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Abstract Biological experiments performed on living
bacterial colonies have demonstrated the microbial ca-

pability to develop finger-like shapes and highly irreg-

ular contours, even starting from an homogeneous in-

oculum. In this work, we study from the continuum

mechanics viewpoint the emergence of such branched
morphologies in an initially circular colony expanding

on the top of a Petri dish coated with agar. The bacte-

rial colony expansion, based on either a source term,

representing volumetric mitotic processes, or a non-
convective mass flux, describing chemotactic expansion,

is modelled at the continuum scale. We demonstrate

that the front of the colony is always linearly unstable,

having similar dispersion curves to the ones character-

izing branching instabilities. We also perform finite ele-
ment simulations, which not only prove the emergence

of branching, but also highlight dramatic differences be-

tween the two mechanisms of colony expansion in the

nonlinear regime. Furthermore, the proposed combina-
tion of analytical and numerical analysis allowed study-
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ing the influence of different model parameters on the
selection of specific patterns. A very good agreement

has been found between the resulting simulations and

the typical structures observed in biological assays. Fi-

nally, this work provides a new interpretation of the

emergence of branched patterns in living aggregates,
depicted as the results of a complex interplay among

chemical, mechanical and size effects.
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instability · bacterial chemotaxis · volumetric growth
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1 Introduction

Bacteria have long been considered as simple unicel-

lular organisms that grow and live independently from

each other [Shapiro 1988]. However, in the last decades,

many experimental and theoretical works have shown
that, regardless of their small size and quite primitive

structure, they display a high behavioral complexity.

In fact, bacteria can carry out collective strategies for

adaptation and survival, and they can also collaborate,
forming colonies in which individual behaviours and

abilities are adjusted for the convenience of the whole

population [Beer et al. 2009, Ben-Jacob and Schultz

2010,Matsushita et al. 2004,Shapiro 1988]. Accordingly,

when a small number of bacteria is inoculated on a
Petri-dish with an appropriate culture medium, they

exhibit coordinate behaviors and they collectively grow

setting-up structured and complex colonies. Such colonies

might differ in size, form and functions according to the
bacterial species and to the environmental conditions

[Matsushita et al. 2004]. For instance, a wide variety

of morphological patterns is reported from experiments
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using Bacillus Subtilis [Bonachela et al. 2011,Fujikawa

1994,Kawasaki et al. 1997,Matsushita et al. 1998,Mat-

sushita et al. 2004], ranging from disk-like colonies to

dense branched morphology, including diffusion-limited

aggregation (DLA)-like patterns, compact Eden-like struc-
tures [Eden 1961] and concentric ring-like morpholo-

gies.

During the course of evolution, bacteria have devel-

oped sophisticated means to communicate both among
them and with the extracellular environment [Beer et

al. 2009,Golding et al. 1998], in order to adapt in re-

sponse to changes in environmental conditions. These

communicative strategies include long- and short-range

chemical signalling and contact-mediated mechanical
interactions [Bassler and Losick 2006,Beer et al. 2009].

The chemical communication is based on the bacterial

secretion of chemicals and on the microbial ability of

binding, through membrane receptors, specific chem-
ical molecules that can be either generated by other

bacteria belonging to the same colony or they can be

externally-generated [Beer et al. 2009]. Furthermore,

bacteria do not only sense biochemical signals but they

also respond to physical factors, thanks to their mem-
brane receptors and mechanically gated channels. The

conversion of the mechanical stimulus into a biological

response, which is commonly referred to as mechano-

transduction, is a crucial feature to interact both with
the other bacteria in the colony and with the external

environment [Hamill and Martinac 2011]. The chem-

ical and mechanical interactions thus affect the bac-

terial behaviour through complex intracellular mecha-

nisms involving signal transduction pathways and gene
expression dynamics [Manz 2010]. This feedback mech-

anisms lead to the coordination of a large number of

bacteria in space and time, through either synchroniza-

tion or differentiation of the different individuals in the
colony [Bassler and Losick 2006,Shapiro 1988]. One re-

sult of this cooperative behavior is the formation of

complex spatio-temporal patterns during the evolution

of the colony, which have attracted the interest of a

broad multidisciplinary community of scientists for a
long time [Ben-Jacob et al. 1998,Ben-Jacob and Levine

2006,Poujade et al. 2007].

Indeed, bacteria capability to grow elaborate branching

patterns, starting from an initially homogeneous mi-
crobial monolayer, was first studied by Fujikawa and

Matsushita (1989), who postulated that nutrient diffu-

sion and consumption was driving the instability of the

expanding front. When plated on a Petri dish, the nu-

trients (e.g. peptone) contained in the culture medium
diffuses towards the colony, providing the influx of en-

ergy needed by bacteria in order to proliferate, move

and perform any other metabolic process. Nutrient con-

sumption creates a gradient in the chemical concentra-

tion, that plays a key role in microbial dynamics [Ben-

Jacob et al. 1998,Ben-Jacob et al. 2000,Ben-Jacob and

Levine 2006,Fujikawa 1994,Kawasaki et al. 1997,Mat-

sushita et al. 1998,Matsushita et al. 2004,Mimura et al.
2000,Wakita et al. 1997]. Precisely, many biological ex-

periments [Adler 1966,Ben-Jacob et al. 1998,Ben-Jacob

and Levine 2006,Golding et al. 1998, Parent and De-

vreotes 1999] pointed out that bacteria are not only able
to perform a random-walk-like motion but they can also

direct their movements in response to external chemi-

cal signals, a process called chemotaxis. Thus, bacterial

movements resemble a random walk in a uniform en-

vironment, in which relatively straight swim phases al-
ternate with random tumbles of the flagella reorienting

the micro-organism. Conversely, in the presence of an

external chemical gradient bacteria direct their motion

by reducing the tumbling frequency of their flagella,
when they move up the gradient of a chemo-attractant

or, equivalently, down the gradient of a chemo-repulsive

substance [Adler 1966]. In order to perform both undi-

rected and directed motions, bacteria need to move on

the underlying agar, swimming in the fluid on the top
of it. This thin layer of lubricant liquid might be collec-

tively produced by the cells themselves, but also drawn

from the agar during bacterial expansion [Ben-Jacob et

al. 1998,Golding et al. 1998]. Thus, thanks to in-vitro
experiments, bacteria expansion has been demonstrated

to rely on the nutrient availability and on the bacteria

capability to migrate on the top of the agar, which in

turn depends on the mechanical properties of the un-

derlying agar and on the properties and the quantity of
this fluid on the top of it [Ben-Jacob et al. 1998,Ben-

Jacob and Levine 2006,Kozlovsky et al. 1999].

Nevertheless, understanding the collective growth and

motion of micro-organisms in response to chemicals and
mechanical cues is a challenge not only from the exper-

imental point of view, but also from the mathemati-

cal and bio-mechanical perspectives, since it requires

combining biological information with the mathemati-

cal theories of nonlinear dynamics and the physics and
mechanics of non-equilibrium processes. In particular,

many mathematical models have been proposed in the

last decades to describe pattern formation in microbial

colonies, starting from the observation that the bac-
terial patterns are similar to the ones found in some

non-living systems [Ben-Jacob 1993, Ben-Jacob 1997].

Existing mathematical models can be divided into two

main categories:

– discrete/hybrid models, characterized by a discrete
representation of the single moving entities and a

continuous description of the chemicals (e.g. the com-

municating walkers model proposed by Ben-Jacob
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et al. (1998) and by Ben-Jacob and Levine (2006),

or the agent-based model used by Bonachela et al.

