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Abstract 21 

 22 

The greenhouse gas (GHG) balance of European grasslands (EU28 plus Norway and 23 

Switzerland), including CO2, CH4 and N2O, is estimated using the new process-based 24 

biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes: 1) a 25 

mechanistic representation of the spatial distribution of management practice; 2) management 26 

intensity, going from intensively to extensively managed; 3) gridded simulation of the carbon 27 

balance at ecosystem and farm-scale; and 4) gridded simulation of N2O and CH4 emissions by 28 

fertilized grassland soils and livestock. The external drivers of the model are changing animal 29 

numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and 30 

climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 31 

7 g C m-2 yr-1 during 1961-2010, equivalent to a 50-year continental cumulative soil-carbon 32 

sequestration of 1.0 ± 0.4 Pg C. At the farm-scale, which includes both ecosystem CO2 fluxes 33 

and CO2 emissions from the digestion of harvested forage, the net C balance is roughly 34 

halved, down to a small sink, or nearly neutral flux of 8 g C m-2 yr-1.  Adding CH4 and N2O 35 

emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found 36 

that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m-2 yr-1, because the CO2 37 

sink offsets N2O and grazing animal CH4 emissions. However, when considering the farm 38 

scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m-2 yr-1. 39 

ORCHIDEE-GM simulates an increase of European grassland NBP during the last five 40 

decades. This enhanced NBP reflects the combination of a positive trend of net primary 41 

production due to CO2, climate and nitrogen fertilization and the diminishing requirement for 42 

grass forage due to the Europe-wide reduction in livestock numbers.  43 

  44 



 

 

Introduction 45 

 46 

Grasslands cover 56.8 million ha (13.2%) of the land area in the EU-27 (Eurostat, 2010). Yet 47 

grassland is not the climax natural vegetation for most parts of Europe (except alpine 48 

grasslands above the treeline and wetlands), it has been established and managed to feed 49 

livestock. Not all pasture is intensively managed. Livestock production involves a variety of 50 

cultivation practices and management strategies, which can be classified as intensive or 51 

extensive management (Souty et al., 2012). Farmers can graze their animals in fields, harvest 52 

grass for forage production, grow fodder crops or buy complementary feed products. The 53 

latter is now common for dairy cattle. Different grassland management practices are often 54 

combined together in the same farm. Nitrogen-rich mineral and organic fertilizer (manure) are 55 

also now commonly applied to European grasslands to maintain the output of animal and 56 

dairy products from grass primary productivity. As a result of these interventions the managed 57 

semi-natural grasslands of Europe generate a set of CO2 fluxes exchanged with the 58 

atmosphere: the net balance may be a source or a sink. They are also sources of enteric 59 

methane (CH4) emissions by grazing ruminants (and the decomposition of their excrement) 60 

and of nitrous oxide (N2O) emission from fertilized soils.  61 

European grasslands exchange carbon (C) as CO2 between plants and soils, and the 62 

atmosphere by photosynthesis and respiration — fire being negligible. For those grasslands 63 

that are regularly mown to produce fodder, harvested biomass is later returned to the 64 

atmosphere, often within the same farm, in the form of CO2 and CH4 emitted by animal 65 

digestion or by manure and slurry decomposition. When grasslands are grazed, biomass 66 

ingested by animals contains digestible and non-digestible organic compounds. The non-67 

digestible C fraction (25-40%; the actual range reflects the digestibility of the grazed herbage) 68 



 

 

of the intake is returned to the field through excreta (faeces and urine). The digestible part is 69 

respired as CO2 shortly after intake. Only a small fraction serves to increase animal mass or to 70 

form animal products (e.g., milk and butter) which are exported from the grassland ecosystem 71 

(Soussana et al., 2010). Another small part of the digested C is emitted in the form of CH4 by 72 

ruminant enteric fermentation. Soil microbial nitrification and denitrification produce N2O in 73 

soil, processes which depend on temperature, pH, moisture and C availability (Maag & 74 

Vinther, 1996; Velthof & Oenema, 1997). The N2O emissions are enhanced by the nitrogen 75 

fertilizer inputs often applied to European grasslands. Given that these fluxes are intimately 76 

linked to diverse agricultural practices, the C and greenhouse gas (GHG) balance of managed 77 

European grasslands cannot be estimated by using ecological principles or data from natural 78 

grasslands. The GHG balance of grassland at local, regional and continental scale is also 79 

profoundly impacted by the nature, frequency and intensity of disturbance (e.g., mowing, 80 

grazing and manure application, see Soussana et al., 2007).  81 

Several approaches have been used to assessing the C and/or GHG balances of grassland. 82 

Eddy-covariance (EC) measurements provide ecosystem-scale CO2 flux observations at a few 83 

European grassland sites (Gilmanov et al., 2007). The C balance and furthermore the GHG 84 

balance have been estimated by combining EC observations with data on the lateral input and 85 

export of C, as well as CH4 and N2O measurements (Allard et al., 2007; Soussana et al., 86 

2007). However, these observation-based estimates usually have limited spatial coverage, and 87 

have only been conducted for short periods (e.g., less than a decade). Repeated soil C 88 

inventories provide another way to measure the cumulative grassland soil C balance over 89 

several years, although they do not measure short-term variability. For example, a national 90 

soil inventory has been running since 1978 in England and Wales (Bellamy et al., 2005), but 91 

soil bulk density was not measured which increased uncertainties in soil organic carbon 92 

(SOC) stock change estimates (Smith et al., 2007). The press by Soussana et al. (2010) 93 



 

 

indicated that grassland C sequestration reaches on average 5 ± 30 g C m-2 yr-1 according to 94 

inventories of SOC stocks and 77 g C m-2 yr-1 for mineral soils according to C flux balance 95 

measurements. In addition, empirical approaches were developed to estimate the C and GHG 96 

balances. Freibauer (2003) assessed the annual direct biogenic emissions of GHGs of 97 

grasslands based on empirical methods and statistics. The simple semi-empirical model 98 

CESAR (Vleeshouwers & Verhagen, 2002) was used to infer a C sink in European grasslands 99 

at continental scale with large uncertainties (66 ± 90 g C m-2 yr-1, Janssens et al., 2003) using 100 

only yield census data and land-use change induced soil carbon disturbances.  101 

Process-based models that explicitly represent mechanisms controlling carbon cycling in 102 

ecosystems and their water/energy (sometimes nitrogen) interactions are suitable tools to 103 

predict long-term C flux responses to external factors such as climate change and 104 

management. But these models have many parameters that must first be calibrated for 105 

managed grasslands; management processes must also be parameterized. For example, at 106 

European scale, Smith et al. (2005) predicted either small sources or small sinks of C in 107 

grasslands depending on the chosen IPCC-SRES climate and CO2 scenarios, by using the 108 

