_REF] synthesized at 1600°C and 14.2 GPa. In these experiments Na 2 O was present in the starting materials (a glass) and was not in excess (0.42 wt.% Na 2 O).

Ol, Wd and Rw compositions range from Fo 88 to Fo 97 (with Fo defined as 100*(Mg/(Mg+Fe)), while F contents, determined by PIGE, range from 323 to 410 ppm F for Ol, from 665 to 1045 ppm F for Wd and from 186 to 1235 ppm F for Rw (Table 1). The detection limit for F ranges from 37 to 123 ppm F for any investigated phase. The highest F contents are found in anhydrous Wd and Rw (Table 1). With the exception of run H3695, Wd and Rw F contents are higher than those of Ol (Table 1 1).

When comparing different temperatures of synthesis, a slight decrease of F content is observed with increasing temperature in hydrous Rw. We do not have enough results to determine if a temperature effect would affect the F content of both Rw and Wd, similarly to what as it has been shown for water contents in Wd by Demouchy and co-workers (2005, see Fig 4). Figure 5 shows that the highest F contents are associated with quasi-anhydrous minerals when fluorine is examined as a function of H 2 O.

Discussion

Water and Fluorine in Ringwoodite and Wadseyite

For volatile elements, solubility measurements, i.e. determination of the maximum content of the element in a matrix (silicates minerals, melts), have been used for decades to understand deep processes such as magma degassing, partial melting and physical properties or to assess to mantle storage. Thus determining the upper limits of volatile contents is key to making progress in the understanding of volatile element cycling into the Earth.

We show an H 2 O solubility contrast for Ol (up to 428 ppm) compared with Wd and Rw (from 854 to 1404 ppm) with more water dissolved in the two high-pressure phases. This is in agreement with previous studies (e.g. [START_REF] Bolfan-Casanova | Water partitioning between nominally anhydrous minerals in the MgO-SiO 2 -H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle[END_REF]Ohtani et al., 2001;[START_REF] Demouchy | Pressure and temperaturedependence of water solubility in Fe-free wadsleyite[END_REF]) but the amount of water measured in Wd and Rw from this study is one order of magnitude lower than previously reported solubilities for these phases (up to 3 wt.% e.g. [START_REF] Smyth | Nominally anhydrous Minerals and Earth's deep Water Cycle[END_REF]. Such a significant reduction of OH incorporation is likely attributed to the presence of NaF salt which will reduce the H 2 O activity in the melt in equilibrium with the mineral phases. Previous studies have observed a significant decrease of OH incorporation in enstatite (2.5 GPa and 1150-1400°C), linked to the increase of NaCl or KCl content in starting materials [START_REF] Stalder | Hydrogen incorporation in enstatite in the system MgO-SiO 2 -H 2 O-NaCl[END_REF]). An additional possibility might be a competition process between OH and F for incorporation in the mineral lattices of Wd and Rw. Indeed, a recent study combining infrared characterization of experimentally F-and OHenriched olivines and first-principle calculations, Crépisson and co-workers (2014) have demonstrated a close association of fluoride, hydroxyl groups and Si vacancies. They found evidence for the presence of clumped fluoride-hydroxyl defects in the forsterite structure.

Whereas in NaF-free systems the proposed H 2 O incorporation mechanism mostly involves Mg vacancies in forsterite (e.g [START_REF] Balan | Theoretical infrared spectrum of OH-defects in forsterite[END_REF] and in ringwoodite [START_REF] Blanchard | Incorporation of water in iron-free ringwoodite: A first-principles study[END_REF]. [START_REF] Blanchard | Infrared signatures of OHdefects in wadsleyite: A first-principles study[END_REF] have also provided evidence for the association of hydroxyl groups with Si vacancies in H 2 O-rich wadsleyites. Assuming that F and OH share the same vacancies in Wd and Rw, and considering the slight F content decrease associated with increasing SiO 2 contents (Fig 6), we propose that F may at least partially be associated with Si vacancies. This suggests that H 2 O and F cycles are linked in the upper mantle and TZ, through Ol, Wd and Rw.

F solubilities measured in Rw (186-1235 ppm) and in Wd (665-1045 ppm) are similar for both phases and higher than any F concentrations measured in natural NAMs of the upper mantle. A comparison with previous experimental studies is moreover difficult because experimental conditions are not consistent between studies (pressures, bulk compositions, starting materials). Very high F contents experimentally obtained in olivines (e.g. in the 2-4 GPa pressure range: 1715 ppm F, [START_REF] Crépisson | Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle[END_REF], would suggest a possible pressure effect on F solubility.

