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Abstract

Novel statistical analysis and machine learning algorithms are proposed for the deconvolution and interpretation of
Raman spectra of silicate glasses in the Na2O-CaO-SiO2 system. Raman spectra are acquired along diffusion profiles
of three pairs of glasses centered around an average composition of 69.9 wt.% SiO2, 12.7 wt.% CaO, 16.8 wt.%
Na2O. The shape changes of the Raman spectra across the compositional domain are analyzed using a combination of
principal component analysis (PCA) and sparse non-negative matrix factorization (NMF). This procedure yields com-
ponents accounting for the observed changes, as well as their mixing proportions, without any direct prior assumption
as to their actual shape, number or position. These methods are applied separately to the Q band (wavenumbers in the
range 850–1400 cm−1), the main band (200–850 cm−1) and to the whole spectra (200–1400 cm−1). Compositional
profiles obtained by Electron Probe Micro-Analysis (EPMA) are then used to relate spectral components to structural
entities. Spectral components extracted from a Q band analysis and a complete spectral analysis show significant
similarities both in terms of shape of the components and their mixing proportions. This result implies a link between
Qn species and the shift of the medium-range network features in the main band of the Raman spectra. To illustrate the
possibilities of the method, a linear regression model is used to relate the proportions of spectral components derived
from the Raman spectra to chemical composition. This model can be used to determine the composition of different
glasses inside the investigated compositional domain with reasonable accuracy.
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1. Introduction

Raman spectroscopy is a widely used technique for
the study of the structure of silicate glasses and melts [1,
2]. Various structural units of the silicate network have
Raman-active vibrational modes, and rapid acquisition
times enable in situ studies of melt structure at high
temperature [3–10] or phase transformations [11]. Fur-
thermore, Raman spectroscopy is appreciated for the
fact that it is non-destructive and can be used in fields
such as cultural heritage [12–14]. It also has the ad-
vantage that the volume excited by the laser is small
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(∼1 µm3) allowing the study of spatial heterogeneities
of composition or structure, e.g. resulting from ionic ex-
change [15], laser-irradiation [16] or densification fol-
lowing micro-indentation [17, 18].

Despite such successes, application of Raman spec-
troscopy to amorphous silicates is hampered by the fact
that there is no simple a priori way to relate the shape
of broad Raman bands to specific network vibrations
and structures, and that the intensity of a Raman band
is not a quantitative measure of species abundance, in
contrast to other widely used techniques such as Nu-
clear Magnetic Resonance (NMR) [19]. A comparison
with crystalline structures and the evolution of spectra
with chemical composition has been used to interpret
the positions of broad Raman bands in terms of struc-
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tural entities. This approach has been particularly ap-
plied to the spectral range 850–1400 cm−1, where sili-
cate tetrahedra surrounded by a variable number of non-
bridging oxygens (the Qn species defined by the NMR
community, where n is the number of bridging oxy-
gens) are expected to resonate [20, 21]. Indeed, a large
body of the silicate literature is devoted to discussions of
how to interpret Raman spectra in terms of Qn species,
for different kinds of network modifiers [4, 20, 21] or
in the presence of other network formers [22–25]. At
lower wavenumber, silicate glasses also show signifi-
cant broad intensity in the range (200–850 cm−1) typ-
ically referred to as the main band. These resonances
are associated with T−O−T bending (where T is a tetra-
hedral network forming cation), although the exact re-
lationship to the structural entities that resonate in the
high wavenumber Q band (850–1300 cm−1) is not gen-
erally considered [26]. Although theoretical models
have been used to provide insight into the principal fea-
tures of Raman spectra of amorphous silicates [27, 28]
and amorphous silica [29], this approach does not cur-
rently have the ability to quantitatively interpret signal
shape and intensity of multicomponent glasses. Histor-
ically, a common proxy for band shapes consists in fit-
ting Raman spectra with a given number of Gaussians
of variable positions, widths and intensities [13, 14, 30–
32]. Inside the Q band, such Gaussians are attributed
to specific Qn units and environments. Using such an
approach, a reasonable correlation has been found in
lithium silicates [32] between the ratios of Gaussian
bands fitted to Raman spectra, and the ratio of Qn units
determined from 29Si NMR. However, broad and com-
plex band shapes often require the use of a large number
of Gaussian components [10, 33, 34] for a correct fit.
Furthermore, Gaussian-fitting methods typically do not
impose band positions, which may thus vary between
spectra, limiting the interpretation in terms of well de-
fined Qn units. Finally, even in simple binary silicates
the number of Gaussian components required to fit the
Raman spectra is greater than the number of potential
Qn species, leading to ambiguity and controversy con-
cerning spectral assignments [6, 7, 33]. In the light of
these difficulties, application of statistical methods has
emerged as an alternative approach for the decompo-
sition of spectra into several components (using tech-
niques inspired by those used for blind source separa-
tion). Such methods typically make fewer assumptions
concerning the shape of partial spectral components,
and hence require a smaller number of adjustable pa-
rameters than Gaussian-based methods. For example,
principal component analysis [35] decomposes a signal
into orthogonal components and is one of the most pop-

ular methods [36], followed by independent component
analysis [37] for statistically-independent signals. Non-
negative matrix factorization (NMF) [38] has recently
gained attention since it enables a spectroscopic inter-
pretation of the non-negative extracted features. NMF
has been used and improved [39] for fluorescence spec-
troscopy [40], 1H-NMR spectroscopy [41] or hyper-
spectral imaging [42]. Recent studies [43–46] have ap-
plied NMF-inspired techniques, coupled with chemical
constraints, to shed light on the speciation of glasses
and melts in binary alkali and alkali-earth silicates, an
approach that leads to the isolation of spectral compo-
nents in the Q band that can be assigned to the spectral
signature of the different Qn species.