Roth-C soil organic carbon model (Coleman & Jenkinson, 1996) with net primary 109 

productivity (NPP) calculated by the LPJ model (Sitch et al., 2003) and a yield database 110 

where management practices were not documented. Levy et al. (2007) made a 20-year 111 

spatially explicit simulation with the DNDC model to estimate a CO2 sink in European 112 

grasslands, but found a net radiative forcing source when CH4 and N2O emissions were 113 

accounted for. Management practices were represented in DNDC, but were prescribed from 114 

survey data as static drivers for large biogeographical zones. Vuichard et al. (2007) assessed 115 

the total C sequestration potential, and potential GHG balance using the PaSim process-based 116 

grassland model, with an algorithm that defines management practices to maximize the 117 

production of livestock from NPP in each grid cell. Although their idea of modelling 118 



 

 

management as a mechanism in a process model was appealing, it fell short of reproducing 119 

actual livestock production and a GHG balance, because net primary production is not the 120 

only driver; commercial considerations and policies also determine farmers’ management 121 

strategies. 122 

This study uses the new process-based biogeochemical model ORCHIDEE-GM version 2.1 123 

with an enhanced representation of grassland management derived from PaSim (Chang et al., 124 

2013, 2015). We tackle the following research questions: 125 

1) What are the carbon and the GHG balance of European grasslands at different scales: 126 

ecosystem and farm? 127 

2) How have the carbon and GHG balance evolved during the past 50 years? 128 

3) What factors drove the temporal evolution of the carbon and GHG balances? 129 

  130 



 

 

Material and methods 131 

 132 

Model description 133 

ORCHIDEE is a process-based ecosystem model built for simulating carbon cycling in 134 

ecosystems, and water and energy fluxes from site to global scale (Krinner et al., 2005; Ciais 135 

et al., 2005; Piao et al., 2007). ORCHIDEE-GM is a recent version that includes the grassland 136 

management module from PaSim, a grassland model developed for site applications (Chang 137 

et al., 2013). ORCHIDEE-GM version 1 was evaluated at 11 European grassland sites 138 

representative of a range of management practices; some of its parameters were calibrated 139 

with eddy-covariance net ecosystem exchange (NEE) and biomass measurements. 140 

ORCHIDEE-GM proved capable of simulating the dynamics of leaf area index (LAI), 141 

biomass and NEE of managed grasslands, although the performance at cut sites was better 142 

than at grazed sites (Chang et al., 2013). At continental scale, ORCHIDEE-GM version 2.1 143 

was then applied over Europe on a 25 km grid with 3-hourly climate forcing data to calculate 144 

the spatial pattern, long-term evolution and interannual variability of potential productivity 145 

(Chang et al., 2015). The term potential refers here to the productivity that would maximize 146 

modelled livestock production in each grid cell using the algorithm of optimal management 147 

developed by Vuichard et al., 2007. Chang et al. (2015) further added a parameterization to 148 

describe the adaptive management strategy of farmers who react to a climate-driven change of 149 

the previous years’ productivity. At European scale, the grass-fed livestock numbers of each 150 

NUTS (Nomenclature des Unités Territoriales Statistique; Eurostat, 2007) region of the 151 

Eurostat statistical database is well reproduced by ORCHIDEE-GM (R2 = 0.76; Chang et al., 152 

2015). Though a full nitrogen cycle is not included in ORCHIDEE-GM version 2.1, the 153 

positive effect of nitrogen addition on grass photosynthesis, and thus on the subsequent 154 



 

 

ecosystem carbon balance, is parameterized with a simple empirical function calibrated from 155 

literature estimates (Chang et al., 2015). 156 

 157 

Grass-fed livestock numbers in Europe  158 

 159 

FAOstat (2013) provides annual country-averaged statistical data for dairy cows, beef cattle, 160 

sheep and goats of livestock numbers (with the unit in heads), and meat (carcass weight) or 161 

milk yield, as appropriate. Data are available from 1961 till now. Livestock species are 162 

converted here to livestock unit (LU) based on the calculation of metabolisable energy 163 

requirement, and further feed requirement of each type of animal. In this study, metabolisable 164 

energy requirement, the amount of energy (MJ day-1) an animal needs for maintenance and 165 

for activities such as lactation, and pregnancy, were calculated following the IPCC Tier 2 166 

algorithms (IPCC, 2006 Vol 4, Chapter 10, Eqns 10.3 to 10.13; see Supporting information 167 

for detail). One LU is defined as an average adult dairy cow producing 3000 kg milk 168 

annually, with live body weight of 600 kg (Eurostat, 2013; with metabolisable energy 169 

requirement of ca. 85 MJ day-1, and with dry matter intake of ca. 18 kg daily calculated in 170 

Supporting information Text S1).  171 

Ruminant livestock are not only fed on grass, they also receive feed and residues (from crop 172 

products).  Thus, each year for each country, the observed number (LU) of grass-fed livestock 173 

(Nobs) was derived by the equation: 174 

 175 

𝑁!"# = 𝑁!""#×𝑓!""# + 𝑁!"#$%×𝑓!"#$% + 𝑁!!!!"×𝑓!!!!" + 𝑁!"#$%×𝑓!"#$%  (1) 176 



 

 

where Nbeef, Ndairy, Nsheep and Ngoats are the total LU numbers of beef cattle, dairy cows, sheep, 177 

and goats calculated from FAOstat statistics and fbeef, fdairy, fsheep and fgoats are the grass-fed 178 

fraction of each type of animal, taken from Bouwman et al. (2005). 179 

ORCHIDEE-GM is designed to simulate gridded potential livestock density and its temporal 180 

evolution (Chang et al., 2015). Recently, the HIstoric Land Dynamics Assessment, or HILDA, 181 

data set has been constructed (Fuchs et al., 2013). The data set, which comprises harmonized, 182 

high-resolution historic land-change data for Europe covering the period of 1950-2010, is 183 

well suited for GHG assessments. The modelled potential livestock density (see Chang et al., 184 

2015 for detail) in every grid cell of the European continent was combined with the actual 185 

grassland area in each grid cell from the HILDA land-cover map (data from 1961-2010 were 186 

used), each year for each country. The potential grass-fed livestock number (Nsim-pot) is then 187 

given by: 188 

 189 

𝑁!"#!!"# = (𝐷!×𝐴!)        (2) 190 

where for grid-point i, Di is the potential livestock density and Ai is the grassland area. 191 

 192 

Managed grasslands in Europe: intensive vs. extensive 193 

 194 

We describe in this section how different types of management are defined in ORCHIDEE-195 

GM version 2.1. Although grasslands in Europe are cultivated to produce livestock, they are 196 

not necessarily so intensively managed that they reach their biological potential, i.e., the 197 

maximum number of grass-fed animals that can be sustained by NPP. For example, in 198 

mountain areas, low productivity grasslands can only be extensively managed i.e. as rough 199 



 

 

grazing with only occasional mowing and with very little use of synthetic chemicals or 200 

treatments. In the second half of the 20th century, widespread abandonment of grasslands was 201 

also common in Europe, especially in central European and Baltic countries, driven by inter-202 

related political and socio-economic changes, e.g., as reviewed by Joyce (2014). 203 

The net C balance of a grassland (also named net biome productivity, NBP) is significantly 204 

correlated with the total C removed by grazing and mowing (Soussana et al., 2007); this 205 

makes knowledge of management intensity (intensive or extensive) crucial for simulating the 206 