(2011)). Even though these models allow a direct

simulation of the single agents, that consume nutri-

ents, reproduce, move randomly or in response to
chemical fields, they are computationally limited in

the number of individuals that can be simulated;

– continuous models, in which the bacterial colony,

the nutrients and all the other factors involved in
the process, are represented via their averaged den-

sities [Ben-Jacob et al. 2000,Kawasaki et al. 1997,

Kozlovsky et al. 1999,Marrocco et al. 2010,Mat-

sushita et al. 1998,Mimura et al. 2000,Wakita et

al. 1994]. Among them, there are reaction-diffusion
(RD) models, so called because the spatial and tem-

poral evolution of the species’ densities is described

by a systems of coupled reaction-diffusion equations

[Mimura et al. 2000]. Such models were able to re-
produce accurately not only disk-like patterns, but

also branched ones. In particular, disk-like patterns

have been recovered using a two-dimensional Fisher

equation for the bacterial population [Matsushita et

al. 2004,Wakita et al. 1994]. Instabilities here rely
on the introduction of a non-linear diffusion coeffi-

cient [Kawasaki et al. 1997,Mimura et al. 2000] or to

a limitation in the rate of transition from the bacte-

ria active (i.e. motile and proliferative) state to the
passive one [Matsushita et al. 1998]. Such models

may also include a chemotactic term [Cerretti et al.

2011,Marrocco et al. 2010], combining signals from

a chemorepellent and a chemoattractant (to prevent

overcrowding, while keeping the cells together).

Even though both continuous and hybrid models have

been proved to qualitatively reproduce some bacterial

patterns, most of these researches focused on diffus-

ing chemicals as the major guide of the whole phe-

nomenon, without considering proper mechanical bal-
ance laws. However, recent works [Ambrosi et al. 2011,

Ciarletta et al. 2012,Ganghoffer 2010,Humphrey 2003,

Taber 1995] have demonstrated the paramount impor-

tance of describing growth and migration in biological
processes using the proper continuum mechanics frame-

work. Thus, bio-mechanical considerations cannot be

neglected in order to describe the expansion and the

consequent formation of complex morphologies in bac-

terial colonies.
Some recent attempts to incorporate a mechanical de-

scription in bacterial models can be found, for instance,

in the work of Farrell et al. (2013), where some mechan-

ical interactions are modelled at the cellular scale in a
two-dimensional bacterial colony, and in the paper of

Dockery and Klapper (2001), where the formation of

finger-like structures during the volumetric growth of a

planar biofilm is investigated, without considering the

effect of chemotaxis.

In the present work, we will focus on determining
the role of both chemical and mechanical interactions

on the pattern formation of an expanding circular bac-

terial colony. The mechanical description is here pre-

sented from a continuum viewpoint, describing the fric-

tion arising from the interaction between the colony
and the substrate, and the surface tension acting at the

boundary of the colony, due to the collective interac-

tion with the biopolymers inside the surrounding liquid

environment [Flemming and Wingender 2010].
The growth and chemotactic mobility of the biological

colony, coupled with the diffusion and consumption of

nutrients provided by the agar, are described using a

continuum mechanical model at the macroscopic scale.

The bacterial growth within a Petri dish is described
as a free-boundary problem, in which the growth of the

colony is driven by either a pure volumetric mass pro-

duction inside the body or a non-convective mass flux

due to chemotaxis.
In Section 2, we first present the mathematical model

for describing the expansion mechanisms of a bacterial

cluster. Then, in Section 3, we perform a linear sta-

bility analysis for a quasi-static bacterial expansion. In

Section 4, we perform numerical simulations to ana-
lyze the dynamics of pattern formation in the nonlin-

ear regime. Finally, the main achievements of this work,

with a particular focus on their significance for biolog-

ical problems, are discussed in Section 5.

2 Mathematical Model

Let us model the bacterial colony as a two dimensional
continuum body, whose expansion over time is described

by a moving free boundary. A continuous model is a

suitable tool since no gaps appear in the expanding cul-

ture and the average pore size of the underlying agar
is smaller than the typical dimension of the single bac-

terium [Kawasaki et al. 1997,Matsushita et al. 1998].

Moreover, the growth of the colony on the top of the

agar surface can be approximated as two-dimensional in

the reported experimental conditions [Kawasaki et al.
1997,Golding et al. 1998,Matsushita et al. 1998,Mar-

rocco et al. 2010].

The bacteria colony is modelled to occupy a region de-

noted with Ω−(t) (see Fig. 1) surrounded by a spa-
tial domain Ω+(t), filled with an inviscid fluid, which

represents the thin layer of lubricant observed on the

top of the agar in biological assays [Ben-Jacob et al.
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Fig. 1 Scheme representation of the domain used for the
analytical and numerical analysis. At time t = 0, Ω−(0) is
a circle, with radius R∗(0) = R∗

0 . The fixed border ∂Ω+

represents the outer radius of the Petri dish.

1998, Ben-Jacob and Levine 2006]. The moving inter-
face between the colony and the external environment

is denoted with ∂Ω−(t) (see Fig. 1).

The nutrients can diffuse through the agar inside the

inviscid fluid layer on top of it, with diffusion coeffi-
cient Dn, from the fixed outer boundary of the Petri

dish ∂Ω+ and it is consumed by the living material in

Ω−(t), with an uptake rate γn. Thus, the the 2D ho-

mogenized concentration per unit volume of this generic

chemical, indicated with n(x, t), obeys the following
reaction-diffusion equation

ṅ(x, t) =

{

Dn∇2n(x, t)− γnn(x, t) in Ω−(t) ,

Dn∇2n(x, t) in Ω+(t) .
(1)

Typical values of the diffusion coefficientDn range from

10−12m2/s to 10−9m2/s [Dockery and Klapper 2001,

Ford and Lauffenburger 1991,Golding et al. 1998,Zhou

et al. 2012], whereas the uptake rate γn is in the or-
der of 10−4 − 10−3 s−1 [Golding et al. 1998,Yu et al.

2009]. In principle, we remark that the uptake rate γn
should depend on the bacterial density, although, in

the following, it will be considered homogeneous and
constant over time. The diffusing chemical notably af-

fects the growth of single individuals in the colony and

it directs cell movements, through chemotaxis [Adler

1966,Lecuit and Lenne 2007]. Hence, we consider both
a volumetric mass supply, Γ , and a non-convective mass

flux term, m, for describing the process of mass accre-

tion inside the living aggregate. Accordingly, the mass

balance equation representing the evolution of the ac-

tual bacterial density, ρ, reads

dρ

dt
+ ρ∇ · v = Γ +∇ ·m . (2)

Since growth processes and mass transport phenom-

ena in living materials are driven by the local concentra-

tion of chemicals, proper constitutive equations for the

mass source term and the mass flux vector appearing

in Eq. (2) should take into account nutrient availability.

Thus, we will consider the two different situations:

– the expansion of the colony is driven by non-convective
mass fluxes and no mitotic processes occur inside

the volume, i.e. Γ = 0. Neglecting the random-

motion of bacteria with respect to the directional

one [Adler 1966], a simple dissipative constitutive
law for m can be taken in the form of a chemotactic

term [Keller and Segel 1971], i.e. m = χρ∇n , where

χ is the chemotactic coefficient, experimentally mea-

sured in the order of 3.75− 188 · 10−5 cm2/(s ·mM)

[Ford and Lauffenburger 1991, Tindall et al. 2008].
Since the mass flux m describes chemotactic expan-

sion of the colony towards higher concentration of

nutrients, in the following we will refer to this case

as the chemotactic growth model;
– the mass production occurs inside the volume of the

material, without non-convective mass exchanges,

i.e. m = 0. The volumetric mass supply Γ can

be taken proportional to the nutrient concentration

and the bacterial density [Kawasaki et al. 1997], i.e.
Γ = Kγρn , where Kγ is the bacterial reproduction

rate per unit of nutrient concentration (that was es-

timated to be in the order of Kγ = 6 · 10−5l/(·s)
in [Golding et al. 1998]). This situation is later re-
ferred to as bulk or volumetric growth model.

In the following, both mass source terms will be mod-

eled using linear constitutive equation with the aim to

study the linear stability of the quasi-stationary solu-
tion without introducing non linearities in the govern-

ing equations.

While the volumetric mass production and the mass

flux vector appearing in Eq. (2) are related to chemi-

cal properties of the system, the physical velocity field
should be linked to the mechanical properties of our

material. Considering that the living aggregate can be

macroscopically described by a Newtonian fluid mov-

ing at low Reynolds numbers and under the assump-
tion of a very slow growth process, the Stokes equa-

tions for a two-dimensional flow of a thin film of viscous

fluid reduce to a relation similar to the classical Darcy’s

law [Guyon et al. 2001,Saffman and Taylor 1958], that

couples the velocity v to the pressure field p through

v = −Kp∇p , (3)

where the typical permeability coefficient of the mate-

rial, Kp, is related, in this context, to the inverse of

the friction between the colony and the substrate and
it represents the motility of the colony. Then, we as-

sume the two-dimensional incompressibility of the bi-

ological matter, which is mostly composed by water,
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Table 1 Dimensionless equation systems for the chemotactic

growth model and the bulk growth model. The dimensionless
nutrients concentration is denoted with n̄ and the dimension-
less pressure with p̄.