In this paper, we extend previous work in binary
systems [43–46] to the ternary system of sodium and
calcium-bearing silicates. Inter-diffusion experiments
of melts with different initial compositions are used to
generate a range of compositions for which a large num-
ber of Raman spectra may be acquired. A novel de-
convolution algorithm based on NMF is developed and
applied to this comprehensive dataset. The shapes of
the different components identified by the algorithm for
our ternary system are presented and the correlations
between the high-frequency envelope (Q band) and the
main band are discussed. A chemical model that relates
Raman spectra to chemical composition is proposed and
tested against compositions lying outside the training
dataset.

2. Experimental methods

2.1. Glasses preparation

Three initial glass compositions were prepared from
industrial grade sand, limestone, and sodium carbon-
ate. Reagent grade Na2SO4 was used as a fining agent.
Small amounts of coloring agents CoO and FeCr2O4
were added to certain glasses to provide a quick means
of identification after diffusion experiments. The dif-
ferent glass compositions are summarized in table 1.
Glasses used for diffusion experiments are centered
around an average composition of 69.9 wt% SiO2,
12.7 wt% CaO, 16.8 wt% Na2O, close to common win-
dow glass. Trace amounts (0.1 wt%) of Al2O3 and MgO
are also present due to the use of industrial grade sand
and limestone. Three other test glasses (compositions
given in table 1) were also prepared.

The raw materials were dried at 110°C for over 24 h,
then mixed with a Turbula shaker-mixer. 1-kg batches
used to prepare glasses for diffusion experiments were
melted in a Pt-Rh Joule-heated crucible at 1450°C and
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stirred for 2 h with a Pt-Rh rod. The melts were poured
onto an iron plate, air-quenched and annealed at 550°C
for 2 h. The compositions were also checked by elec-
tron microprobe (EPMA) on fragments of the resulting
glasses, and were found to be homogeneous (standard
deviation below 0.2 wt%).

Table 1: Glasses compositions from X-ray fluorescence analysis in
wt%. Standard deviations from repeated measurements on a standard
glass are as follows: 0.02 wt.% CaO, 0.07 wt.% Na2O, 0.01 wt.%
Al2O3, 0.02 wt.% MgO, 0.002 wt.% Fe2O3, 0.0002 wt.% Cr2O3.

Name SiO2 CaO Na2O Al2O3 MgO Fe2O3 Cr2O3

S 75.4 10.1 14.2 0.1 0.1 0.0 0.0
C 67.6 17.9 14.0 0.1 0.1 0.0 0.0
N 66.7 10.1 22.3 0.2 0.2 0.1 0.1

TEST1 73.4 10.4 15.6 0.0 0.0 0.0 0.0
TEST2 66.1 16.3 17.2 0.0 0.0 0.0 0.0
TEST3 72.7 13.7 13.3 0.0 0.0 0.0 0.0

2.2. Diffusion profiles

20 × 20 × 5 mm slices were cut from previously pre-
pared glasses and one surface (one side) for each glass
slice was polished to 40 µm. Slices were stacked so
that the lower-density one was on top of the other to
limit convection. Densities at 1000°C were predicted
using the model of [47]. The space around glass slices
was filled with silica sand to limit liquid movement (see
Fig. 1). This setup accommodates thermal expansion
while reducing mass transfer acceleration due to flow of
the softening glass.

Samples were introduced in a preheated muffle fur-
nace at 1000°C for 1 h. This temperature-time range
was selected such that compositional profiles generated
by diffusion were on the order of a couple of millime-
ters. At the end of the experiment the samples were
quenched in air to avoid crystallization. This quench
typically fractured the glass. Samples were subse-
quently annealed for 1 h at 600°C and cooled inside
the furnace overnight. Slices of the glass stack were
cut perpendicular to the initial interface, the presence of
coloring agents helping to identify the region of variable
composition and/or avoid areas where complex convec-
tion had taken place. Samples were polished to optical
quality before further analysis. Each diffusion couple
is named after its two endmember glasses, e.g. the dif-
fusion sample extracted from S glass (silica-rich) over
C glass (lime-rich) is referred to as SC, and allows for
measurements over a continuous range of compositions
from one endmember to the other.

Figure 1: Diffusion profile experiments. (a) Two endmember glass
slabs, schematically represented as red and blue, are stacked in a cru-
cible. They are surrounded by silica sand, depicted as yellow dots,
to prevent them from flowing. (b) Sample after diffusion and anneal-
ing: the dashed line depicts the original interface between the glass
slices, the solid lines represent the fractures that often result from air-
quenching the sample. The curved shape of the free surface is due
to the slight creep, in spite of the silica sand. Diffusion between the
endmember glasses is represented by the arrow.

Composition measurements along the diffusion pro-
files were made on a Cameca SX 100 EPMA with a
15 keV, 1 nA electron beam during 1 min for Si and Ca
analysis and 3 × 20 s counting time for Na analysis.

2.3. Raman spectroscopy

Raman spectra along the diffusion profiles were col-
lected with a confocal Jobin-Yvon Xplora system in
back-scatter geometry, focusing a 532 nm laser on the
sample through a ×100 microscope objective. Nominal
power of the laser is about 15 mW. The spectra were
collected with 3 acquisitions of 1 min each.

Raman spectra of the test glasses were collected with
a confocal ThermoFischer DXR system in back-scatter
geometry, using a 532 nm laser with 10 mW of power
though a 25 µm slit and a ×50 objective. The spectra
were collected with 10 acquisitions of 30 s each.

In order to test the reproducibility between the two
spectrometers, Raman spectra from the diffusion sam-
ples were also collected on the ThermoFisher Raman
spectrometer. No differences were found with the spec-
tra previously recorded on the Xplora spectrometer.