C and GHG balances. The extensively managed grassland, hereafter, represents newly 207 

abandoned grasslands with only occasional mowing or rough grazing. We define two simple 208 

rules to obtain the proportion of intensively/extensively managed grasslands for driving the 209 

ORCHIDEE-GM model, based on total forage requirement by grass-fed livestock numbers, 210 

and on the changes of the proportions in response to changes in productivity. These rules are 211 

based upon two assumptions: 1) Nobs defines the total amount of forage that must be supplied 212 

by both types of grassland in each grid cell, and 2) the fraction of grassland that must be 213 

intensively managed (as opposed to extensively managed) in each grid cell is used at their 214 

carrying capacity (i.e., livestock density corresponding to the biological potential of the 215 

grassland (Chang et al., 2015)). Therefore, each year and for each country, the proportion of 216 

intensively managed grasslands (fint) is expressed as: 217 

  218 

𝑓!"# =
𝑁!"#!!"#

𝑁!"#         (3) 219 

where Nsim-pot and Nobs are the modelled potential and observed grass-fed livestock numbers 220 

respectively. The proportion of extensively managed grasslands (fext) is then calculated as:  221 

 222 

𝑓!"# = 1− 𝑓!"#         (4) 223 



 

 

These fractions are calculated for every grid cell of each country. For some years in a few 224 

countries (Denmark, the Netherlands, Belgium, Luxembourg, Hungary, Italy and Greece), 225 

Nobs data suggest that grassland actual production exceeds the biological potential from 226 

ORCHIDEE-GM (Nobs > Nsim). In that case, all the grasslands are assumed to be managed at 227 

their biological potential (i.e., fint = 1). Here we assume that high latitude grassland (over 228 

65oN) has no management applied (i.e., extensive agriculture on natural grassland), and this 229 

land is not included in the calculation of Nsim. Once the proportion of intensively managed 230 

grasslands is defined, the proportion of grazed versus cut grasslands is then calculated each 231 

year by the optimization algorithm of Vuichard et al. (2007) and the adaptive management 232 

response algorithm of Chang et al. (2015). 233 

A detailed land management intensity map of European grasslands at 25 km resolution was 234 

established using Eqns (3) and (4). The map contains the relative yearly fractions of grassland 235 

under different management regimes from 1961 to 2010; it gives the proportions of 236 

extensively, as well as of intensively managed (cut and grazed) grasslands. This map 237 

incorporated in the HILDA land-cover data set defines an enhanced historic land-cover map 238 

delineating grassland management intensity. Our study domain covers 30 countries (EU-28 239 

plus Norway and Switzerland), which are further divided into a number of major agricultural 240 

regions determined by both environmental and socio-economic factors (Table S1, for a 241 

detailed description see Olesen & Bindi et al., 2002). 242 

 243 

Simulation set-up 244 

 245 

ORCHIDEE-GM is applied on a grid over Europe using the harmonized climate forcing data 246 

from the ERA-WATCH reanalysis for the period 1901–2010 and at a spatial resolution of 25' 247 



 

 

by 25' (Beer et al., 2014). Mean and standard deviation of the ERA-Interim time series (Dee 248 

et al., 2011) were adjusted according to the WATCH time series (Weedon et al., 2010; 249 

Weedon et al., 2011) by using the overlapping period 1989-2001. The harmonized data set 250 

was spatially downscaled to 25' by overlapping CRU CL2.0 (New et al., 2002) monthly 251 

means to the spatial anomaly of the harmonized data sets for each single climatic variable. An 252 

altitude-based correction was applied for downscaling surface pressure according to a digital 253 

elevation map from CRU CL2.0. This resolution (25' by 25') is sufficient to represent regional 254 

meteorological regimes accurately in low-lying regions, but not in mountainous areas. 255 

The gridded nitrogen application rate for mineral fertilizer and manure for European 256 

grasslands in the European Union (EU27) has been estimated by the CAPRI model (Leip et 257 

al., 2011, 2014). Estimates were based on combined information from official and 258 

harmonized data sources such as Eurostat, FAOstat and OECD, and spatially dis-aggregated 259 

using the methodology described by Leip et al. (2008). The data are estimated at a spatial 260 

resolution of clusters of 1 km by 1 km and were re-aggregated here to a spatial resolution of 261 

25' by 25'. For French regions, we use data from the French national statistics (AGRESTE 262 

statistics, http://agreste.agriculture.gouv.fr). To rebuild the temporal evolution of gridded 263 

nitrogen fertilization from 1901 to 2010: 1) organic fertilizer is assumed to have remained 264 

constant over time; 2) mineral fertilizers were applied since 1951, with application rates 265 

linearly increasing from zero in 1951 to the observed level in 1961; 3) the application rate of 266 

mineral fertilizer then followed the total mineral nitrogen fertilizer consumption of the 267 

European Union (Tenkorang & Lowenberg-DeBoer, 2008). Besides nitrogen fertilizer 268 

application, nitrogen deposition from the atmosphere was considered as nitrogen addition as 269 

well. Gridded nitrogen deposition rates for Europe were taken from the European Monitoring 270 

& Evaluation Programme (EMEP) data set, a product of EU-PF7 project GHG-Europe (data 271 



 

 

are available at http://gaia.agraria.unitus.it/ghg-europe/data/others-data): the decadal means 272 

were linearly interpolated to annual values. 273 

The effects of land-use change on the terrestrial C cycle were taken into account in 274 

ORCHIDEE-GM version 2.1. The fractions of each land-use type are updated annually 275 

according to the land-use change maps (in this study, the enhanced historic land-cover map 276 

delineating grassland management intensity described previously). The assignment of C into 277 

different product pools (with different turnover times) and litter reservoirs, caused by the 278 

changes in vegetation (including natural vegetation and crops), is described by Piao et al. 279 

(2009).  280 

In the simulation of the GHG balance it is assumed that European grasslands were managed 281 

from 1901 onwards, and also that the proportions of extensive, cut and grazed grasslands 282 

remained identical between 1901 and 1961 in the enhanced historic land-change map. The 283 

extensively managed grasslands are simulated as natural grassland in ORCHIDEE-GM 284 

because so little management is applied. 285 

The series of simulations is shown in Fig. 1. ORCHIDEE-GM is first run for a spin-up period 286 

without management (simulation E1) by recycling the first 10 years of climate forcing (1901-287 

1910) in a loop with CO2 concentration fixed at the level for 1900 (296 ppm) until an 288 

equilibrium is reached for all the carbon pools at each grid point (long-term Net Ecosystem 289 

Exchange, NEE = 0 at each grid point). This spin-up usually takes 10,000 years. Starting from 290 

soil carbon pools in equilibrium for year 1901 (end of the spin-up) and optimal animal 291 

stocking rates (Sopt) and fractions of grazed grasslands (Fopt) for the reference period (1901-292 

1910) from simulation E2, a second simulation (simulation E3) is then conducted for the 293 

period 1901-1960, but with prescribed increasing CO2, variable climate and nitrogen addition, 294 

with the adaptive management change algorithm being activated, and with the enhanced 295 