Chemotactic growth model Bulk growth model

(Γ = 0 ,m = χρ∇n) (Γ = Kγρn ,m = 0)

Governing equations:

˙̄n =

{

∇2n̄− n̄ in Ω−(t)

∇2n̄ in Ω+(t)

∇2p̄ = −β1∇2n̄ in Ω−(t) ∇2p̄ = −β2n̄ in Ω−(t)

Dimensionless BCs

p̄|∂Ω− = p̄0 − σC̄

Jn̄K|∂Ω− = 0

J∇n̄ · nK|∂Ω− = 0

dx̄∂Ω−

dt
· n = v̄∂Ω− · n

n̄|∂Ω+ = 1

Dimensionless parameters

β1 =
χnc

Dn
β2 =

Kγnc

γn

σ = σb
Kpγ

1/2
n

D
3/2
n

i.e. dρ/dt = 0 in Eq. (2). This assumption corresponds

to consider an initial condition where the almost flat

colony is no longer swelling in the transverse direction,

and starts expanding whilst keeping an approximately
constant thickness [Seminara et al. 2012]. The relation

between the pressure p and the nutrient concentration

n is obtained introducing the Darcy’s law (3) in the

mass balance (2) and substituting the constitutive re-

lations for m and Γ . Accordingly, for a homogeneous
bacterial colony, taking Γ = 0 and m = χρ∇n for the

chemotactic growth model we have

∇2p = − χ

Kp
∇2n in Ω−(t) , (4)

whereas for the bulk growth model, the constitutive as-
sumptions Γ = Kγρn and m = 0 lead to

∇2p = −Kγ

Kp
n in Ω−(t). (5)

In summary, the coupling of Eq. (1) with Eq.(4)

(resp. Eq.(5)), describes the macroscopic evolution of

the system, under the condition of a chemotactic growth
model (resp. volumetric growth model).

These systems of partial differential equations must be

complemented by a set of boundary conditions (BCs).

In particular, we assume for both systems that the
Young-Laplace equation holds at the free interface ∂Ω−(t).

Thus, calling C the local curvature of the free bound-

ary, being σb the surface tension of the interface and p0

the constant outer pressure, the mechanical equilibrium

is guaranteed by the condition

p = p0 − σbC on ∂Ω−(t) . (6)

The surface tension of the colony arises from the collec-

tive interaction between the bacteria at the border and

the biopolymers in the liquid environment [Flemming

and Wingender 2010], forming a crosslinked structure
all around the border of the colony [Ben-Jacob et al.

1998,Kozlovsky et al. 1999].

Moreover, the compatibility condition at the free inter-

face imposes

dx∂Ω−

dt
· n = v∂Ω− · n on ∂Ω− (7)

where n is the outward normal vector at the boundary.

The continuity for the nutrient concentration and flux

can be assumed in absence of an interfacial structure,

so that

JnK|∂Ω− = 0 , (8)

J∇n · nK|∂Ω− = 0 , (9)

where J(·)K|∂Ω− denotes the jump of the quantity be-

tween brackets across the boundary ∂Ω−(t). Finally, we

will consider two kinds of boundary conditions at the

outer boundary of the Petri dish, corresponding to two
different biological experimental settings. First, we will

consider that the concentration of nutrients at the fixed

external boundary remains constant over time, i.e.

n |∂Ω+= nout on ∂Ω+ , (10)

which corresponds to the case in which nutrients are

continuously added in the agar at the border of the
Petri dish, so that their concentration is kept constant.

This approximation also holds for small initial colonies

growing far enough from the outer border of the Petri

dish. Then, we will analyze the case in which the nutri-

ents are introduced at the outset and no flux occurs at
the edge of the dish, i.e

∇n · n |∂Ω+= 0 on ∂Ω+ , (11)

that is the situation most commonly found in biological

experiments. In the following we will work with dimen-

sionless equations, obtained writing the system of Eqs.

(1)-(4) and (1)-(5) in terms of the dimensionless vari-
ables, denoted with barred symbols (e.g. n̄ denotes the

dimensionless nutrients concentration whereas p̄ indi-

cates the dimensionless pressure), with respect to the

following characteristic length lc, time tc, velocity vc,

pressure pc and chemical concentration nc

lc =

√

Dnγ
−1
n , tc = γ−1

n , vc =
√

Dnγn ,

pc = DnK
−1
p , nc = nout(t = 0) .
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Considering the typical biological values reported in lit-

erature for Dn [Dockery and Klapper 2001, Ford and

Lauffenburger 1991,Golding et al. 1998,Zhou et al. 2012]

and γn [Golding et al. 1998,Yu et al. 2009], we have a

characteristic time in the range of 16 − 166min and a
diffusive length lc that can vary between 100µm and

3mm, which is much smaller than the 44mm-radius

of the typical Petri dish used in the experiments per-

formed on bacteria. The two dimensionless systems of
equations are reported in Table 1. Interestingly, in each

system only two dimensionless parameters appear: σ =

σbKpγ
1/2
n D

−3/2
n in both models and either β1 = χncD

−1
n

in the chemotactic growth model or β2 = Kγncγ
−1
n in

the volumetric growth model. The dimensionless param-
eter βi (with i = 1 in the chemotactic growth model

and i = 2 in the bulk growth model) represents the ratio

between the energy required for the expansion of the

colony (i.e. either the energy associated to the chemo-
tactic expansion in the chemotactic growth model or the

energy supply for the mass production process in the

volumetric growth model) and the energy provided by

the nutrients (i.e. either the energy associated to the

diffusion of nutrients in the chemotactic growth model
or the energy provided by their uptake in the volumet-

ric growth model). On the other hand, the parameter

σ depends on the surface tension of the colony, on the

permeability of the medium and on the diffusion coef-
ficient of the chemicals. In particular, the permeabil-

ity coefficient of the medium can be related through

Kp = lc/ζ to the friction ζ between the colony and the

substrate (ζ is in the order of 1 − 102 nNs/(µm3), as

found in Ziebert and Aranson (2013)). Accordingly ,
the dimensionless parameter σ becomes the ratio be-

tween the surface tension of the bacterial colony and

the product between the colony-substrate friction and

the diffusion coefficient, σ = σ/(Dnζ).
In the following sections, we will omit the barred no-

tation for dimensionless quantities for the sake of sim-

plicity.

3 Linear stability analysis

In this section we will study the stability of the quasi-

stationary solution, obtained assuming that the diffu-

sive process is faster than the motion of the colony bor-

der, so that it is possible to drop the time derivative
in Eq. (1). Both the chemotactic growth and the bulk

growth model introduced in Section 2 will be considered.

The assumption of a quasi-stationary evolution of the

colony can be valid in those experimentally observed
situations [Kawasaki et al. 1997,Matsushita et al. 1998]

in which the growth of the colony occurs slowly enough

to consider the diffusive equilibrium for the nutrients.

In particular, we specialize our analysis to the case of

a circular colony, i.e.

Ω−(t) = {(r, θ) : r < R∗(t), 0 < θ ≤ 2π} ,

with free border ∂Ω−(t) : r = R∗(t) , immersed in an
external domain,

Ω+(t) = {(r, θ) : R∗(t) < r ≤ Rout, 0 < θ ≤ 2π} ,

where R∗(t) is the dimensionless radial position of the

free boundary and Rout is the external dimensionless

radius.