For all 169 Raman spectra collected, the background
was corrected for by subtracting the minimum of the
spectrum over the 200–1400 cm−1 spectral region. A
temperature-frequency correction [1, 48] was then ap-
plied. Finally, all spectra were normalized to unit area
over the same spectral range. In the following this pro-
cedure is referred to as the cleaning stage.

3. Deconvolution method

The Raman spectrum of a silicate glass can be de-
scribed as the sum of the partial Raman spectra (PRS),
i.e. the sum of its Raman-active structural species.
For example, the signal in the 850–1300 cm−1 spectral
range is often interpreted as the sum of the Qn stretch-
ing modes [21]. Similarly, the so-called main band
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at lower frequencies can be thought of as the sum of
medium-range structural species (such as rings of tetra-
hedra), bending vibrations of the tetrahedra and inter-
tetrahedral linkages [22, 49, 50]. Several attempts have
been made to predict localized vibrations through nor-
mal mode analysis on tetrahedral clusters [20] or molec-
ular dynamics [28].

As discussed above, the most widespread method to
rationalize the Raman spectra of silicate glasses is to fit
a sum of Gaussian functions, whose positions, standard
deviations and amplitudes are optimized for each spec-
trum. Furthermore, this approach is typically restricted
to the Q band spectral range. Each Gaussian is then at-
tributed to a Qn species, or sometimes to a Qn species
with a specific surrounding environment [10]. Ideally,
for spectra collected on glasses with similar composi-
tions one would expect a fixed number of Gaussians
with similar Raman shifts but of variable proportion.
However, consideration of the literature shows that dif-
ferent authors fit spectra in different ways depending
on the criterion used for selecting the number of Gaus-
sians, leading to ambiguity in structural interpretation
(e.g. close to NaAlSiO4 in the system Na2O-Al2O3-
SiO2 [6, 7, 33]).

The goal of the deconvolution procedure proposed
here is to obtain a unique set of partial Raman spec-
tra related to the Raman-active species in the overall
set of experimental spectra, and to determine the cor-
responding weights of those endmembers in individual
spectra. No assumption is made concerning the shape of
the PRS, nor their number. The only assumption is that
Qn units undergo no significant distortion, and thus have
the same PRS over the entire compositional range. This
requirement is met thanks to the restricted composi-
tion range studied. Our deconvolution algorithm shares
many similarities with the approach of Malfait and col-
laborators [43–45]. The deconvolution procedure, sum-
marized in Fig. 2 and described in the following, is fully
automatic and is designed to have a minimum number of
arbitrary parameters. Our implementation relies on the
Python scientific stack [51–53]. The reader interested
in the chemical and physical results may safely skip the
following mathematical description to read Section 4.

Principal component analysis. PCA is commonly used
to reduce the dimensionality of data sets. PCA of an n-
observation set of p features yields up to m = min(n, p)
principal components, ranked by decreasing order of
explained variance. In our case, n = 169 is the num-
ber of Raman spectra collected on diffusion samples,
and p = 715 is the spectral sampling, i.e. the num-
ber of wavenumber values at which the signal inten-

sity is measured. Since n � p, m = n. Out of the m
principal components, only a small number k represent
relevant information, while the rest only convey noise.
The choice of k is often based on the decreasing ex-
plained variance ratio. However, this is not a robust cri-
terion when n � p as here. Moreover, principal com-
ponent analysis yields orthogonal components, which
necessarily have both positive and negative parts if the
components are overlapping. Potential negative values
make PCA components unsuitable for further spectro-
scopic interpretation. Independent component analysis
(ICA), whose purpose is to unmix k linearly indepen-
dent sources from n ≥ k observations, would seem well-
suited for deconvolution. However, the first step of ICA
is to decorrelate components, which is rather contradict-
ing with the expected correlation between components
due to the chemistry. Besides, ICA is not guaranteed to
find non-negative components or mixing weights.

Choice of the number of components. PCA can never-
theless be used as a first step in order to determine k,
the number of components to look for, without making
any assumption about the glass structure. For this pur-
pose the collection of n spectra is stacked in an n × p
matrix Σ, where p is the number of spectral features. It
is decomposed into components ranked by decreasing
singular values λi. These λi are used to determine the
value of k since they are an indication of how much “in-
formation” is carried by the corresponding component.
Choosing too low a value for k leads to loss of informa-
tion but a small level of noise, while too high a value
includes noise and unnecessary information. A com-
promise between information and simplification must
be found. Malinowski developed [54] a statistical ap-
proach to assess the amount of error introduced by the
addition of an increasing number of components. His
empirical indicator function [55] IND is computed from
the singular values:

∀r ∈ {1, ..., n − 1}, IND(r) =
RE(r)

(n − r)2 (1)

where

RE(r) =

√∑n
i=r+1 λi

p(n − r)
. (2)

The number of components to consider k is that at
which IND (Fig. 3) has its minimum value.

Non-negative matrix factorization. NMF is applied to
deconvolute Σ into two non-negative matrices W of
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Figure 2: Deconvolution flowchart
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Figure 3: Malinowski’s Indicator function for the PCA of the com-
plete set of spectra over the whole spectra range

shape n × k and H of shape k × p so that

Σ = WH + ε, (3)

where ε is the residual error. H contains up to k non-
null lines, which are the partial Raman spectra. W is
the mixing matrix. Figure 4 illustrates this decomposi-
tion. Any spectrum from the Σ set can thus be written
as a weighted linear combination of the k partial Raman
spectra.