 

 

historic land-change map (1901-1960). As a final simulation, ORCHIDEE-GM is run on each 296 

grid point during the most recent period 1961-2010 (simulation E4) forced by increasing CO2, 297 

variable climate and nitrogen addition, with the adaptive management change algorithm, and 298 

the enhanced land-change map (1961-2010) giving the annual changes in grassland 299 

management. 300 

 301 

Definition of carbon and full greenhouse gas budgets 302 

 303 

Figure 2 shows the C and GHG fluxes from a grassland. In a natural ecosystem, the NEE 304 

measured by EC equipment is the C gain or loss by the ecosystem, with a negative NEE value 305 

indicating a sink of CO2 from atmosphere. In managed grasslands, NEE is calculated as:  306 

 307 

𝑁𝐸𝐸 = 𝑅! − 𝑁𝑃𝑃 + 𝑅!"#$!%       (5) 308 

where Rh is soil heterotrophic respiration, NPP is net primary productivity, and Ranimal is 309 

respiration from grazing livestock (fire disturbance is neglected because in Europe grassland 310 

fires are rare). However, the C balance of a managed grassland system (NBP) must account 311 

for carbon input and export. The NBP (Schulze & Heimann, 1998; Buchmann & Schulze, 312 

1999; Chapin et al., 2006) is the term applied to the total rate of organic carbon accumulation 313 

(or loss) from ecosystems, and can be calculated for grassland (Soussana et al., 2007) as: 314 

  315 

𝑁𝐵𝑃 = −𝑁𝐸𝐸 + 𝐹!"#$% − 𝐹!!"#$%& − 𝐹!"#$/!" − 𝐹!"! − 𝐹!"#$!
     (6) 316 

where Finput is the flux of C entering the grassland ecosystem through manure and slurry 317 

application; Fharvest is the C lost from the grassland ecosystem through plant biomass export 318 



 

 

(mowing) and assumed to be later oxidized and released as CO2 to the atmosphere; Fmilk/LW is 319 

the C lost from the grassland ecosystem though milk production and animal body mass 320 

increase; FCH4 is the C lost through CH4 emissions by grazing animals, and Fleach is dissolved 321 

C, both organic (DOC) and inorganic (DIC) lost through leaching to river headstreams. In this 322 

study, Finput is determined by a gridded amount nitrogen addition in the form of manure and 323 

slurry, taken from the nitrogen fertilization map using a fixed C/N ratio for manure (C/N = 15 324 

based on the range from 11.1 to 20.8 reported by Moral et al., 2005); Fharvest, and FCH4 are 325 

simulated explicitly by ORCHIDEE-GM; the calculation of FCH4 in ORCHIDEE-GM 326 

depends on the amount of digestible fibre in the animal’s diet according to the linear 327 

regression model of Pinarès-Patino et al. (2007), and is derived from PaSim model (Vuichard 328 

et al., 2007); Fmilk/LW and Fleach from the grassland ecosystem are not determined and will be 329 

neglected in the calculation of NBP. These fluxes will be considered in the Discussion. 330 

Positive values of NBP indicate net C accumulation in the ecosystem.  331 

When considering off-site (at farm scale) C fluxes (see Soussana et al., 2010), the harvested 332 

biomass is either lost during transportation, or ingested by animals on the farm. Within the 333 

ingested part, C in the forage can be exported in various ways: i) respired by ruminants or as 334 

labile C in CO2 fluxes, ii) emitted as CH4 by enteric fermentation or from manure 335 

management, iii) returned to the grassland as fertilizer, iv) exported as animal products (milk 336 

and meat), or v) stored on the farm for future use. In the long-term, none of the harvested C is 337 

stored on the farm — almost all the C in harvested biomass will be exported from the system 338 

(grassland ecosystem plus farm), except for the C returned to the grassland as fertilizer (Fig. 339 

2). As a result, the farm scale net C balance (NCB) including both ecosystem and farm is 340 

calculated as NBP minus the C returned to the grassland as manure (Freturn):  341 

 342 

𝑁𝐶𝐵 = 𝑁𝐵𝑃 − 𝐹!"#$!%        (7) 343 



 

 

where Freturn is part of the total manure (and/or slurry) application (Finput), that can be 344 

calculated as: 345 

  346 

𝐹!"#$!% = 𝐹!"#$%×𝑅!"#$$!!"#       (8) 347 

where Rgrass-fed is the ratio of manure from grass-fed animals to total manure application. Here, 348 

we assume that Rgrass-fed is the same as the ratio of grass-fed livestock numbers (Nobs) to total 349 

livestock numbers in each country. 350 

The net GHG exchange of a grassland ecosystem (NGE), as described by Soussana et al. 351 

(2007), can be calculated by adding CH4 and N2O emissions (occurring in the ecosystem) to 352 

NEE using the global warming potential (GWP, with inclusion of climate-carbon feedbacks) 353 

of each of these gases for a 100-year time horizon (IPCC, 2013): 354 

 355 

𝑁𝐺𝐸 = −(𝑁𝐸𝐸 + 𝐹!"!!!"#×𝐺𝑊𝑃!"! + 𝐹!!!!!"#×𝐺𝑊𝑃!!!)   (9) 356 

where GWPCH4 = 12.36, as 1 kg C-CH4 = 12.36 kg C-CO2; GWPN2O = 127.71, as 1 kg N-N2O 357 

= 127.71 kg C-CO2; FCH4-eco is CH4 emissions by grazing animals; FN2O-eco is direct and 358 

indirect N2O emission from managed soil (based on IPCC, 2006; the calculation of each 359 

component is given in Supporting information Text S2). To be consistent with the signs of the 360 

C balance (i.e., a positive NBP indicates a net C sink of ecosystem), in this study, a positive 361 

value of NGE indicates the grassland ecosystem is a net GHG sink.  362 

The off-site CO2, CH4 and N2O emissions from the digestion of harvest forage by livestock 363 

and manure decomposition contribute to the ecosystem and farm scale net GHG balance 364 

(NGB). NGB is then calculated as: 365 

  366 

𝑁𝐺𝐵 = 𝑁𝐺𝐸 − 𝐹!"!!!"#$ − 𝐹!"!!!"#$×𝐺𝑊𝑃!"! − 𝐹!!!!!"#$×𝐺𝑊𝑃!!!  (10) 367 



 

 

where FCO2-farm is the proportion of harvested C that is respired by ruminants or released as 368 

labile C in CO2 fluxes; FCH4-farm is the proportion of ingested C emitted as CH4 from enteric 369 

fermentation or from manure management; FN2O-farm is direct and indirect N2O emission from 370 

manure management (based on IPCC, 2006; the calculation of each component is given in 371 

Supporting information Text S2).  372 

 373 

Uncertainties in the NBP and GHG budget estimation 374 

 375 

The uncertainties in the predictions from process models may be rather large, a result of: 376 

uncertain climate forcing data (e.g., Jung et al., 2007; Zhao et al. 2012); parameter value 377 

uncertainty (e.g., Zaehle et al., 2005); as well as uncertainty related to the model structure 378 