3.1 Quasi-stationary solution

The existence of a non-null quasi-stationary solution for

the nutrients is guaranteed only under the assumption
that the boundary condition (10) holds (as the only sta-

tionary solution by applying BC (11) would correspond

to a null concentration everywhere). Thus, the quasi-

stationary solution n∗ of Eq. (1) fulfilling the internal

boundary conditions (8) and (9) reads

n∗(r, t) =























n0

I0(r)

I0(R∗)
if r < R∗

n0 + (1− n0)

log

(

r

R∗

)

log

(

Rout

R∗

) if R∗ < r ≤ Rout,
(12)

where n0 = n0(t) =

(

1 +
I1(R

∗)

I0(R∗)
R∗ log

(

Rout

R∗

))−1

is

the nutrient concentration at the moving interface and

Im(r) is the modified Bessel function of the first kind of

orderm, evaluated in r. The expression for n0(t) can be

found imposing the continuity condition (9). Once the

quasi-stationary concentration of the nutrient is given,
it is possible to solve either Eq. (4) or Eq. (5), depending

on the chosen model, and obtain the spatial evolution

of the pressure field. Given the boundary condition (6)

and imposing the boundedness of the quasi-stationary
pressure field p∗, both solutions are given by

p∗(r, t) = −βi (n
∗(r, t)− n0(t)) + p0 +

σ

R∗(t)
. (13)

Through Eq. (3), it is then possible to calculate the

quasi-stationary velocity of the front, which is directed

along the radial direction for symmetry considerations,

i.e. v∗ = v∗rer, with

v∗r (R
∗) = βin0

I1(R
∗)

I0(R∗)
. (14)

Eq. (14) can be integrated numerically to determine

the evolution of the colony border over time. Interest-

ingly, we observe that the normal velocity of the colony
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interface does not depend on the permeability coeffi-

cient Kp, but it only depends on the parameter βi.

Thus, Eq. (14) allows to check the validity of the quasi-

stationary assumption by comparing the characteristic

times of colony growth and nutrient diffusion. In those
cases in which the quasi stationary assumption cannot

be formulated, the non stationary solution should be

approached. However, in this case the treatise would

be far more complex, since the shape of the boundary
cannot be fixed a priori, but should be derived a poste-

riori solving the whole set of coupled PDEs [Paterson

1981].

3.2 Perturbation of the quasi-stationary solution

Let us now consider a perturbation of the free-boundary

with amplification rate (or time-growth rate) equal to

λ ∈ R and spatial wave-number k ∈ N
+, i.e.

R(θ, t) = R∗(t) + εeλt cos(kθ) . (15)

with |ε| ≪ 1. For physical consistency, the variations of

n and p from the quasi-stationary solution, n∗ and p∗

are assumed in the form

n(r, θ, t) = n∗(r, t) + εn1(r)e
λt cos(kθ) , (16)

p(r, θ, t) = p∗(r, t) + εp1,i(r)e
λt cos(kθ) , (17)

where, as before, i = 1 in the chemotactic growth model
and i = 2 in the volumetric growth model. Using (1), we

know that n1 is the solution of both systems of ODEs

r2n′′
1(r) + rn′

1(r) −
(

k2 + (λ+ 1)r2
)

n1(r) = 0

if r < R∗(t) ,(18)

r2n′′
1 (r) + rn′

1(r) −
(

k2 + λr2
)

n1(r) = 0

if R∗(t) < r < Rout , (19)

where primes denote derivatives on r. In the following
we will denote with n−

1 the solution of (18) and with

n+
1 the solution of (19).

In particular, it is possible to see that the nature

of the solution of (18)-(19) changes with the value of
the parameter λ. Calling Km(r) the modified Bessel

function of the second kind of order m, evaluated in r,

the solutions of (18)-(19) are:

– n−
1 (r) = AIk(

√
λ+ 1r) and n+

1 (r) = BIk(
√
λr) +

DKk(
√
λr), when λ 6= {0,−1};

– n−
1 (r) = A0Ik(

√
λ+ 1r) and n+

1 (r) = B0r
k+D0r

−k,
when λ = 0;

– n−
1 (r) = Ark and n+

1 (r) = B1Ik(
√
λr)+D1Kk(

√
λr),

when λ = −1.

The coefficients appearing in the expression of n−
1 (r)

and n+
1 (r) can be determined imposing the boundary

conditions in (8), (9) and (10), being

Jn1K|R∗ = 0, , (20)

J
∂n1

∂r
K|R∗ = n0 , (21)

n+
1 (Rout) = 0 , (22)

We report in Table 2 the solution of n−
1 and the values

of A, A0, A1, as they will be useful in the definition of

the dispersion relations.
The perturbed pressure field p1,i in Ω−, can be deter-

mined from (4) when i = 1 or (5) when i = 2, that lead

to

p1,1(r) = E1r
k − β1n

−
1 (r) (chemotactic growth) (23)

and

p1,2(r) =
β2

2k

[

r−k

∫

rk+1n−
1 (r)dr − rk

∫

r−k+1n−
1 (r)dr

]

+ E2r
k (volumetric growth). (24)

The constants E1 and E2 depends on the condition (6),
that leads to

p1,i(R
∗) = σ

k2 − 1

R∗2
− ∂p∗

∂r
(R∗) =

= σ
k2 − 1

R∗2
+ βin0

I1(R
∗)

I0(R∗)
, (25)

considering only the first order terms. Finally, the dis-

persion equation

λ = −p∗′′(R∗)− p′1,i(R
∗) , (26)

is obtained from Eq. (7), neglecting the terms of order

higher than the first. The dispersion equation (26) has

the same form of the relation found for the rectilinear
front on an infinite domain [Ciarletta 2012]. More de-

tails on the determination of the boundary condition

for the perturbed pressure field (25) and on the the-

oretical derivation of the dispersion equation (26) can

be found in the Appendix. The specific expressions for
the dispersion equations are reported in the Appendix

(see Table 3 for the chemotactic growth model and Ta-

ble 4 for the bulk growth model). These relations link

the time-growth mode λ to the wave-number k in an
implicit way, as a function of the four dimensionless

parameters βi, σ, R
∗ and Rout. In particular, the pa-

rameters R∗ and Rout define the geometrical properties

of the system with respect to the diffusive length, lc
(size parameters), whereas βi and σ are related to the
mechanical and chemical characteristic of the system

(chemo-mechanical parameters), as already discussed.

The dispersion curves obtained through the disper-

sion relation (26) are reported in Fig. 2 for different
values of the size and chemo-mechanical parameters,

for both the chemotactic growth model (solid lines) and

the bulk growth model (dotted lines). Interestingly, no
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Table 2 Quasi-stationary solution for the concentration field in the region occupied by the bacterial colony.

Case n−

1 (r)

λ 6= {0,−1} AIk(
√
λ+ 1r) A = n0

Ik(
√
λR∗)Kk(

√
λRout) − Kk(

√
λR∗)Ik(

√
λRout)

denA

denA =
√
λ + 1Ik−1(

√
λ + 1R∗)

(

Ik(
√
λRout)Kk(

√
λR∗) − Kk(

√
λRout)Ik(

√
λR∗)

)

+

+
√
λIk(

√
λ + 1R∗)

(

Ik(
√
λRout)Kk−1(

√
λR∗) + Kk(

√
λRout)Ik−1(

√
λR∗)

)

λ = 0 A0Ik(
√
λ+ 1r) A0 = n0

(

R∗2k − R2k
out

)

denA0

denA0 = 2kR∗2k−1Ik(
√
λ + 1R∗) −

√
λ + 1

(

R∗2k − R2k
out

)

Ik−1(
√
λ + 1R∗),

λ = −1 A1rk A1 = n0

Ik(
√
λR∗)Kk(

√
λRout) − Kk(

√
λR∗)Ik(

√
λRout)

denA1

denA1 = 2kR∗k−1
(

Ik(
√
λRout)Kk(

√
λR∗) − Kk(

√
λRout)Ik(

√
λR∗)

)

+

+R∗k
√
λ
(

Ik(
√
λRout)Kk−1(

√
λR∗) + Kk(

√
λRout)Ik−1(

√
λR∗)

)
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Fig. 2 Dispersion diagrams for different values of the model parameters σ, βi and q = Rout/R∗

0 . The dots correspond to the
numerical solution of the dispersion equations for k ∈ N, k ≥ 1 in the volumetric growth model, whereas the solid lines are
obtained through interpolation of the discrete values of λ obtained with the chemotactic growth model.

significant differences between the two models emerge
in the linear stability analysis, and the colony front is

found to be always unstable at small wave-numbers (i.e.

large wavelengths). The prediction of an unstable ex-

pansion of a radial or planar bacterial colony was con-
jectured in [Farrell et al. 2013], although not supported

by any formal mathematical proof. Furthermore, the

dispersion curves in Fig. 2 also demonstrate the emer-

gence of a characteristic wavelengths in the develop-

ment of instabilities. As expected, the surface tension
acts a stabilizing effect on the front (see Fig. 2(a)):

increasing the value of σ the characteristic unstable

wavenumber decreases, as long as the mode related to

k = 1 is the only unstable. Furthermore, the maximum
amplification rate λ increases as βi increases (as shown

in Fig. 2(b)) and as the ratio between the radius of the

Petri dish and the radius of the colony q = Rout/R
∗

decreases (see Fig. 2(c)).