∀i ∈ {1, . . . , n} ,Σi =

k∑
j=1

wi jH j (4)

Factorization is obtained by alternatively minimizing
the cost function

f (W,H) = ‖Σ −WH‖2F (5)

for W and then for H [56], while keeping both matrices
positive. ‖·‖F denotes the Frobenius norm of the matrix,
defined for a n × m matrix A by

‖A‖2F =

n∑
i=1

m∑
j=1

|ai j|
2 =

n∑
i=1

‖Ai‖
2
2. (6)

400 600 800 1000 1200

Wavenumber / cm−1

( (( (0.1 0.90.15 0.85
0.85 0.150.9 0.1

k
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n
( (k

Figure 4: Non-negative matrix factorization using k = 2 factors. Each
spectrum in the collection of n spectra can be decomposed into a
weighted sum of k = 2 PRS. Weights are in the left-hand side n × k
matrix. PRS are in the top k× p matrix. For instance, the second spec-
trum of the collection is equal to 0.15 times the first PRS plus 0.85
times the second PRS.

This alternative non-negative least-square algorithm
(ANLS) is not, as such, a convex optimization prob-
lem, and the solution to this factorization problem is
not unique [57]. In general, there is an infinite num-
ber of solutions corresponding to local minima of f .
To achieve reproducible results, a deterministic initial-
ization is therefore performed with non-negative double
singular value decomposition [58], readily available in
the scikit-learn Python package.

To enable a physical and chemical interpretation,
components should have signal over as narrow as pos-
sible a spectral range. In other words, each line of the
component matrix H should have as many zeros as pos-
sible. This is referred to as sparsity: a matrix is said to
be sparse when it is primarily filled with zeros. Conse-
quently, a sparsity constraint is applied to H. This con-
straint is achieved by modifying the cost function (5)
minimized by the ANLS to

f (W,H) =
1
2
‖Σ −WH‖2F + η‖W‖2F + β

n∑
i=1

‖Hi‖
2
1. (7)
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Figure 5: Deconvolution error as a function of β for several values
of η. Smaller β means smaller sparsity constraint. Black triangles
represent the appearing of a new non-null component.

‖ · ‖1 is the `1-norm, defined for a vector V as

‖V‖1 =

n∑
i=1

|vi|. (8)

The sparsity constraint is induced by the use of the `1-
norm on the lines of H [59]. Its intensity is determined
by the value of the two arbitrary parameters η and β. The
higher the value of β, the sparser the resulting partial
Raman spectra, and the fewer non-null partial Raman
spectra are found in H. Uninteresting solutions can arise
from non-sparse solutions by downscaling H while si-
multaneously multiplying W by the inverse factor. This
is prevented by the ‖W‖2F term in f . The value of η is
adjusted accordingly to maintain a balance between W
and H. The influence of η and β on the reconstruction
error ε is plotted on Figure 5.

Regardless of the value of η, when almost no spar-
sity constraint is applied (very low β), the residual er-
ror reaches a plateau corresponding to the experimental
noise. However, for a given value of η, the smaller the
sparsity constraint, the more PRS are needed, up to k
PRS when the constraint is fully relaxed. Thus, η and
β can be coupled and the choice of both can be reduced
to one arbitrary decision. η = 10−4 is chosen to keep
‖ε‖F low while avoiding division errors from too low
values. In line with [43], an explained variance ratio
threshold of 99.5 % in the PCA was targeted. The num-
ber of components necessary to reach this variance ratio
is thus obtained from PCA, and the value of β is found
according to Fig. 5.

Figure 6: EPMA composition interpolation at the position of the Ra-
man spectra in red circles, endmember glasses in blue squares, test
glasses in green triangles, represented on the SiO2-CaO-Na2O ternary
phase diagram. All compositions are in wt%.

4. Results

4.1. Analysis of diffusion profiles

221, 170 and 255 electron microprobe analyses were
considered on the NC, SC and SN samples respectively.
Spatial resolution of analyses was adjusted to the per-
ceived steepness of the composition gradient. Compo-
sition profiles were then interpolated, and composition
was later computed at the position where Raman spectra
were collected. These compositions are represented on
the SiO2-CaO-Na2O phase diagram [60] in Fig. 6.

The curved shape of the diffusion lines between the
N and S endmembers is noteworthy and involves uphill
diffusion, a phenomenon that still raises interest [61].
We also note that diffusion profiles do not extend all the
way to the sodium-bearing endmember glass. This is
due to the fact that Raman spectra were not collected
all the way into the original endmember glass because
it was difficult to assess where the diffusion profile ter-
minated, even with the presence of coloring agents.

4.2. Raman spectra

56, 41 and 72 spectra were manually collected on the
NC (Fig. 7c), SC (Fig. 7a) and SN (Fig. 7b) samples
respectively, with higher spatial sampling where signal
variation is steeper. All spectra show a broad asymmet-
ric peak in the 540–650 cm−1region, and another one in
the 900–1200 cm−1 region.
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SC and SN samples show significant spectral changes
in both the main and Q bands, in response to the ex-
change between the network former SiO2 and the net-
work modifiers CaO and Na2O. The broad main band
peak becomes wider and shifts from ∼545 cm−1 to
∼570 cm−1 with increasing addition of network mod-
ifiers. Low wavenumber (950–1000 cm−1) signal in-
creases in the Q peak at the expense of intensity in the
range 1150–1200 cm−1. NC exchange seems to have
almost no impact on the main band, and only subtle im-
pact on the Q band.

All spectra are stacked and cleaned into the Σ matrix
(as explained in 2.3). The slope of the lower wavenum-
ber part of the spectra may be due to the choice of back-
ground removal described in 2.3 and it is questionable
whether it conveys relevant structural information.

4.3. Q band deconvolution

Spectra are split into the main band and the Q band
at a wavenumber of 850 cm−1. At first, deconvolution is
carried out on the Q band only, that is, spectral data be-
low 850 cm−1 are discarded before area normalization.
Σ is deconvoluted using the procedure sketched out in
Fig. 2. k = 7 components are allowed, with values of
η and β deduced from thresholding as described in Sec-
tion 3.