Fluorine in the transition zone

From the lithophile behavior of F [START_REF] Mcdonough | The composition of the Earth[END_REF] and based on previous studies [START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF], it has been proposed that nominally anhydrous silicate phases (such as olivine and pyroxene Px) might accommodate the bulk F content of the whole upper mantle in regards to their high modal proportion in the mantle. However, the F contents measured in upper mantle natural Ol and Px are < 100 ppm [START_REF] Hervig | Fluorine and hydrogen in mantle megacrysts[END_REF][START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF]Mosenfelder and Rossman 2013a, b). Here we show that Wd and Rw are potentially important F-bearing minerals, and that the TZ is a good candidate for its storage for two reasons: (1) fluorine may have been trapped very early in the TZ when the mantle was crystallizing from the magma ocean; (2) fluorine may be regularly supplied to the TZ through subduction. Indeed, a regular water supply is expected from the slabs. F is lithophile compared to Cl, Br and I, which are hydrophilic (e.g. [START_REF] Bureau | Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry[END_REF][START_REF] Bureau | Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells[END_REF], therefore when most of the heavy halogen elements and a significant part of water are likely devolatilized from the slab during dehydration processes, most of the F may remain in the slabs en route to the TZ. Subduction would thus drive an annual global flux of 8.7×10 14 g H 2 O [START_REF] Peacock | Fluid Processes in Subduction Zones[END_REF]) and of 9.9-10x10 12 g F to the Earth's interior [START_REF] John | Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle[END_REF]. Large amounts of F and water are expected to be recycled back to the mantle (95% F and 87% water respectively, [START_REF] Peacock | Fluid Processes in Subduction Zones[END_REF][START_REF] John | Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle[END_REF]. Hydrous phases may transport F efficiently to the TZ (e.g. [START_REF] Hazen | Crystal chemistry of superfluorous phase B (Mg 10 Si 3 O 14 F 4 ); implications for the role of fluorine in the mantle[END_REF]. Once the subducted slab reaches the TZ, the storage of F and water would be enhanced by the tendency of many slabs to deflect horizontally, and to remain permanently or temporarily at the 660-km discontinuity (e.g. [START_REF] Fukao | Stagnant slabs in the upper and lower mantle transition region[END_REF].

It has been proposed that a neutral buoyant hydrous melt phase on the top of the TZ (410 km depth) could control the distribution of incompatible elements within the upper mantle, acting as a chemical filter, the so-called "water-filter" model [START_REF] Bercovici | Whole-mantle convection and the transition-zone water filter[END_REF]. In this model a high water content within the range 0.2 -2 wt.% is assumed in the TZ, which is consistent with the 1 wt. % of water measured in a natural diamond inclusion of ringwoodite [START_REF] Pearson | Hydrous mantle transition zone indicated by ringwoodite included within diamond[END_REF]. The water dissolved in the mantle would create a thin layer of melt at 410 km depth, corresponding to the transformation of Wd into Ol and a hydrous melt (Fig 7). This dehydration melting would create a 10 km thick layer of molten silicate just above the 410-km discontinuity that would retain most of the water together with incompatible elements. Since the melt is denser than the TZ minerals at these pressures it would remain stable. In this view of the mantle, the layer of melt would act as a filter by removing elements rising from the deep mantle and keeping the upper mantle chemically depleted and anhydrous [START_REF] Bercovici | Whole-mantle convection and the transition-zone water filter[END_REF]. Following this model, the TZ is enriched in water and fluorine even when the upper mantle is depleted.