Since similar dispersion diagrams can be found in the

study of non-living systems characterized by branch-
ing instabilities, such as in crystal growth problems

[Langer 1980], the dispersion curves in Fig. 2(a) suggest

a strongly unstable expansion of the bacterial colony

and the formation of branched patterns. In the next
section we perform numerical simulations of both the

system (1)-(4) and (1)-(5) in order to investigate the

pattern formation in the nonlinear regime for the pro-

posed models.

4 Numerical simulations

Numerical simulations for both the chemotactic growth

and the volumetric growth model were obtained using

a finite element code implemented using the software

FreeFem++ [http://www.freefem.org], starting from an
initial circular colony with radius R∗(0) = R∗

0. A trian-

gular mesh with an adaptive time-scheme was used, in

order to fit the moving boundary ∂Ω−(t) at every time



Emerging morphologies in round bacterial colonies: comparing volumetric versus chemotactic expansion 9

Fig. 3 Chemotactic growth model: morphological diagram of pattern formation in bacterial colonies, obtained varying the
model parameter β1 and Rout, while keeping σ and Rout/R∗

0 fixed (σ = 0.007, Rout/R∗

0 = 5). The initial condition for
the concentration of nutrients is equal to the solution of the quasi-stationary problem, given by (12). The profile of the
colony is plotted for different instants of time (see below each contour plot for the specific values). The right charts show the
area/perimeter ratio of the bacterial colony normalized with respect to the corresponding value for a circle (i.e. half of the
averaged radius of the colony).

step.

Since the boundary condition (6) on ∂Ω−(t) is required

in order to solve for the pressure, the curvature C of

the boundary is computed accordingly to the following
relation C = nynxny,x − n2ynx,x − n2xny,y + nxnynx,y ,

where nx and ny are components of the normal n to the

moving boundary along the Cartesian axes x and y and

the comma denotes differentiation with respect to the
argument. Then, a smoothing of the curvature is per-

formed, by averaging over qsmooth near neighbours (in

the simulations we set qsmooth = 5). A P2 finite element

interpolation is performed to find an approximation of

pj onΩ−(t), so that, once the pressure, pj is known, it is
possible to compute the velocity field, given by Eq. (3),

through differentiation and determine the new position

of the front at time tj+1, using an explicit Euler time

scheme. Finally, the diffusion equation for the nutrient
(1) is solved using an implicit scheme in time. Another

P2 finite element discretization is performed to find an

approximation of nj+1 on Ω−(t) ∪Ω+(t).

The developed simulation tool allowed studying the colo-

nial shapes emerging in the non-linear regime using dif-
ferent dimensionless parameters in the model. We first

performed a set of simulations varying βi and Rout,

while keeping Rout/R
∗
0 and σ fixed, considering the

situation corresponding to the quasi-stationary analy-

sis, i.e. boundary condition (10). The colony profiles
at different instants of time are reported in the mor-

phological diagrams in Fig. 3-left for the chemotac-

tic growth model and Fig. 4-left for the bulk growth

model, at different values of the dimensionless param-
eters βi and Rout. Even if the theoretical analysis pre-

dicts that both models have a similar quasi-static dy-

namics, great discrepancies arise between the two mod-

els in the non-linear regime. In particular, for high val-

ues of β2 in the bulk growth model, high asymmetries in
the colony profile are observed, whereas at intermedi-

ate values of β2 a dynamical blebbing instability occurs

at the colony boundary (see the contour plot obtained

for β2 = 4.25 and Rout = 350 in Fig. 4-left, for in-
stance). The onset of asymmetries, which is generated

by the nonlinear development of the linearly unstable

mode k = 1, can be quantified in terms of translation

in the center of mass of the colony. Hence, in Fig. 5 we

report the finite displacements of the center of mass of
the colony resulting from simulations of the volumetric
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Fig. 4 Volumetric growth model: bacterial colony contour plot for different values of the mechanical parameter β2 and the
size parameter Rout, keeping σ = 0.007 and Rout/R∗

0 = 5 fixed. The initial condition for the concentration is given by Eq.
(12). On the right charts we report the normalized area/perimeter ratio with respect to the corresponding value for a circle
(i.e. half of the averaged radius of the colony).

growth model. On the other hand, such displacements

are almost null in the case of the chemotactic growth
model, since the Laplacian operator in Eq. (4) has a

strong regularizing effect on instabilities characterized

by small wave-numbers. The occurrence of asymmetric

instabilities in the numerical simulations confirms the
behavior pointed out by the linear stability analysis, in

which for high values of the parameter β2, the charac-

teristic wavenumber of the perturbation is k = 1 (see

Fig. 2(b)).

However, it is possible to observe from 4-left, that fur-
ther decreasing the value of β2, instabilities with small

wavelengths develop also in the volumetric growth model

and the asymmetries related to k = 1 are less pro-

nounced, in agreement with the linear stability anal-
ysis.

The morphological diagrams in Figs. 3-left and 4-left

also point out that the chemo-mechanical parameter βi

is linked to the onset of branching, with small values

of βi promoting the formation of fingers of decreasing
thicknesses. Such small values of βi correspond to sit-

uations in which the energy spent for the diffusion or

the uptake of chemicals (in the chemotactic and volu-

metric growth model respectively) is predominant with

respect to the energy converted in colony expansion, i.e.

either the energy related to chemotaxis in the chemo-
tactic growth model or the one due to mass produc-

tion in the volumetric growth model. At the same time,

since the velocity of the front expansion depends on

βi, both models predicts that low expansion velocities
promote the development of contour instability at high

wavenumbers, whereas fast front are more stable to

small wavelength, that is a typical behaviour of growing

living systems dominated by diffusion [Ben Amar et al.

2011].
On the other hand, while βi determines if branching

occurs, the number of developing fingers is driven by

the dimensionless radius Rout, at a fixed aspect ratio

Rout/R
∗
0. In particular, in Figs. 3-(left) and 4-(left) it

is observed that smaller wavelength instabilities emerge

as the size of the Petri dish increases with respect to

the diffusive length lc (i.e. higher values of Rout). The

onset of branched patterns during colony evolution de-

pends also on the other chemo-mechanical parameter of
the model, σ, that stabilize small wave-length instabili-

ties independently on the model used for the expansion

of the colony. For instance, in Fig. 6 the evolution of

the colony in the bulk growth model is reported, for dif-
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Fig. 5 Measurements of the center of mass displacement over
over the averaged radius of the colony, R̄, normalized to the
initial radius, R∗

0 , for the volumetric growth model.

Fig. 6 Influence of σ on the formation of contour instabili-
ties, using the volumetric growth model. A stabilizing effect
of the surface tension on the motion of the free boundary is
also found in the chemotactic growth model.

Fig. 7 Roughness of the profiles reported in Fig.3 and 4
plotted over the ration between averaged radius of the colony,
R̄, and the initial radius, R∗

0 .

ferent values of the dimensionless parameter σ. Being σ

identified by the ratio between the surface tension of the
bacterial colony and the friction between the colony and

the medium, Fig. 6 states that either increased value of

the colony surface tension, σb, or smaller friction coef-

ficient will drive the expansion of rounded colonies.

Even though the morphological diagrams in Figs.