Q band deconvolution yields four PRS, named Qa to
Qd and plotted in Fig. 8. Since PRS and their relative
weights for each spectrum are both determined simulta-
neously by sparse NMF, intensities of the PRS cannot
be directly related to the composition. Instead, the area
ratios of the PRS for a spectrum bear the actual infor-
mation.

Qa has a broad peak maximum at 1096 cm−1. Qb has
a narrower peak, with maximum intensity at 1163 cm−1.
Qd is bimodal with a main peak at 948 cm−1 and a less
intense broad plateau in the range 1000-1050 cm−1. Qc

has an almost symmetric peak centered at 1118 cm−1

and smaller features in the same range as Qd. Figure
9 illustrates the reconstitution of two representative Q
band spectra, demonstrating the overall quality of fit.

The shapes and positions of the spectral features of
the Q band PRS provide certain constraints on their
structural origins, but more direct information can be
extracted from the evolution of their area ratios along
the diffusion profiles as a function of chemistry. A de-
tailed analysis of the evolution of the PRS area ratios
(Figure 9) along the diffusion profiles is outside the
scope of this article, and shall be presented in the fu-
ture. However, correlation between EPMA measure-
ments and PRS area ratios (table 2) sheds light on the
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Figure 7: Sampling of the spectra collected along the diffusion pro-
files. Total number of spectra collected and used in the deconvolution
process is respectively 41, 72, and 56.
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(a) S side. EPMA analysis (wt%): 76.0 SiO2, 8.5 CaO, 15.5
Na2O. Area ratios: 85.7 % Qa, 10.3 % Qb, 3.9 % Qc, .0 % Qd.
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(b) N side. EPMA analysis (wt%): 68.9 SiO2, 11.5 CaO, 19.6
Na2O. Area ratios: 86.6 % Qa, 0.2 % Qb, 5.8 % Qc, 7.4 % Qd.

Figure 9: Reconstitution of the Q band of two spectra from the SN sample. Circles are measured spectra, continuous lines are reconstitutions from
summing weighted PRS. Residuals are obtained by subtracting reconstitutions from the experimental data.
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Figure 8: Q band (850–1400 cm−1) deconvolution PRS as returned by
the NMF.

species represented by the PRS. Qd is very strongly cor-
related to the CaO content of the glass, while being very
strongly negatively correlated to its SiO2 content. Such
a relationship clearly indicates that Qd is associated with
a depolymerized unit in the glass structure, since its area
ratio decreases with the addition of a network former,
and increases with addition of a depolymerizing agent.
Qd is also bimodal, and in this respect we note that bi-
modality has been predicted for the Raman spectrum of
Q2 units [27], and observed in sodium silicate glasses
at room temperature [44]. We therefore assign this PRS
to Q2 that we infer are dominated by Ca-bearing en-
tities (table 2). The converse is true for Qb, which is
very strongly correlated to SiO2 content, while being

significantly negatively correlated to network modifier
content. Qb can consequently be linked to Q4 tetrahe-
dra. Qa and Qc are close to each other, and represent the
largest part of the areas of the spectra. Both are strongly
correlated to the addition of network modifiers. Qa is
negatively correlated to CaO but is not significantly cor-
related to Na2O, whereas Qc is. However, Qa accounts
for much more signal than Qc. Mathematically, Qa can
be assigned to the “average” or “common” component
of the glasses studied here. In this respect, we note
that this “average” composition is very close to the stoi-
chiometry of Q3 species, i.e. at 67 mol% SiO2(Table 1).
Qc is thus interpreted as the “deviation” from the aver-
age in the presence of more Na+, Q3

Na. Further consid-
eration of the nature of Qa is found in part 5. These
four PRS are remarkably close, in their positions and
interpretations, to the deconvolutions existing in the lit-
erature for similar glasses based upon comparison with
crystalline analogs [26, 62].

Four components are enough for a successful decon-
volution of 169 spectra, as illustrated by the small resid-
ual levels on Fig 9. However, area ratios cannot be
directly interpreted in terms of speciation information
although this would be possible with independent 29Si
NMR calibration.

4.4. Full spectral range deconvolution
After successful analysis of the Q band, five PRS

are obtained from the deconvolution of the whole spec-
tral range, named from Fa to Fe. Resulting partial Ra-
man spectra are plotted in Fig. 10 and examples of fits
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Table 2: Correlation between Q band area ratios and EPMA measure-
ments along diffusion profiles. Correlation coefficients with absolute
value above 0.5 are colored according to their value. A blue to red
“cool to warm” color map is used.

Qa Qb Qc Qd

SiO2 0.428 0.969 0.119 −0.931
CaO −0.719 −0.724 −0.624 0.962
Na2O 0.434 −0.520 0.828 −0.057
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Figure 10: Full spectra range deconvolution partial Raman spectra as
returned by the NMF.

to glasses from the SN sample are illustrated in Fig-
ure 11. Five PRS are sufficient to account for all spectra
with very low levels of residual information (Fig. 11).
It should come as no surprise that more components
are needed to reproduce spectra over a wider range of
wavenumber. None of the PRS are restricted to a single
narrow spectral range in spite of the sparsity constraint,
but none of them conveys pure noise, nor even signifi-
cant levels of noise. This result thus demonstrates that
resonances in the main band are not independent from
those in the Q band, as discussed below. Further confir-
mation of this idea is provided by deconvolution of the
main band alone (in an analogous way to the Q band
described above). That exercise produces four PRS that
show significant similarity to the main band region of
Fig. 10, indicating that the features derived from the
treatment of the whole spectral range are robust features
associated with well-defined resonances. In the light
of this fact, we concentrate on the PRS derived from
the full spectral range, highlighting the correlations be-
tween the main and Q bands.