The Fluorine budget in the Bulk Silicate Earth

Our new experimental data allow us to estimate an upper bound for the BSE content of F assuming that the TZ is hydrous and saturated in F. We have calculated a maximum value for the BSE content of F assuming that the TZ is hydrous and saturated in F. We have used the F content of 16 ppm for the lower mantle, determined by [START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF] from the concentrations of F measured in melt inclusions trapped in olivines from OIB products, when the degree of melting is of 2%. The crust is believed to contain 553 ppm F [START_REF] Rudnick | Composition of the Continental Crust[END_REF], the depleted mantle (TZ excluded) is expected to host 12 ppm F [START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF]. This F content, inferred from its concentration in Ol and orthopyroxene in spinel lherzolites, is in good agreement with the F concentration proposed for the depleted MORB mantle (11 ppm F, [START_REF] Salters | Composition of the depleted mantle[END_REF]. The calculated primitive OIB source is supposed to contain 16 ppm F (17 ppm including a contamination by 3% of recycled crust) based on the measurement of natural OIB volcanic samples [START_REF] Beyer | Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes[END_REF]. In addition, OIBs are assumed to be not affected in their ascent through the TZ [START_REF] Bercovici | Whole-mantle convection and the transition-zone water filter[END_REF]. In order to calculate the maximum amount of F in the TZ, we have used an average pyrolite mineral assemblage model, together with the F contents obtained in our experiments for Wd and Rw of mantle composition (Mg# 0.90, Table 1). We assume a high F content for Rw and Wd as a first approximation for the upper limit of the F BSE content. This is based on the recent discovery of high water content (1.5 wt.%) in a ringwoodite trapped in a natural diamond [START_REF] Pearson | Hydrous mantle transition zone indicated by ringwoodite included within diamond[END_REF] and makes the assumption that the OH and F cycles are linked in silicate minerals. This assumption needs to be verified by further studies, such as partitioning measurements, and the maximum F content in the TZ may be reconsidered later.

We have also assumed that F contents in clinopyroxene, garnet and Ca-perovskite are not significant.

We obtain a value of 23.8x10 22 g F for the BSE corresponding to 59 ppm F (Fig 7). This high limit value is twice higher than the previous calculation of 25 ppm F after [START_REF] Mcdonough | The composition of the Earth[END_REF], calculated from the Fluorine contents of MORBs and based on a homogeneous mantle. If the BSE contained this higher (59 ppm) amount of Fluorine, this would mean that about 70% of Earth's total fluorine budget would be currently stored in the transition zone. Assuming the present-day flux for F recycling into the mantle (John et al., 2011, fig. 7), more than 16 billion years would be necessary to fill the transition zone by subduction recycling if the TZ if it contained the maximum value of 16.8x10 22 g of F. As discussed above, the fluorine content of the bulk silicate Earth is probably in the range 25 to 59 ppm and most of the mantle's fluorine is probably stored in the transition zone. If all these assumptions are correct, it would mean that, F was stored in the TZ during the crystallization of the magma ocean during the Earth's differentiation in the Hadean. This is possible if we assume that the "water-filter" model [START_REF] Bercovici | Whole-mantle convection and the transition-zone water filter[END_REF] is an efficient process for F retention in the mantle and consequently a key control on the abundance of F in the Earth's crust.

The Earth is the result of possibly complex accretion and differentiation processes.

The primordial building material for the Earth is still the matter of strong debates (e.g. [START_REF] Marty | The origins and concentrations of water, carbon, nitrogen and noble gases on Earth[END_REF][START_REF] Javoy | The integral enstatite chondrite model of the Earth[END_REF][START_REF] Albarède | Volatile accretion history of the terrestrial planets and dynamic implications[END_REF] especially with respect to volatile elements. Considering the BSE contents in volatile elements after [START_REF] Mcdonough | The composition of the Earth[END_REF] and comparing them with the abundances of the carbonaceous chondrites (CC: the most primitive materials), it has been shown that fluorine is slightly enriched compared to heavy halogen elements (Cl, Br, I) and noble gases. Indeed, if hydrogen, carbon and heavy halogen contents would be obtained after the addition of 2 % of a CC late veneer, it would be necessary to add 17% mass of a carbonaceous chondrite to reach the observed BSE fluorine amount [START_REF] Marty | The origins and concentrations of water, carbon, nitrogen and noble gases on Earth[END_REF]. This would been even worse if the BSE would content more than 25 ppm. This also emphasizes the fact that the origin of F in the Earth is difficult to explain with the simple accretion of CI chondrites during the differentiation stage.

Our measurements show that a significant amount of fluorine could be stored in the transition zone, and we suggest that the global F budget of the Earth may have been underestimated. More experimental data are necessary to constrain the fluorine cycle and storage in the Earth.