3-(left), 4-(left) and 6 qualitatively show the influence

of size and chemo-mechanical parameters on pattern
formation, a quantitative characterization of such pat-

terns is needed. A good marker to determine the onset

of the branching process is given by the plot of the

area over perimeter ratio over time. In Fig. 3-right and

Fig. 4-right) we report the area over perimeter ratio

normalized with respect to the corresponding value for

a circle, which is equal to half of the averaged radius

of the colony. Therefore, the more branched the colony
front the more the area over perimeter ratio differs from

the value of 1, which identifies round colonies (Fig. 3-

right and Fig. 4-right). Thus, the initial branching time

can be easily identified from such plots, considering the
instant of time at which the area over perimeter ratio

significantly deviates from the value of 1.

Another important parameter to quantitatively charac-

terize branched patterns is the roughness of the profile.

The roughness is defined as the root of the mean square
deviation of the local radius of the front from the aver-

age radius of the colony [Bonachela et al. 2011]. Both

the local radius and the averaged radius are measured

with respect to the center of mass of the colony, so
that a translation of the center of mass will not give

a contribution to the measured roughness. Fig. 7 re-

ports the value of this parameter as a function of the

averaged radius of the colony, R̄, normalized to the ini-

tial radius, R∗
0, computed for the simulations shown in

Fig. 3 and 4. It is possible to observe in both models

that the roughness of the front saturates to an almost

constant value in colonies that remains rounded, while

for branched patterns it continuously increases as the
colony expands.

However, we remark that neither the area over perime-

ter ratio nor the roughness of the profile point out dif-

ferences between the two models, as they are not in-

fluenced by translations in the center of mass, which,
as already observed, should be quantified directly, as in

Fig. 5.

Let us now focus on the geometrical characteristics of

the developing fingers (i.e. base and amplitude), refer-
ring to the numerical simulations in the upper-left of

Figs. 3 and 4 (with Rout = 155, R∗
0 = 31 and βi =

1). The finger base is defined as the distance between

two subsequent points of local maximum for the colony

boundary curvature, whereas the amplitude of the fin-
ger is the maximum in the distance between the points

belonging to the finger profile and the corresponding

finger base vector.

Looking at the branched pattern reported in Figs. 3-

(left), 4-(left) it is possible to see that the initially gen-
erated fingers may undergo further branching for giv-

ing rise to new fingers. We will call such structures as

second generation fingers, as they occur from the split-

ting of the first appearing ones. Some of these second
generation fingers remain very short, being limited by

their neighbours, whereas others grow and they may

undergo another splitting. In particular, both for the
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Fig. 9 Chemotactic growth model with null flux boundary conditions: the bacterial colony contour plot is reported at different
instants of time, for different values of the mechanical parameter β1 and the size parameter Rout, while keeping σ = 0.007 and
Rout/R∗

0 = 5 fixed. The initial condition for the concentration is c = 1 everywhere. To start the simulations with a chemical
gradient comparable with the one used in the simulations with the boundary condition given by Eq. (10), we let the nutrient
field evolve for the first 100 instants of time, without letting the colony expand.

volumetric growth model and the chemotactic growth
one, we observe that in the early stage (from t = 650

to t = 1650 in the chemotactic growth model and from

t = 500 to t = 1500 in the bulk growth model) only

five branches develop and then they split forming sec-
ond generation fingers. Looking at the fingers’ geomet-

rical properties reported in Fig. 8-a for the chemotactic

growth model and in Fig. 8-b for the bulk growth model,

we observe that the amplitude and the base highly in-

crease for the five initial fingers independently on the
growth mechanism. Then, as soon as the second gener-

ation fingers appear, the base almost remain constant

over time, whereas the amplitude strongly grows. The

evolution of the base and amplitude can be represented
by a power-law curve c · tα, with fitting parameters c

and α reported in Fig. 8-c and Fig. 8-d, for the chemo-

tactic growth and volumetric growth model respectively.

Surprisingly, we remark for both models that the best

fitting exponent for the ratio amplitude/base of the fin-
gers in the first stage is about 0.45, which is close to

the square root growth exponent expected in instability

processes dominate by diffusion [Cross et al. 1993].

Thus, even though branches appear earlier in the volu-

metric growth model, then the initial evolution of these
branches is similar either if the colony expansion is

driven by volumetric growth or by chemotaxis.

The results presented so far have been obtained con-

sidering an initially stationary concentration of nutri-

ents and considering a fixed concentration of the chem-

icals at the outer boundary, which is the only case in
which a quasi-stationary linear stability analysis can

be performed. However, this condition might be valid

only if the colony is sufficiently far from the border,

if the nutrients are not continuously added. In biolog-
ical experiments, the nutrients are introduced in the

agar only at the beginning and, therefore, a null flux

condition at the boundary of the Petri dish would be

more realistic (i.e. eq. (11)). To study only the influ-

ence of the changed boundary condition on the onset of
instabilities, we let the nutrient field evolve for the first

100 instants of time, without letting the colony expand,

in order to achieve at the beginning of the simulation

a chemical gradient comparable to the one set in the
simulations with Dirichlet boundary conditions. Thus

we test our model under this new set of boundary and

initial conditions, to check whether the obtained results
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Fig. 10 Volumetric growth model with null flux boundary conditions: morphological diagram reporting the bacterial colony
contours at different instants of time, for different values of the parameter β1 and Rout, while keeping σ = 0.007 and
Rout/R∗

0 = 5 fixed.

can be extended also to this situation with more real-
istic BC. As done before, we perform a set of simula-

tions, varying βi and Rout (at Rout/R
∗
0 and σ fixed).

The results obtained with this new set of BC are re-

ported in Fig. 9, for the chemotactic growth model, and

Fig. 10, for the volumetric growth model. From the new
morphological diagrams, it is possible to state that the

general rules previously outlined still hold: small val-

ues of the parameter βi leads to the development of

branches, whereas the number of branches that develop
depends on the size parameters of the model. However,

in this case, the velocity of the profile is faster and thus

compact pattern with rough profile (in the chemotac-

tic growth model) or translations in the center of mass

of the colony (in the volumetric growth model) are re-
produced setting lower values of the parameter βi, with

respect to the previous case (e.g βi = 1.5 vs. βi = 4.25).

From the system dynamics reported in the morpholog-

ical diagram, it is possible to highlight that the initial
condition set in the simulations can be acceptable only

in the case of branched patterns (i.e. small values of βi),

whereas in the case of round colony, the time required

to the nutrients to create a significant chemical gradi-

ent is comparable to the time required for the colony

expansion.
The results shown so far demonstrate that, indepen-

dently on the boundary condition at the border of the

Petri dish, both the chemotactic growth and the bulk

growth model can reproduce different patterns, from

rounded to branched ones, depending on the chemo-
mechanical and size parameters, but even more impor-

tant is to see in Fig. 11 the outstanding similarity be-

tween the morphologies predicted by our model and

some of the patterns reported in literature for bacterial
colonies.

Unfortunately, a direct quantitative comparison between

the numerical simulations and the biological experi-

ments shown in Fig. 11 is not straightforward, since

not all the data required by the mathematical model
are reported in the corresponding paper and since the

model has been derived using several mathematical as-

sumptions (such as constant and homogeneous bacterial

density, quasi-stationary initial nutrient concentration,
either linear volumetric or chemotactic expansion) that

might not be valid in the biological experiments. Thus

the comparison in the following should be regarded as

a proof-of-concept to outline a biological interpretation

of the mathematical results, without any intent to be a
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Fig. 11 Comparison between some bacterial morphologies observed in biological experiments reported in the top figure (a)-
(e), and the results obtained through the numerical simulations of the mechanical models proposed in this work, reproduced
in the bottom figure, (f)-(l). Figures from biological experiments are reproduced, with permission, from (a) [Golding et al.
1998], (b) [Matsushita et al. 2004], (c) [Beer et al. 2009], (d) [O’May and Tufenkji 2011] and (e) [Ben-Jacob et al. 1998]. The
numerical simulations are obtained using the chemotactic growth model in (f)-(g)-(h) and the volumetric growth model in
(i)-(l). The parameters setted in the experiments are: σ = 0.007 for all cases and (f) R∗

0 = 31, Rout = 155 and β1 = 8.5, (g)
R∗

0 = 70, Rout = 350, β1 = 8.5, (h) R∗

0 = 100, Rout = 350 and β1 = 1, (i) R∗

0 = 70, Rout = 350 and β1 = 0.5, (l) R∗

0 = 70,
Rout = 350 and β2 = 4.25.

quantitative validation.