(e.g., Kramer et al., 2002; Morales et al., 2005; Moorcroft, 2006). At the large geographical 379 

scale of Europe, a comprehensive assessment of uncertainty can be made using a method such 380 

as factorial design (e.g., White et al., 2000) or the Monte Carlo-type stratified sampling 381 

approach (McKay et al., 1979), but the many model runs required rule out their use with 382 

complex models such as ORCHIDEE-GM, that have a large number of parameters, a half-383 

hourly time step and thus a high computational demand (Campolongo et al., 2000). In this 384 

study, we have identified four model inputs and parameters that likely substantially contribute 385 

to uncertainties in C and GHG flux simulations (White et al., 2000; Knorr & Heimann, 2001; 386 

Knorr & Kattge, 2005; Zaehle et al., 2005; Jung et al., 2007; Kattge et al., 2009). These four 387 

sources of uncertainty, define 16 combinations given minimum and maximum values that 388 

define a range (± 20% approximately) around the standard values used in the control 389 

simulation. The uncertain settings that are tested by systematic sensitivity simulations are: (1) 390 

the proportions of managed grasslands (fint, which affects the cultivation map of European 391 



 

 

grasslands); (2) the response of photosynthetic capacity to nitrogen addition (parameter 392 

Naddmax, Chang et al., 2015); (3) the maximum rate of Rubisco carboxylase activity 393 

(Vcmaxopt) and the maximum rate of photosynthetic electron transport (Jmaxopt); and (4) the 394 

prescribed maximum specific leaf area (SLAmax, Chang et al., 2013). Simulations with the 16 395 

factor combinations at the full geographical scale of this study (9237 grid points) would still 396 

require a prohibitively large amount of computational time. We therefore based the 397 

uncertainty analysis on a sub-sample of 195 grid cells evenly spaced over our study area. 398 

These give a good representation of the spatial distribution, magnitude and interannual 399 

variability of grasslands’ NBP and NGE (see Supporting information Text S3 for detail). 400 

Complete simulations (as described in Fig. 1) were conducted at these grid points with these 401 

factor combinations (with minimum and/or maximum values for each factor; Table 1). The 402 

standard deviation (SD) of the simulated NBP and NGE results was then used to characterize 403 

and assess the uncertainties of the C balance and GHG budget. 404 

  405 



 

 

Results 406 

 407 

The NBP and the GHG budget of European grasslands 408 

 409 

Over 1961-2010, the average modelled NPP over the 1.3×106 km2 of European grassland is 410 

559 ± 122 g C m-2 yr-1: 86% of it is respired back into the atmosphere by heterotrophic 411 

processes in soil and 4% by grazing livestock. Thus, European grassland ecosystems act as a 412 

sink, extracting CO2 from the atmosphere (NEE) at the rate of -57 ± 21 g C-CO2 m-2 yr-1. 413 

Exports of harvested forage and CH4 emission account for 95%, and 3% of NEE, 414 

respectively. Accounting for C from manure and slurry application (15 g C m-2 yr-1), the 415 

average NBP of European grassland is 15 ± 7 g C m-2 yr-1 over the period 1961-2010, that is a 416 

cumulative C storage of 1.0 ± 0.4 Pg C at continental scale over 50 years. When considering 417 

off-site (farm) C fluxes, the net C balance (NCB) at ecosystem+farm scale is quasi-neutral, 418 

with an average value of around 8 g C m-2 yr-1, given the fact that ca. 50% of the manure and 419 

slurry application (ca. 7 g C m-2 yr-1) is from grass-fed animals. 420 

We calculated CH4 emission from enteric fermentation by grazing livestock to amount to 1.87 421 

± 0.79 g C-CH4 m-2 yr-1 during 1961-2010. Direct and indirect N2O emissions from fertilized 422 

grassland soils were 0.12 ± 0.04 g N-N2O m-2 yr-1 during 1961-2010, given the distribution of 423 

nitrogen additions from the gridded nitrogen fertilizer application map and our model (see 424 

Supporting information Text S2 for details), as well as the parameters and emission factors 425 

from guidelines (IPCC, 2006). In terms of net radiative forcing fluxes expressed in CO2 426 

equivalents, CH4 and N2O emissions reached 23 ± 9 g C-CO2 equiv. m-2 yr-1 and 15 ± 6 g C-427 

CO2 equiv. m-2 yr-1, i.e. offsetting 41% and 26% of the average NEE (CO2 sink) respectively. 428 

Altogether, the net GHG exchange (NGE) of European grassland is 19 ± 10 g C-CO2 equiv. 429 



 

 

m-2 yr-1, indicating a net GHG sink (P < 0.01, Student’s t-test) during the period 1961-2010. 430 

The uncertainty of NBP, NGE and their components comes from 1-sigma standard deviation 431 

of the 16 sensitivity tests. 432 

Lastly, we calculated the NGB of grassland by adding GHG fluxes exchanged outside the 433 

ecosystem boundaries (see Fig. 2). We estimate that 85% of the harvested forage (46 g C-CO2 434 

m-2 yr-1) is lost off-site and returned to the atmosphere as CO2 emitted by decomposed forage 435 

grass, livestock respiration, and decomposed labile C in manure produced at-barn. Enteric 436 

fermentation and manure anaerobic decomposition produce 1.6 g C-CH4 m-2 yr-1. N2O 437 

emission from manure management emits 0.02 g N-N2O m-2 yr-1 to the atmosphere Therefore, 438 

contrary to the ecosystem scale NGE, the ecosystem and farm scale NGB is net a GHG source 439 

of -50 g C-CO2 equiv. m-2 yr-1 (P < 0.01, Student’s t-test). 440 

 441 

Temporal evolution of the NBP and NGE of European grassland 442 

 443 

We obtain an increase of European grassland NBP over the last five decades (NBP linear 444 

trend of 0.25 ± 0.08 g C m-2 yr-2, P = 0.26) (Fig. 3a). The increase occurs after 1990 (1.83 ± 445 

0.30 g C m-2 yr-2, P = 0.07), with no trend of NBP being simulated before that date (-0.25 ± 446 

0.15 g C m-2 yr-2, P = 0.55). An enhancement of the GHG sink (NGE) in European grassland 447 

(sink trend of 0.49 ± 0.13 g C-CO2 m-2 yr-2, P = 0.05; Fig. 3b) is found, which is induced by 448 

the enhanced sink of CO2 from the atmosphere (NEE, sink trend of 0.56 ± 0.14 g C-CO2 m-2 449 

yr-2, P = 0.04) as well as by the changes of CH4 emissions by animals (0.0016 ± 0.0011 g C-450 

CH4 m-2 yr-2, P = 0.58; here positive trend indicates a decreasing CH4 emission) and of N2O 451 

emissions from soil (0.0003 ± 0.0001 g N-N2O m-2 yr-2, P = 0.08; here positive trend indicates 452 



 