Fa has one sharp peak in the main band at 560 cm−1,
and a smaller, broader one at 776 cm−1. Its most promi-
nent feature is in the Q band, with a broad, almost sym-
metric peak at 1096 cm−1, very similar to Qa. Fb has

two peaks of comparable intensities, a sharp one in the
main band at 538 cm−1 and a broad one in the Q band
at 1163 cm−1. The latter bears a striking resemblance
to Qb. Fc has one broad peak at 587 cm−1, one weaker
peak at 946 cm−1 and one other peak in the Q band at
1116 cm−1. Therefore, it looks similar to Qc. Fd has
a bimodal signal at 948 cm−1 and 1013 cm−1, akin to
Qd, in the lower part of the Q band, as well as a broad
asymmetric peak at 603 cm−1. Finally, the new compo-
nent Fe has a sharp peak at 550 cm−1 and another one
at 1148 cm−1, and cannot be compared to any of the
components from the Q band deconvolution.

5. Discussion

5.1. General considerations
When treating Raman spectra of silicate glasses, Her-

zog et al. [46] point out common deconvolution pitfalls
such as:

1. improper rank analysis, that often leads researchers
to arbitrarily pick the rank.

2. wishful use of linear algebra tools to obtain com-
ponents, in particular if a non-negativity constraint
is not used. As a result, components may contain
a significant number of negative points. Such an
outcome is sometimes overlooked, even though it
makes the extracted components unsuitable for in-
terpretation as PRS.

3. poor noise robustness.

Our methods avoid these pit-falls through (1) the use of
PCA and Malinowski’s IND function, (2) the alterna-
tive non-negative least square approach (ANLS) at the
heart of the NMF and (3) an experimental design that
enables us to acquire a set of numerous high-quality Ra-
man spectra. Indeed, samples are stable at room tem-
perature and can be probed for as long as necessary
to obtain a low level of noise in the Raman spectra.
Furthermore, thanks to the scale difference between the
diffusion length (1 cm) and the EPMA/Raman probing
spatial resolutions (1-20 µm) our experimental approach
generates a high number of samples of variable compo-
sition over a spatially limited area. In addition, only a
limited number of high temperature experiments is re-
quired, making diffusion an efficient way to generate
compositional variations in situations where other pa-
rameters such as volatility (see Malfait et al. [44]) are
low.

Compared to the classic Gaussian deconvolution, this
method has the additional advantage of not requiring
any previous knowledge of the glass structure to de-
cide how many components should be used to fit, nor
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(a) S side. EPMA analysis (wt%): 76.0 SiO2, 8.5 CaO, 15.5
Na2O. Area ratios: 80.0 % Fa, 15.2 % Fb, 3.8 % Fc, 0.0 %
Fd, 1.0 % Fe

25

50

75

In
te

n
si

ty
/

A
U

Fa

F b

F c

F d

F e

400 600 800 1000 1200

Wavenumber / cm-1

-1

1

R
es

id
u

a
l

(b) N side. EPMA analysis (wt%): 68.9 SiO2, 11.5 CaO, 19.6
Na2O. Area ratios: 85.2 % Fa, 0.5 % Fb, 5.8 % Fc, 8.4% Fd,
0.2 % Fe

Figure 11: Reconstitution of two spectra from the SN sample. Circles are measured spectra, continuous lines are reconstitution from summing
weighted PRS. Residuals are obtained by subtracting reconstitutions from the experimental data.

where and how wide they may be. On the down side,
the purely mathematical nature of the approach does not
make it possible to optimize the deconvolution based on
a priori knowledge of the structure. It does, however,
drastically reduce the number of free parameters of the
model, which boils down to a variance threshold and
the value of η. Fewer free parameters, and the sparsity
constraint applied to the NMF, enhance robustness and
reliability, while offering the possibility to compare PRS
derived making no a priori assumptions with the results
of alternative deconvolution strategies such as Gaussian
fitting.

5.2. Endmember PRS, structural entities, and their
variation as a function of composition

First of all, it is of interest to compare our PRS with
those derived from experimental or theoretical studies
of binary silicates, at least in the high wavenumber
range (Q band) where this has been previously stud-
ied [27, 43, 46], as illustrated in Fig. 12. For example,
based upon the arguments made in section 4.3, chemi-
cal correlation and shape comparison lead us to assign
PRS Qa and Qc to the presence of Q3 species in our
glasses. Indeed, Fig. 12b shows a remarkable agree-
ment both in position and shape between Malfait’s de-
convolution of sodium silicate glasses, Zotov’s VDOS
calculations for NS4 glass and Qa, in spite of the pres-
ence of CaO in this study. In addition, Qd agrees very
well with the PRS that Malfait assigned to Q2 (Fig. 12a)

since its main peak is at the same position and its mi-
nor peak ends close to that of [44]. On the other hand,
the small number of glass samples prepared by Herzog
et al. in the lime-bearing system may explain that there
is a clear shift between their partial Raman spectra and
the PRS derived in this study. We also note that the Q4

component determined by Zotov et al. is significantly
different from that determined in the present study, al-
though our Q4 component is in good agreement with
that derived experimentally by Malfait et al. [43, 46].
This discrepancy between calculated and experimental
results may thus indicate that the limited number of
atoms used in the simulation of the NS4 glass, was not
sufficient for accurate representation of Q4 units. Fur-
ther support for our Q band assignments can be found
in the comparison with composition. For example, us-
ing our assignments, an increase in depolymerized Q2

and Q3 species at the expense of Q4 tetrahedra is ob-
served when moving away from SiO2 in the SN and SC
samples, as expected. For compositions characterized
by NC exchange at constant bulk polymerization state,
our data indicate that replacement of Na2O by CaO dis-
places the equilibrium 2Q3 � Q2 + Q4 to the right, a
result that is perfectly consistent with the fact that Ca2+

is known to cluster non-bridging oxygens in Q2 rather
than in Q3 [63]. This interpretation thus provides ad-
ditional support for the idea that band Qd is dominated
by Q2 species associated with Ca, as indicated by the
fact that its weight is positively correlated to CaO and
negatively to SiO2, while not being correlated to Na2O
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Figure 12: Comparison of our Q band PRS with PRS extracted thanks
to similar processing of sodium silicate glasses (Malfait et al. [44]),
calcium silicate glasses (Herzog et al. [46]) and VDOS simulation of
sodium silicate glasses (Zotov et al. [27])