In particular, we showed that the chemotactic growth
model is able to reproduce disk-like patterns (as the one

in Fig. 11-a), using either high values of the chemo-

mechanical parameter β1 (see Fig. 11-f) or high values

of the chemo-mechanical parameter σ (see Fig. 6-c).

However, although disk-like colonies can be mathemat-
ically recovered by increasing σ, this would correspond

to a ratio between the surface tension of the colony and

the friction between the bacteria and the substrate that

seems out of a biologically admissible range, for the spe-
cific biological values reported for eukaryotic cells [Ben

Amar 2013,Ziebert and Aranson 2013]. Concerning the

parameters set in the simulation in Fig. 11-f, a dimen-

sionless external radius Rout = 155 will perfectly re-

produce a Petri dish with standard radius of 44mm,
considering a diffusion coefficient Dn = 3 · 10−11m2/s

and an uptake rate γ = 3.7 · 10−4 s−1, which are in

the biological range [Dockery and Klapper 2001, Ford

and Lauffenburger 1991,Golding et al. 1998,Yu et al.
2009,Zhou et al. 2012] and that lead to a characteristic

length lc ≈ 285µm. Considering β = 8.5, as the one

used in Fig. 11-f, we obtained an average velocity of

the front equal to ≈ 3.2mm/h, which is in the order of

magnitude of the values found in literature for round
and compact colonies [Kawasaki et al. 1997,Matsushita

et al. 1998].

An ”Eden-like” pattern, as the one reported in Fig. 11-
b [Matsushita et al. 2004], is reproduced by a chemo-

tactic growth model with values of the parameter β1

close to the one of disk-like patterns but higher val-

ues of the dimensionless parameter Rout, which cor-

responds to smaller characteristic diffusive lengths (or
bigger Petri-dishes, which is not the case here). Thus

patterns as the one in Fig. 11-b can be reproduced

by our model considering a smaller diffusion coefficient

Dn = 10−11m2/s [Golding et al. 1998] and an uptake
rate γ = 6.5 · 10−4 s−1, that lead to a diffusive length

lc ≈ 125µm, compatible with the value Rout ≈ 350 set

in in Fig. 11-g. For such biological parameters, the char-

acteristic velocity is vc ≈ 290µm/h, that, in the case

β = 8.5, leads to a mean front velocity of 136µm/h,
which is in agreement with the velocities reported in

litterature for such patterns [Kawasaki et al. 1997,Mat-

sushita et al. 1998].

On the other hand, branched patterns such as the one
reported in Fig. 11-c and Fig. 11-d can be obtained,

both using the chemotactic growth model and the volu-

metric growth model: regular patterns with a high num-

ber of dendrites can be obtained using the chemotactic

growth model with small values of β1 and high dimen-
sionless external radius Rout (see Fig. 11-h), whereas
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(a)

(b)

Finger parameter c α

Base t < 1650 4.18 0.386

Amplitude t < 1650 0.036 0.83

Base t ≥ 1650 71.23 (finer) -0.1562 (finer)

2.302 (bigger) 0.3609 (bigger)

Amplitude t ≥ 1650 1.93E-13 (finer) 4.013 (finer)

3.04E-9 (bigger) 2,963 (bigger)

(c)

Finger parameter c α

Base t < 1500 4.5 0.376

Amplitude t < 1500 0.039 0.83

Base t ≥ 1500 5.45 (finer) 0.17 (finer)

9.58 (bigger) 0.19 (bigger)

Amplitude t ≥ 1500 4.7E-11 (finer) 3.4 (finer)

128E-8 (bigger) 2,82 (bigger)

(d)

Fig. 8 Finger base B and amplitude A, when βi = 1,
Rout = 155, R∗

0 = 31, σ = 0.007. Using the chemotactic

growth model (a) up to time t = 1650, five principal den-
drites develop, then tip splitting occurs and 14 dendrites are
recorded. On the other hand, in the volumetric growth model

(b), tip splitting occurs before, at t ≈ 1500. The table reports
the fitting parameters of the data with a power-law curve of
the kind ctα (solid black lines) for (c) the chemotactic growth

model and (d) the volumetric growth model.

asymmetric patterns with highly separated branches

are reproduced by the volumetric model with really small

values of β2, as the one used in Fig. 11-i. In particular,

the fingers’ development and evolution reported in Fig.

11-c [Beer et al. 2009] are reproduced by our simula-

tions in Fig. 11-h, considering γ = 0.11s−1 and Dn =

10−10m2/s (i.e. lc ≈ 30µm and tc ≈ 9 s), so that the

experimentally measured displacement of about 2.4mm
in the first 22 hours, for an colony with initial diame-

ter of about 6mm [Beer et al. 2009], is perfectly re-

produced by the mathematical model with R∗
0 = 100

and β = 1 (see Fig. 11-h), in which at time T =
9000 a displacement of 82 · lc is recorded. For what

concerns the simulations obtained with the volumet-

ric growth model, according to [Golding et al. 1998],

the reproduction time of bacteria in optimal conditions

(i.e. nc ≈ 10 g/l) is 25mingiving a value of Kγ = 6 ·
10−5 l/(g · s). Moreover, in optimal nutrient concentra-

tion, biological experiments shows that colonies grow

compact [Golding et al. 1998]. As in our model the

compact expansion of the colony is obtained setting
β2 ≈ 8.5, thanks to the definition of the dimension-

less chemo-mechanical parameter, it is possible to de-

rive γn ≈ 0.78 · 10−4 s−1, which is a reasonable biolog-

ical uptake rate. Thus, a diffusion coefficient of 1.24 ·
10−12m2/s will lead to a diffusive length lc ≈ 125µm,
which is suitable to describe standard Petri dishes of ra-

dius 44mm. Considering these values for the diffusion

coefficient (even though below the admissible biologi-

cal range), uptake rate and reproduction frequency, the
value of β2 = 0.5 settled in Fig. 11-i corresponds to a

nutrient concentration nc ≈ 0.65 g/l, which is close to

the range reported in [Golding et al. 1998] for highly

branched patterns, whereas the value of β2 = 4.25 cor-

respond to a nutrient concentration nc ≈ 5.52 g/l, in
agreement with the concentration found in biological

experiments for dense branched patterns and compact

ones [Golding et al. 1998]. Moreover, for such interme-

diate values of β2 coupled with high values of Rout, the
model predicts the onset of blebbing instabilities in the

colony profile (see Fig. 11-l), similarly to the one re-

ported in Fig. 11-e [Ben-Jacob et al. 1998].

For the sake of completeness, we remark that, being the

nutrients’ diffusion coefficient inside the waterDn = 102−
103 µm2/s, the quasi-stationary assumption used to ob-

tain the initial nutrient concentration might be properly

formulated only in the case of slowly growing colonies,

such as branched and Eden-like patterns, that develop
with a speed of ≈ 1.5 · 10−2 − 10−1 µm/s [Beer et al.

2009,Kawasaki et al. 1997,Matsushita et al. 1998]. On

the other hand, circular colonies expand with a front

speed of approximately 1 − 5µm/s [Kawasaki et al.

1997,Matsushita et al. 1998], thus the time required to
fill the Petri-dish might be of the same order of the time

required to reach the chemical equilibrium. Thus in this

case an initial quasi-stationary concentration seems not



16 Chiara Giverso et al.

a good guess of the biological condition. However circu-

lar patterns can also be obtained with the same model,

without imposing the initial quasi-stationary condition

for the nutrients, starting from a homogeneous condi-

tion for the chemicals.

5 Discussion

In this work we proposed a continuum model for de-

scribing the onset and the nonlinear development of
contour instabilities in an initially circular and homo-

geneous bacterial colony. The nutrient distribution is

described using a standard reaction-diffusion equation,

so that the local bacterial growth on the Petri dish de-
pends on nutrient availability. Two mechanisms for the

expansion of the colony are considered: we either as-

sume that mass accretion is due to a non-convective

mass flux inside the colony, which is proportional to the

chemical gradient (chemotactic growth model), or we
consider a bulk mass supply (volumetric growth model).