 

a decreasing N2O emission). The uncertainty of the trends above comes from 1-sigma 453 

standard deviation of the trends from the 16 sensitivity tests. 454 

 455 

Regional NBP and GHG budget of grasslands and their trends 456 

 457 

Figure 4 shows the NBP and NGE and their component fluxes for eight major agricultural 458 

regions of Europe, as the average for each decade. On average C exported from the ecosystem 459 

as harvested forage and released at the farm-level offsets most of the C sequestrated from the 460 

atmosphere into grassland soils (NEE). Thus the NBP of European grasslands is mainly 461 

determined by the differences between those two terms, except for Western Europe where 462 

high organic C (usually manure and/or slurry) input plays another major role in increasing 463 

NBP (Fig. 4). During the last five decades, almost all grassland regions in Europe were 464 

simulated to be a net C sink (positive NBP; Fig. 4) except for some C lost in Southeastern 465 

(1980s) and Eastern regions (1980s). Obvious NBP increases between 1961 and 2010 are 466 

found in Alpine and all eastern regions.  467 

The spatial distribution of NGE over European grassland regions generally follows the pattern 468 

of NEE (Fig. 4), given the less variable components of CH4 and N2O emissions determined by 469 

livestock numbers and nitrogen-fertilization amounts. Exceptions are Northeastern, 470 

Southeastern and Eastern Europe, where CH4 and N2O emissions were substantially reduced 471 

after 1990, due to decreasing livestock numbers. The largest net GHG sink by grassland is 472 

found in the British Isles. This sink is explained by the high grassland productivity causing 473 

soil C sequestration, which offsets non-CO2 gas emissions (Chang et al., 2015).  474 

  475 



 

 

Discussion 476 

 477 

NBP uncertainties from model inputs and parameters 478 

 479 

The errors in the key model inputs and parameters considered for uncertainty assessment 480 

cause an uncertainty of NBP (on average 1-sigma error) of ± 7 g C m-2 yr-1. Within this total 481 

uncertainty, the uncertainties caused by management parameters, such as the fraction of 482 

intensively managed grassland in each grid cell (fint) and the response of grass photosynthesis 483 

to nitrogen addition (Naddmax) make a smaller contribution  (± 4.4 g C m-2 yr-1 and ± 3.2 g C 484 

m-2 yr-1 respectively) than the uncertainties coming from parameters representing 485 

photosynthetic and morphological plant traits (Vcmaxopt / Jmaxopt, and SLAmax), which 486 

contribute an NBP uncertainty of 4.8 g C m-2 yr-1 and 5.8 g C m-2 yr-1 respectively. The 487 

uncertain values of these parameters could be one of the sources for model-data disagreement 488 

when simulating C fluxes at measurement sites (Chang et al., 2013). However, these PFT-489 

specific average plant functional traits in ORCHIDEE, in reality, are highly site-specific, 490 

although on average they fall within a narrow range of variation. To reduce the uncertainty in 491 

the trait-related parameters, improved observation data sets are required on both mean value 492 

at community level (rather than species level) and on spatial distribution. Meanwhile, these 493 

traits are tightly correlated with leaf nitrogen concentrations (Ordoñez et al., 2009) suggesting 494 

a possible way to reduce the uncertainty by fully coupling nitrogen and C cycles in terrestrial 495 

ecosystem models (e.g., Zaehle & Friend, 2010). 496 

The uncertainty in model management-related parameter, fint, plays only a small role in the 497 

uncertainty of NBP estimated by ORCHIDEE-GM. It implies that the absolute value of fint, 498 

tested with ± 20% range from the standard value across the period 1901-2010, has very limit 499 



 

 

effect on the NBP estimate. This small uncertainty could be explained by the combination of 500 

two factors: first, one of our assumptions for grassland management prescribed that the 501 

proportions of extensive, cut and grazed grasslands remained identical between 1901 and 502 

1961, thus no changes in grassland management intensity happened during this period in our 503 

simulation; and second, the legacy effects of grassland management intensity change (e.g., 504 

conversion from extensively managed grasslands to intensively managed grasslands) on soil 505 

C levels would be weak after 60 years continual management (Fig. S1). This non-linear 506 

(declining) rate of change in SOC has been implied in some researches (e.g., Post & Kwon, 507 

2000; Soussana et al., 2010) and supported by long-term observations (conversion from 508 

cropland (very intensively managed) to grassland (less intensively managed compared to 509 

cropland) at Rothamsted, UK; Johnson et al., 2009), though the curve was reversed in our 510 

simulation due to the different initial changes in land use/management.  511 

Furthermore, NBP can be significantly affected by the recent historic change of grassland 512 

usage. For example, an NBP increase (Fig. 4) follows the large decreases in the fraction of 513 

intensively managed grassland in all eastern regions during the period 1991-2010 (Fig. 5c), 514 

which were caused by the reduction of livestock numbers (Fig. S2). However, the grassland 515 

management intensity map, as an input in the model, carries three sources of uncertainty: 1) 516 

The grass composition in livestock’s diet is only known with sub-continental resolution 517 

(Western Europe, Eastern Europe and former USSR, Bouwman et al., 2005) and as a static 518 

value without temporal evolution, which could be different depending on region and time 519 

period; 2) in reality, European grassland is mostly cultivated by mowing and grazing of the 520 

same areas, whereas we split the cut and grazed grasslands with the assumption that the 521 

intensively managed grasslands are cultivated up to their biological potential; 3) management 522 

was more often applied in productive grasslands. Meanwhile abandonment happened first in 523 

infertile regions. However, in this study, the proportion of intensively managed grasslands 524 



 

 

(fint) was equally applied to every grid cell of the country. Although many sources of 525 

uncertainty exist, the grassland management intensity map for Europe established in this 526 

study is to our knowledge the first attempt to split managed and abandoned grassland over a 527 

wide area, to help us gain a better understanding the C and GHG budgets. 528 

 529 

Comparison with previous estimates 530 

 531 

Our assessment shows a positive NBP, i.e., a net carbon sink in biomass and soils (15 ± 7 g C 532 

m-2 yr-1, averaged for 1961-2010). This is equivalent to a net C sink of about 20 Tg C yr-1 over 533 

1.3×106 km2 of European grassland soils, without accounting for C lost through leaching as 534 

DOC and DIC.  C lost through DOC could reach 5.3 ± 2.0 g C m-2 yr-1 (data averaged for 535 

observations from four grassland sites; Kindler et al., 2011), and leaching of DIC is mostly 536 

biogenic DIC from respiratory CO2 in soil (about 80% and 100% of total DIC leaching from 537 

calcareous soils and from carbonate-free soils respectively; Kindler et al., 2011); but this 538 

source has already been included in the model as heterotrophic respiration. Nevertheless, non-539 

biogenic (lithogenic) DIC leaching from calcareous soils could reach about 11 g C m-2 yr-1 540 

and thus be significant (Kindler et al., 2011; data extracted from two grassland sites with 541 

calcareous soils and assuming 20% of DIC is non-biogenic). In addition, the C export through 542 

milk products and liveweight gain was not determined in our simulation, and was not 543 

accounted for in the calculation of NBP. According to the calculation based on animal 544 

products from statistics (see Supporting information Text S2 for detail), it will be less than 1.3 545 

g C m-2 yr-1 for all European grassland. However, it has only marginal effect on the NBP 546 

calculation because this small C export, if it is not exported as the form of animal products, 547 