Conclusion

We have shown that the fluorine solubility in Wd and Rw is high at water contents, pressures and temperatures relevant to the TZ. Therefore, we suggest that F may be significantly stored together with water in the TZ. The association of F and H 2 O shows that their two geochemical cycles are associated at least through their incorporation in nominally anhydrous minerals. Assuming that 95% of the subducted F is recycled back to the mantle, a significant amount of F would reach the TZ where the slab is believed to be stagnant. In this way the TZ would be continuously supplied in F and water by subduction processes. In the frame of the "water-filter model" at the top of the TZ, both F and water contents may be chemically zoned in the mantle at a steady state. The global content of F in the bulk silicate Earth is probably underestimated. Assuming a hydrous, F-saturated TZ, we calculate an upper limit for the BSE F content of 59 ppm wt., higher than the previous estimate of 25 ppm by mass assuming a homogeneous mantle [START_REF] Mcdonough | The composition of the Earth[END_REF]. It is not know whether the TZ is F-saturated but given this uncertainty we propose that BSE fluorine content is better quoted as being in the range between 25 and 59 ppm by mass. If a significant amount of F is stored in the TZ, it puts constrains on the models proposed to explain the origin of volatile elements in the Earth. We also suggest that the actual BSE content estimated for the heavy halogen elements chlorine, bromine and iodine may need to be revised, because these elements would also likely been stored in the mineral assemblage of the TZ, but their real contents in deep minerals remain unknown. A real progress in the understanding of the origin of volatile elements requires the determination of precise budgets for these elements in the whole Earth. [START_REF] Pyle | Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review[END_REF] and subducted F [START_REF] John | Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle[END_REF] and H [START_REF] Straub | The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones[END_REF] fluxes.

Figure captions

Distribution of F in the mantle is from this study. In this model the TZ is enriched both in F and H. T This region of the mantle may control the distribution of these two volatile elements via the "water filter" model [START_REF] Bercovici | Whole-mantle convection and the transition-zone water filter[END_REF]. 
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  ). Water contents measured by using Elastic Recoil Detection Analysis (ERDA), amount 428 H 2 O for Ol, whereas 864 to 956 ppm H 2 O are detected in Wd and 854 to 1404 ppm H 2 O are measured for Rw (Table

Table 1 : Starting materials, experimental conditions and run products

 1 Pd capsule, (**) Re-capsule, (***) Pt capsule, NaF pure salt, Mg(OH) 2 , brucite, for all powders : (Mg+Fe)/Si= 1.76. Larger grain sizes in µm are given in brackets

	Sample	P	T	Time	Starting	Description
		(± 1GPa)	(±50°C)	min	Material	
	San Carlos (SC)					Mixture of natural olivine powder +SiO2
	powder SCP					
	Synthetic					
	Powder SP					Mixture of SiO2 + MgO + FeO of San Carlos composition
	Samples					
	83(*)	15	1400	20	Pure SC	Wadsleyite
	H3698(*)	22	1400	20	Pure SC	Ringwoodite
	87_F(*)	14	1350	420	SCP + 5 wt.% NaF	Wadsleyite (20 µm), enstatite, NaF
	H3567(**)	20	1100	240	SCP+ 5 wt.% NaF	Ringwoodite (20 µpm), stishovite, NaF
	42_F(*)	14	1400	240	SP + 5 wt.% NaF +	Olivine (70 µm), enstatite, NaF-bearing glass
					2 wt.% Mg(OH)2	
	88_F(*)	14	1400	360	SCP + 5 wt.% NaF +	Olivine (80 µm), enstatite, NaF-bearing glass
					2 wt.%Mg(OH)2	
	40_F(*)	14	1100	240	SP + 5 wt.% NaF +	Wadsleyite (80 µm), enstatite, NaF-bearing glass
					2 wt.% Mg(OH)2	
	H3588(***)	20	1100	240	SCP + 5wt.% NaF +	Ringwoodite 80µm), stishovite, NaF-bearing glass
					2 wt.% Mg(OH)2	
	H3695(*)	22	1250	240	SCP + 5 wt.% NaF +	Ringwoodite (60 µm), stishovite, NaF-bearing glass
					2 wt.% Mg(OH)2	
	H3695(*)	22	1250	240	SCP + 5 wt.% NaF +	Ringwoodite (60 µm), stishovite, NaF-bearing glass
					2 wt.% Mg(OH)2	
	H3696(*)	22	1400	240	SCP + NaF 5 wt.% +	Ringwoodite (60 µm), stishovite, NaF-bearing glass
					2 wt.% Mg(OH)2	
	(*) Au-					

Table 2 : Representative analyses of experimental run products and starting natural composition

 2 Oxides wt.% are from EMPA. H2O ppm from ERDA F ppm and Na ppm from PIGE. Ol= olivine. Wd= wadsleyite. Rw =ringwoodite. Gl= glass. Mg#= Mg/(Mg+Si); uncertainties are given in brackets