In both cases, the expansion of the colony satisfies the

mass and momentum balances for the bacteria, together

with the required boundary conditions at the free mov-
ing interface.

The equation systems describing the dynamic of the

colony are characterized by four dimensionless param-

eters, two of them (βi and σ) describing the chemo-

mechanical interactions whilst the other ones (R∗
0 and

Rout) take into account the size properties of the sys-

tem. In particular, the parameter βi represents the ratio

of conversion of the energy provided by the nutrient into

the energy which makes the colony expand (i.e. either
chemotactic expansion or volumetric mass production),

whereas σ measures the ratio between the surface ten-

sion of the colony and the friction with the substrate.

On the other hand, the size parameters take into ac-

count the relative dimension of the colony and of the
Petri-dish with respect to the diffusive length.

The modelling approach proposed here differs from pre-

vious continuous ones, e.g. [Matsushita et al. 2004,Mimura

et al. 2000], for the introduction of a sharp interface
representing the colony contour, for the consideration

of both mechanical, chemical and size effects and for the

direct comparison of two possible mechanisms driving

the expansion of the colony, i.e. chemotaxis vs. volu-

metric growth.
The two proposed models are studied using both ana-

lytical and computational tools. First, a linear stabil-

ity analysis (Section 3.2) is performed for both models,

pointing out that the initially circular colony is always
unstable at high wave-lengths, with typical dispersion

curves found for branching processes in non-living sys-

tems [Langer 1980]. Second, numerical simulations have

been performed using a finite element scheme (see Sec-

tion 4), proving the onset of branched patterns in the

nonlinear regime. In particular, numerical results have

confirmed the existence of a characteristic wavenum-

ber, predicted by the analytical analysis, whilst they
have shown striking differences (see Figs. 3 and 4) be-

tween the chemotactic vs. volumetric growth mecha-

nisms, highlighting the emergence of asymmetries and

blebbing instabilities in the volumetric growth model.
The development of numerical tools has also allowed to

investigate the influence of the chemo-mechanical and

size parameters on the pattern formation, under more

realistic boundary conditions that cannot be studied

through the perturbation of the quasi stationary solu-
tion (e.g. the null flux BC at the border of the Petri

dish). Notably, the computational analysis points out

that the chemo-mechanical parameters trigger the onset

of the developing instability whereas the size parame-
ters determine the typical wavelength of the developing

fingers. Indeed, we prove that high values of the surface

tension (or equivalently small value of the friction co-

efficient, i.e. high σ) and elevated front velocities (i.e.

high βi) stabilize the expanding colony, confirming the
experimental observations that compact patterns arise

for fast expanding colonies, whereas branched ones oc-

cur for slowly moving fronts [Matsushita et al. 1998]. On

the other hand, the typical wave-lengths of the possible
instability is dictated by the size parameters: smaller

wave-lengths instabilities occur for decreasing ratios be-

tween the diffusive length and the dimension of the

Petri dish.

The resulting patterns are also quantitatively charac-
terized through measurements of the area over perime-

ter ratio of the colony, the roughness of the profile, the

aspect ratio of the developing fingers and the trans-

lation of the center of mass. In particular, the evolu-
tion of the area over perimeter ratio and the roughness

plots allowed determining the branching onset, whereas

the initial scaling of fingers’ aspect ratio demonstrates

that the process is governed by diffusion at an early

stage [Cross et al. 1993]. Although these parameters are
similar for the two expansion mechanisms, the measure-

ments of the translation in the center of mass identifies

great dissimilarities between the two models. In par-

ticular, this analysis suggests that asymmetries mostly
relies on a volumetric bacteria production rather than

on chemotactic movements. In fact, the chemotactic ex-

pansion is less sensitive to perturbations with small

wavenumbers and, thus, translations in the center of

mass of the colony are not appreciable in the numerical
simulations.

Finally, we show that the proposed models, although

kept as simple as possible, are able to qualitatively re-
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produce some of the patterns observed during biolog-

ical experiments (see Fig. 11), which range from disk-

like patterns to more ramified ones depending on the

model parameters chosen. However, despite the strik-

ing qualitative agreement between our simulations and
the experimental patterns, quantitative tests are highly

needed to verify whether the right biological features

are included in the modelling approach and to improve

the model. Future work will focus on the investigation
of the colony expansion by introducing nonlinear con-

stitutive equation for the chemotactic and volumetric

growth terms which could better fit some experimental

results, i.e. showing a Monod-type dynamics.

Furthermore, the assumptions of the present model make
it suitable to describe the experimental expansion ob-

served for bacterial monolayers in microffluidic experi-

ments, such as the one perfomed in [Volfson et al. 2008].

Conversely, a limitation arises in those cases where the
bacterial density is inhomogeneous, e.g. concentric ring

like pattern. However, we remark that the model can

be numerically implemented, with slightly changes, con-

sidering a time and space varying density described by

the mass conservation equation of the bacterial colony.
Finally, we considered separate contributions for volu-

metric growth and mass fluxes, whereas in the biologi-

cal set-up the two mechanisms coexist. Therefore, even

though this work is useful to establish the separated
effects of each of the two mechanisms on the formation

of branches, future models should focus on the combi-

nation of volumetric growth and chemotactic motion,

as done for instance in [Croze et al. 2011].

In conclusion, despite the simplifications introduced,
this work demonstrates that the formation and dynam-

ical evolution of patterns in microbial colonies is the

result of a sophisticated interplay among mechanical,

chemical and size parameters of the system. Indeed
the morphological diagrams presented in Fig. 3 and

Fig. 4 propose a new interpretation on the emergence

of branched patterns, relating contour instabilities of

the colony to chemo-mechanical and size parameters,

rather than on the concentration of the chemicals and
of the agar, as the other morphological diagrams pro-

posed in literature [Bonachela et al. 2011,Fujikawa and

Matsushita 1989,Matsushita et al. 1998,Matsushita et

al. 2004,Mimura et al. 2000]. Moreover, differently from
previous models, the branching structures are obtained

without resorting on either a non-linear diffusion co-

efficient, as in [Kawasaki et al. 1997, Mimura et al.

2000] or the definition of a passive state for bacteria,

as in [Matsushita et al. 1998] or the inclusion of ad-hoc
non-linearities in the production, chemotactic and con-

sumption terms.

Thus, our models give an insight on the role played

by physical forces in guiding morphological processes

in living aggregates, and it might be applied applica-

tion with appropriate refinements to the description

of other biological relevant problems, such as wound-

healing [Friedl et al. 2004,Mark et al. 2010,Nikolić et
al. 2006,Nobes and Hall 1999,Poujade et al. 2007] and

biofilm formation [Dockery and Klapper 2001,Seminara

et al. 2012].

Appendix

In Section 3.2, the linear stability analysis applied to

the quasi-stationary problem lead to the definition of
the dispersion equation in the compact form (26), as

a function of the unperturbed and perturbed pressure

field. Here, we report some details on how eq. (25) and

(26) have been obtained and the specific expressions for

the perturbed pressure and the dispersion equations in
the chemotactic growth model (Table 3) and in the bulk

growth model (Table 4). The boundary conditions (25)

for the perturbed pressure at the interface, can be easily

obtained, provided that (6) should hold, therefore

p(R∗ + εeλt cos(kθ)) = p0 − σbC(R∗ + εeλt cos(kθ)) .(27)

Computing the curvature of the perturbed interface and

considering on both sides only the first order terms, the

following relation holds

p∗(R∗) + εeλt cos(kθ)

(

∂p∗

∂r
(R∗) + p1(R

∗)

)

≈

p0 + σb

(

1

R∗ + εeλt cos(kθ)
1

R∗ (k
2 − 1)

)

. (28)

The derivation of (25) is then straightforward.

In a similar way the dispersion equation (26) can be

retrieved imposing the boundary condition (7) at the
perturbed interface and neglecting the terms of order

higher than the first, in the series expansion.

The coefficient A, A0, A1 can be found in Table 2 and

they are the same for both models. As it is evident from
Tables 3 and 4, the dispersion equations link the time-

growth mode λ to the wave-number k in an implicit

way, as a function of the four dimensionless parameters

βi, σ, R
∗ and Rout.
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