 

 

will be either respired by animal or turned to manure and later decomposed too, and this has 548 

been accounted for in NEE. 549 

ORCHIDEE-GM estimates a higher NBP (27 ± 8 g C m-2 yr-1) in the most recent decade 550 

compared to the period 1961-2000 (12 ± 6 g C m-2 yr-1). This estimate is comparable to the 551 

grassland C sequestration according to the C flux balance from 12 EC grassland measurement 552 

sites (23 ± 187 g C m-2 yr-1 accounting for NEE, Fharvest, and Finput; see Table 1A of Soussana 553 

et al., 2010 for detail) but larger than that derived from limited inventories of SOC stocks (5 ± 554 

30 g C m-2 yr-1) from a literature search (Soussana et al., 2010). The difference can be 555 

explained by sampling gaps in SOC inventories and/or by the fact that our estimate does not 556 

include soil C losses from DOC leaching and by erosion (two processes that reduce the 557 

inventory value compared to our process-model based estimate). However, our NBP estimate 558 

is lower than the average from nine site observations (104 ± 73 g C m-2 yr-1, Soussana et al., 559 

2007) and from previous results obtained with simpler models (66 ± 90 g C m-2 yr-1, Janssens 560 

et al., 2003; 36 ± 18 g C m-2 yr-1, Smith et al., 2005) or from both (74 ± 10 g C m-2 yr-1, Ciais 561 

et al., 2010). Meanwhile, the uncertainty induced by model input parameters (± 7 g C m-2 yr-1, 562 

NBP on average of 50 years from 1-sigma standard deviation of the 16 sensitivity tests) and 563 

the climate induced variability (± 22 g C m-2 yr-1 interannual or ± 8 g C m-2 yr-1 decadal over 564 

the last five decades NBP variation) in our estimate reminds us that soil C sequestration 565 

remains sensitive to management, functional traits of grass species, and climate variability 566 

(Soussana et al., 2010).  567 

The N2O emission from European grassland soils (15 ± 6 g C-CO2 equiv. m-2 yr-1) is close to 568 

the value derived from site observations (14 ± 4.7 g C-CO2 equiv. m-2 yr-1, Soussana et al., 569 

2007) and to the model estimates made using process-based mechanisms (DNDC: 13 g CO2-570 

C equiv. m-2 yr-1, Levy et al., 2007; and PaSim: 17 g CO2-C equiv. m-2 yr-1, Vuichard et al., 571 

2007). The CH4 emission from enteric fermentation by grazing livestock (23 ± 9 g C-CO2 572 



 

 

equiv. m-2 yr-1) is lower than the value derived from site observations (54 g C-CO2 equiv. m-2 573 

yr-1, Soussana et al., 2007) due to the fact that observations only account for emissions per 574 

grazed grassland area while our estimate is an average per total grassland area of all types 575 

(i.e., extensively managed, cut and grazed grasslands). As a result, our estimate of grassland 576 

ecosystem-scale GHG balance is a net CO2 equivalent sink (NGE, 19 ± 10 g C-CO2 equiv. m-577 

2 yr-1), smaller than the mean value derived from site observations (54 g C-CO2 equiv. m-2 yr-1, 578 

Soussana et al., 2010). Furthermore, after taking into account off-site GHG emissions, a small 579 

source of GHG (-50 g C-CO2 equiv. m-2 yr-1 during 1961-2010, and -30 g C-CO2 equiv. m-2 580 

yr-1 in the most recent decade) gives the first estimate for European grassland, which is a 581 

larger source than previous estimates made for a few farms (an insignificant sink of 23 ± 21 g 582 

C-CO2 equiv. m-2 yr-1, Soussana et al., 2007).  583 

 584 

The major causes of changing NBP and GHG balance 585 

 586 

In a typical agricultural system, NBP is usually smaller than the magnitude of NEE because of 587 

the permanent export of a fraction of NPP exceeding the input of organic C from manure (Eq. 588 

6; Soussana et al., 2007). The change in NBP over European grasslands during the most 589 

recent five decades is attributed to two major processes: the changing sink-strength for 590 

atmospheric CO2 (see NEE, green bars in Fig. 4); and the varying C export (red bars in Fig. 591 

4).   592 

NEE represents the fluxes of CO2 exchanged between grassland ecosystems and the 593 

atmosphere; it is determined by the difference between NPP by plants and Rh from soil (Eq. 5; 594 

we have shown that Ranimal is less than 5% of Rh for European grasslands). Within the two 595 

components of NEE, the increasing productivity (NPP, Fig. 5a and d) is simulated by 596 



 

 

ORCHIDEE-GM over all European grasslands  — except for the Mediterranean region. This 597 

trend in NPP is supported by multiple evidence from experimental studies (e.g., Walker & 598 

Steffen, 1997; Campbell et al., 2000; Shaw et al., 2002; Ainsworth & Long, 2005) and trends 599 

in satellite vegetation indices (e.g., Hicke et al., 2002; Piao et al., 2006; Seaquist et al., 2007). 600 

The NPP increase could be induced by climate change and elevated CO2 concentration 601 

(Ainsworth & Long, 2005), as well as nitrogen addition (Le Bauer & Treseder, 2008; Xia & 602 

Wan, 2008) and other management changes (e.g., re-sowing with improved varieties of 603 

grass). The NPP increase in extensively managed grasslands (e.g., British Isles, Western 604 

Europe, Alpine, Fig. 5d), where nitrogen fertilizer is not applied, can be mainly attributed in 605 

the model to climate change and increasing CO2 concentration. For the intensively managed 606 

grasslands, the NPP increase is also induced by the intensified nitrogen addition during the 607 

period of 1961-1990 (Fig. 5b), due to the very simple parameterization of nitrogen-effects on 608 

photosynthesis (Chang et al., 2015).  609 

Given the widespread positive trends of NPP, the different patterns of NEE evolution in 610 

different regions are mainly characterized by the trends of Rh which is controlled by climate, 611 

by organic C availability and the micro-environment (soil physical and chemical properties). 612 

Compared to increasing NPP, the relatively slower increase of Rh could lead to enhanced NEE 613 

(e.g., the British Isles and Alpine; Fig. 5a and 5d). Meanwhile, the Rh of the extensively 614 

managed grassland is usually larger than that of the intensively managed grassland (Fig. 5d), 615 

because most of the NPP in the extensively managed grassland remains in the grassland 616 

ecosystem to increase organic C availability instead of being exported (as it is for the 617 

intensively managed grasslands). Thus reduction of grass-fed livestock numbers (causing the 618 

conversion from intensively managed grassland to extensively managed grassland; Fig. 5c) is 619 

the major factor determining the evolution of Rh during the transition periods of some regions 620 

(e.g., in all eastern regions during the period 1991-2010).  621 



 

 

The Europe-wide reduction of livestock numbers (more than 18% during the period 1991-622 