	Sample					Oxides %wt (% rel)							
			SiO2	FeO	MnO	Al2O3	Na2O MgO	CaO	TiO2	Total Mg	H2O	F	Na
												#	ppm	ppm	ppm
													(ppm)	(ppm)	(ppm)
	References														
	San Carlos	Ol	40.34	9.22	0.13	0.01	0.01	49.8	0.08	0.01	99.72	0.90	-	-	-
	83	Wd	41.55	9.21	0.12	0.11	0.02	48.48	0.02	0.01	99.63	0.90	-	0	0
			(0.09)	(0.10)	(0.04)	(0.02)	(0.02)	(0.29)	(0.03)	(0.01)	(0.38)				
	H3698	Rw	41.50	9.70	0.12	0.04	0.01	48.79	0.07	0.01	100.39	0.90	-	0	0
			(0.31)	(0.14)	(0.05)	(0.04)	(0.01)	(0.27)	(0.02)	(0.02)	(0.38)				
	Anhydrous														
	87_F	Wd	41.24	9.02	0.12	0.09	0.82	48.80	0.02	0.00	100.11	0.91	-	1045 (2)	3145 (2)
			(0.30)	(0.19)	(0.03)	(0.02)	(0.09)	(0.48)	(0.01)	(0.00)	(0.49)				
	H3567	Rw	39.58	11.53	0.13	0.05	0.41	45.67	0.02	0.03	97.42	0.88	-	1235 (5)	2123 (7)
			(0.11)	(0.47)	(0.04)	(0.04)	(0.06)	(0.17)	(0.01)	(0.03)	(0.18)				
	Hydrous														
	42_F	Ol	35.41	9.69	0.01	0.05	0.78	54.02	0.01	0.01	99.98	0.93	nd	410	3230
			(3.83)	(1.87)	(0.01)	(0.03)	(0.33)	(1.36)	(0.01)	(0.01)	(0.71)			(41)	(323)
	88_F	Ol	41.78	3.44	0.10	0.06	0.12	53.86	0.01	0.02	99.39	0.97	428	323	713
			(0.27)	(0.25)	(0.03)	(0.02)	(0.04)	(0.26)	(0.01)	(0.02)	(0.27)		(65)	(32)	(71)
	40_F	Wd	41.66	8.62	0.04	0.05	0.24	49.91	0.01	0.01	100.54	0.90	956	665	2573
			(0.34)	(0.2)	(0.02)	(0.01)	(0.08)	(0.81)	(0.01)	(0.02)	(0.54)		(132)	(67)	(258)
	H3588	Rw	40.49	7.67	0.04	0.07	0.09	49.97	0.00	0.03	98.36	0.90	1404	850	2503
			(0.55)	(0.07)	(0.04)	(0.00)	(0.04)	(0.42)	(0.01)	(0.02)	(0.30)		(197)	(85)	(250)
	H3695	Rw	41.19	10.71	0.10	0.01	0.34	47.64	0.01	0.02	100.02	0.89	904	186	1025
			(0.29)	(0.18)	(0.00)	(0.01)	(0.16)	(0.19)	(0.00)	(0.02)	(0.41)		(127)	(19)	(103)
	H3696	Rw	40.42	10.61	0.09	0.02	0.39	46.47	0.01	0.00	98.01	0.89	854	507	1473
			(0.03)	(0.11)	(0.02)	(0.01)	(0.03)	(0.14)	(0.01)	(0.00)	(0.04)		(128)	(51)	(147)

Acknowledgments

The authors thank the staff from the nuclear microprobe LEEL CEA Saclay and the staff from BGI Bayreuth for their constant support during the course of this research. Special thanks to H. Schulze for the careful sample preparation. We warmly thank I. Estève for her assistance during SEM analysis and for FIB section preparation. We are grateful to J.C.

Boulliard who provided samples from the mineralogical collection of UPMC, and to O.

Beyssac for access to the Raman spectrometer. We thank D. Pinti for a constructive examination of the early manuscript. The manuscript has been greatly improved thanks to the constructive reviews and comments from the Editor T. Mather and two anonymous reviewers. The FIB and SEM facility of IMPMC which is supported by Région Ile de France Grant SESAME 2006 NOI-07-593/R, INSU-CNRS, INP-CNRS, UPMC, and by the French National Research Agency (ANR) Grant ANR-07-BLAN-0124-01. We thank the LEEL staff who helped us during PIGE and ERDA sessions. The present study was supported by Campus France through the PROCOPE Project 26673WC (H. Bureau) and the DFG grant 54366326 (D.J. Frost).