(table 2). To summarize our results concerning the Q
bands, we note that only 4 PRS are sufficient to produce
high quality reconstructions of the spectra in this range
of wavenumber. In particular, there is no need for shifts
in the positions of the peaks to account for spectral in-
formation, in agreement with our basic assumption. Our
PRS also respect the classic order where structural en-
tities of increasing degree of polymerization give rise
to intensity at higher wavenumber. However, we note
that our PRS do not have simple shapes and are clearly
not Gaussian, as expected given that they integrate all
the vibrational information for a given Raman-active
species. Thus, Q3

avg, Q3
Na and Q2 contain symmetric and

antisymmetric stretching bands.
A second issue of interest is the correlations between

intensity in the Q band and that in the main band. In-
deed, the close relationship between the high wavenum-
ber part of the Fn partial spectra and the Qn PRS ob-
tained from a separate deconvolution provides strong
evidence that a change in network polymerization im-
pacts Si−O−Si bond vibrations that account for inten-
sity in the main band. Such a correlation has been
suggested in [64], in which the sensitivity of the main
band as a function of network polymerization is also
discussed. In detail, our PRS of the entire spectra indi-
cate that the changes in glass structure associated with
the presence of different Q species give rise to changes
in intensity in the main band that may be relatively lo-
calized (e.g. Fb). However, we recall the implicit as-
sumption in our approach, that vibrational modes for a
given structural entity do not shift in wavenumber with
composition. Such shifts are not expected for spatially
localized vibrations, such as those that give rise to in-
tensity in the Q band, but the situation is less clear
for inter-tetrahedral vibrations that occur in the main
band. Studies combining IR, Raman and hyper-Raman
spectroscopies have shown that the vibrations responsi-
ble for the main band in a-SiO2 [65, 66] are better ac-
counted for by Si−O−Si bending rather than tetrahedral
E-bending. The former modes are sensitive to angle dis-
tribution, as exemplified by silica densification. Further
work on Ca- and Na-aluminosilicates [67] show how
the in-phase vibrations of network-modifying cations
are responsible for part of the main Raman band. Con-
sequently, they are likely to be affected by changes in
overall network polymerization. Previous work on al-
kali silicates [26, 68] have either shown, in the case of
Q3 species, or anticipated, in the case of Q4 and Q2

species, that bands shifts in the 400–850 cm−1 range
are as a matter of fact expected: as polymerization de-
creases, the mean Si−O bond length decreases, which
does not change Si−NBO stretching modes but does im-
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pact less localized vibrations like O−Si−NBO modes.
We note that, should shifts appear, they would be de-
convoluted as series of components, increasing then
decreasing one after the other. This is not the case
here: our data indicate that since compositional ranges
are modest, main-band vibrations remain relatively con-
stant and are strongly correlated to variations at higher
wavenumber.

In terms of structural interpretation including the
main band, we note that Fa accounts for over 80 % of
the signal. Given the position of its peak in the Q band
and its area ratio, it would appear to convey a Q3 Ra-
man signal like Qa. However, as noted above, the main
PRS bears the overall response of an “average” glass
network; the other PRS bear the deviation from it. Fc

and Fe also exhibit peaks in both the main and the Q
ranges. Their position, close to that of Fa peaks, sug-
gests that they represent closely related species, or could
be viewed as adjustment variables used by the NMF to
account for the global band shifts. Based upon com-
parison with the detailed Q band deconvolution (sec-
tion 4.3), the high wavenumber peak in Fb hints that it
may convey Q4 signal because it appears at the highest
wavenumbers. Fd’s bimodal signal in the lower part of
the Q band points toward Q2 tetrahedra. Fe may repre-
sent the Si−O−Si network modification due to composi-
tion changes. However, more detailed interpretation of
its shape and position is prevented by our limited com-
positional range.

5.3. Chemical regression
As noted above, the absolute intensity of PRS area ra-

tios cannot be interpreted directly. Furthermore, our in-
complete knowledge of the structural entities giving rise
to the PRS also limits our capacity to quantitatively link
them to composition. However, the strong linear cor-
relation coefficients found in table 2 do suggest a clear
link between PRS area ratios and glass chemistry. It
is therefore of interest to explore a multilinear regres-
sion between Raman data and composition, with the
aim of quantifying glass chemistry from Raman spec-
tra, at least in the compositional range studied here. For
a given spectrum Σi, PRS areas ai j are obtained by in-
tegrating over the wavenumber range [σmin, σmax] the
values of the partial spectra H j weighted by the corre-
sponding wi j:

ai j = wi j

∫ σmax

σmin

H j(σ)dσ (9)

PRS area ratios R are then derived:

ri j =
ai j∑k
l=1 ail

(10)

Since area ratios and EPMA measurements both add
up to 1, dimensionality degenerates into a 3D (space of
components) to 2D (space of oxides) regression. It is
therefore not strictly necessary to regress over all the
area ratios to all the oxides. However, for the sake of
clarity and chemical sense, a multilinear regression is
carried out from all 4 area ratios to all three oxides. Ro-
bustness is tested by regressing over all n data subsets
obtained by removing one record. The following results
stem from averaging the results of this leave-one-out
procedure. Standard deviations are given in brackets.