2010 based on total metabolisable energy requirement calculated in Supporting information 623 

Text S1 with original data from FAOstat; Fig. S2) reduced the need for grass forage (with 624 

respect to grassland C balance, forage is a C export thus it lowers NBP). With the constraint 625 

that the total forage requirement by grass-fed livestock numbers must be met from grass NPP, 626 

our simulation takes into account the NBP response to the less intensive grassland 627 

management induced by the decreasing livestock numbers. As a result, the reduction of grass-628 

fed livestock numbers causes enhanced sequestration of C in soil (NBP increase). The 629 

reduction in livestock numbers, which means the reduction of C export and the abandonment 630 

of grasslands (converted to extensively managed grasslands), decreased the CH4 emissions 631 

from enteric fermentation directly, and reduced N2O emissions because less nitrogen fertilizer 632 

(include mineral nitrogen and organic manure) is applied. Thus the causes of the increased 633 

NBP of European grassland (i.e., the reduction of livestock numbers) have at the same time 634 

contributed to GHG mitigation. 635 

ORCHIDEE-GM accounts for land-use change (e.g., forest or cropland converted to 636 

grassland), allowing the net land-use change C flux of the newly established grasslands to be 637 

taken into account in this study. For example, with conversion of cropland to grassland, 638 

substantial gains in SOC (positive NBP) are found by meta-analysis (Post & Kwon, 2000; 639 

Conant et al., 2001; Guo & Gifford, 2002); conversion of native forest to grassland can also 640 

result in SOC increase (Post & Kwon, 2000; Conant et al., 2001; Guo & Gifford, 2002), 641 

however, the NBP (C balance of the ecosystem) would decrease because the large amount of 642 

biomass C loss (Conant et al., 2001). The area of grassland in Europe has declined since the 643 

1960s (ca. 7%) but has slowly increased again since the early 1990s (ca. 3%; HILDA historic 644 

land-cover change data set). In another simulation without land-cover change from or to 645 

grassland during 1991-2010 (grassland area was kept at the 1991 level), ORCHIDEE-GM 646 



 

 

estimated an NBP of 15 g C m-2 yr-1, a little lower than the estimate with grassland change 647 

included (19 g C m-2 yr-1). In other words, the recent land-cover change was simulated to 648 

make a limited contribution to grassland NBP in this study over 1991-2010 (a small sink of 4 649 

g C m-2 yr-1). 650 

A large increase of European grassland NBP over the last two decades (1.83 ± 0.30 g C m-2 651 

yr-2, P = 0.07; Fig. 3a) is obtained in this study. As discussed in this section, it can be caused 652 

by several drivers including climate change, CO2 trends, nitrogen addition, land cover and 653 

management intensity changes. To better understand their role in the changing NBP, 654 

quantification of their effects will be presented in a companion paper (Part 2). 655 
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Tables	
  879 

Table 1. Key model inputs and parameters for C balance and GHG budget simulations and their rangesab 880 

Model Input or Parameter unit standard value minimum maximum description 

fint percent f f × 80% f × 120% proportion of intensively managed grassland 

Naddmax percent 60% 40% 80% 
the saturate status of nitrogen addition effect on 

photosynthetic capacity 

Vcmaxopt / Jmaxopt µmol m-2 s-1 55 / 110 44 / 88 66 / 132 

Vcmaxopt: the maximum rate of Rubisco carboxylase activity  

Jmaxopt: the maximum rate of photosynthetic electron 

transport  

SLAmax m2 g C-1 0.048 0.0384 0.0576 the prescribed maximum specific leaf area 

 881 

 a Factors are modified by ±20% of standard value (except for Naddmax, which was modified by ± 20% of absolute value). 882 

b For each combination, minimum or maximum value of each factor is used, which forms 24 = 16 factor combinations. 883 



 

 

Figure legends 884 

Figure 1. Illustration of the simulation protocol, forcing data and initial state for various 885 

simulations. Enhanced historic LC map indicates the enhanced historic land-change map 886 

delineating grassland management intensity. 887 

Figure 2. Carbon and GHG (CO2, CH4 and N2O) fluxes in European grasslands at ecosystem 888 

and farm scale. Red arrows represent CO2 fluxes (g C-CO2 equiv. m-2 yr-1); green arrows 889 

represent CH4 fluxes (g C-CH4 equiv. m-2 yr-1); Blue arrows represent N2O fluxes (g N-N2O 890 

equiv. m-2 yr-1); and orange arrows represent carbon fluxes other than in the form of CO2 (g C 891 

m-2 yr-1). NGE: the net GHG exchange of grasslands. NGB: the ecosystem and farm scale net 892 

GHG balance. 893 

Figure 3. NBP (a) and GHG budget (b) of European grassland ecosystems predicted by 894 

ORCHIDEE-GM. A positive value of NBP indicates the grassland ecosystem is a net C sink. 895 

A positive value of the GHG fluxes indicates the grassland ecosystem is a net GHG sink. The 896 

negative values of the CH4 and N2O fluxes indicate the grassland ecosystem is a CH4 and N2O 897 

source. All GHG fluxes are expressed as global warming potential (g C-CO2 equiv. m-2 yr-1).  898 

Figure 4. The NBP (far left, black), NGE (far right, light green), and their components divided 899 

into a number of major agricultural regions for the most recent five decades. The major 900 

agricultural regions are determined by both environmental and socio-economic factors and 901 

shown in Table S1 (for a detailed description see Olesen & Bindi et al., 2002). The five 902 

values of each component are 10-year averages for (from left to right) 1961-1970, 1971-1980, 903 

1981-1990, 1991-2000, and 2001-2010. NBP: the C balance of grassland ecosystem (g C m-2 904 

yr-1); Cinput (blue): the C entering the system through manure and slurry application (g C m-2 905 

yr-1); Cexport (red): the C lost from the system through harvested biomass, and CH4 emission 906 

by grazing animals (g C m-2 yr-1); NGE: the net GHG exchange of grassland ecosystem 907 

expressed as global warming potential (g C-CO2 equiv. m-2 yr-1), including CO2 (dark green), 908 



 

 

CH4 (orange) and N2O (purple) fluxes. Positive NBP and NGE indicate net C and GHG sinks 909 

respectively. The negative values of the CH4 and N2O fluxes indicate the grassland ecosystem 910 

is a CH4 and N2O source. 911 

Figure 5. (a) NEE components (NPP and heterotrophic respiration (Rh)); (b) annual total 912 

nitrogen fertilizer application (including organic and mineral fertilizer); (c) fraction between 913 

intensively managed (int.) and extensively managed (ext.) grassland; and (d) NEE 914 

components of intensively managed (int.) and extensively managed (ext.) grassland divided 915 

into major agricultural regions for the most recent five decades. The major agricultural 916 

regions are determined by both environmental and socio-economic factors and shown in 917 

Table S1 (for a detailed description see Olesen & Bindi et al., 2002). The five values of each 918 

component are 10-year averages for, from left to right, 1961-1970, 1971-1980, 1981-1990, 919 

1991-2000, and 2001-2010. 920 
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