SiO2 (wt%) =70.38(0.10)ra
i + 124.26(0.62)rb

i

+76.33(0.81)rc
i + 52.40(0.57)rd

i

(11)

CaO (wt%) =5.41(0.08)ra
i + 36.02(0.48)rb

i

+1.76(0.63)rc
i + 85.06(0.48)rd

i

(12)

Na2O (wt%) =24.22(0.10)ra
i − 60.28(0.59)rb

i

+21.91(0.75)rc
i − 37.46(0.56)rd

i

(13)

This linear model 1 yields an RMS `2 distance be-
tween real and regressed composition of 0.88 wt% with
a standard deviation of 0.50 wt%. Higher precision is
obtained for CaO (RMS 0.43 wt%) and Na2O (RMS
0.49 wt%) than for SiO2 (RMS 0.59 wt%). However,
the error is of the order of magnitude of the EPMA mea-
surements for Na2O in such a glass due to the migration
of Na+ under the electron beam.

Three test glasses were used to validate the regression
inside and outside the learning domain (see Fig. 6). Ra-
man spectra acquired on the test glasses are projected on
the 4 previously determined Q band partial spectra us-
ing non-negative least squares. This procedure yields,
for each test glass i, four weights wa

i to wd
i , which are

converted to areas aa
i to ad

i according to eq. (9). Area
ratios ra

i to rd
i are computed according to eq. (10), and

are then used in eq. (11)-(13). Results are presented in
Table 3 and compared to compositions obtained from
wet chemical analysis. A good agreement between the
actual and regressed compositions is found.

Regardless of the exact nature of the vibrational units
responsible for the components, this linear regression
model provides a simple and chemically justified tool
to analyze soda-lime glasses in the glassmaking zone of
interest. In detail, SiO2 content is predicted to rise with
increasing Q4 content, as expected. Q3 should be less

1Coefficients of the linear model do not necessarily have the same
signs as the correlation table (Table 2), since correlation coefficients
compare fluctuations around mean values, while the linear model links
components fractions to oxides without substracting the mean.
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Table 3: Comparison of wet chemical analysis and Raman to chemistry regression. All amounts are in wt%

TEST1 TEST2 TEST3
Chemistry Raman Discrepancy Chemistry Raman Discrepancy Chemistry Raman Discrepancy

SiO2 73.4 74.4 1.0 66.1 67.6 1.5 72.7 72.4 -0.3
CaO 10.4 12.1 1.7 16.3 18.2 1.9 13.7 15.3 1.6
Na2O 15.6 13.5 -2.1 17.2 14.3 -2.9 13.3 12.2 -1.1
Total 99.4 100.0 0.6 99.6 100.1 0.5 99.7 99.9 0.2

influential than Q4, and Q2 even less than Q3. Such be-
havior is indeed found in eq. (11). Eq. (12) describes a
similarly logical evolution for the CaO proportion. In-
crease in Q2 content, and, to a lesser extent, Q4 content,
would reflect a rise in CaO content. Qc was assigned to
a Na-rich Q3 and Qa to an “average” background glass.
It should come as no surprise that they have little in-
fluence in this equation. Slightly less understandable is
the predicted negative impact of Q4 and Q2 on Na2O
content. Although Q4 tetrahedra bear no sodium, its in-
crease does not per se mean a decrease in Na2O con-
tent. The preference of Na for Q3 non-bridging oxygen
may account partially for the negative coefficient with
respect to Q2 content.

The accuracy of the regression is limited, since the
mixing constraint SiO2 + CaO + Na2O = 100 wt% is
not taken into account. This may result in regressed
composition > 100 % as exemplified by TEST2 glass
in table 3. The apparent underestimation of Na2O and
the overestimation of CaO seem to be coincidental. A
systematic deviation would result in a non-zero average
discrepancy, which is not found. Despite these short-
comings, chemical regression from Raman spectra pro-
vides a precise compositional estimate for glasses in-
side the regression domain (TEST1 and TEST3, inside
the red domain in Fig. 6). A fair accuracy is obtained
outside the domain (TEST2), though improvement is
needed. A wider regression domain, or a non-linear
mixing model may bring improvement in the future.

Conclusion

The evolution of 169 Raman spectra collected on 3
diffusion couples of ternary SiO2-CaO-Na2O glasses
has been studied using a novel deconvolution algorithm.
Without using any prior knowledge of glass structure,
the algorithm yields results in agreement with existing
studies. Contrary to the classic Gaussian deconvolution,
this method hardly requires any knowledge of the glass
structure since it determines the number of components
to seek from the data set, and can be applied to the full
spectral range as well as to a specific one. Deconvo-

luting the high wavenumber Q band results in 4 par-
tial Raman spectra; the evolution of their area ratios is
correlated to compositional profiles along the diffusion
lines. High absolute values of correlation coefficients
enable a multilinear regression from PRS area ratios to
oxide contents. These three regression equations pro-
vide a precise means of analysis within the training data
set (standard deviation from real composition 0.5 wt%).
They have been tested with three glasses inside and out-
side the regression domain, showing reasonable preci-
sion. At the present time, our deconvolution algorithm
does not clearly discriminate Na- and Ca-compensated
NBOs, although this may be possible in the future if
glasses with a marked Na/Ca imbalance are included
in the diffusion dataset. Expanding the compositional
range would be helpful to better separate the differ-
ent vibration entities in different partial Raman spec-
tra. Further work, including especially 29Si MAS-NMR,
could bring more significance into the PRS in terms of
structure. Extending the approach further, addition of
other network-forming oxides such as Al2O3 or B2O3
may be more difficult to deal with if their vibrations
overlap with those of SiO4, but the methods presented
here provide the theoretical basis for the construction
of models capable of calculating glass chemistry from
Raman spectra.
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