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ABSTRACT

We report the synthesis of dicarboxylic acid-terminated polyethylene-glycol (PEG)-gold 

nanoparticles by a simple one-step method, and their further use to form nanostructured 

surfaces for biomolecule immobilization. The synthesized nano-scale particles were 

conjugated with probe/target oligonucleotides in order to evaluate intercalation phenomenon

in the presence of doxorubicin drug via Surface Enhanced Raman Spectroscopy (SERS) 

analysis.
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1. Introduction

Gold nanoparticles (AuNPs) have attracted increasing attention due to their unique 

properties and interest in multiple research areas1,2 AuNPs exhibit different optical, 

electromagnetic and catalytic properties, from the bulk metal making them suitable for 

various nanotechnological applications 2-4.

Recently, great advances have been made in the use of gold nanoparticles, for biomedical 

applications, owing to their stability, chemical reactivity, non-toxic nature and strong 

absorption and scattering properties 5, 6. For instance biomolecule- and/or biopolymer-

conjugated AuNPs are largely used as biomarkers or biodelivery vehicles, as well as for 

cosmetics, as anti-aging components for skin protection 7, 8. Therefore, more attention should 

be paid on efficient synthesis methods to match the enlarging demand of AuNPs. In the 

synthesis of nanoparticles a key role is played by the stabilizers, not only to avoid particle 

aggregation but also control their functional properties. To date, a variety of stabilizers have 

been employed for the synthesis of AuNPs9-10. Most of them are toxic, and the removal of 

excess stabilizer causes unwanted aggregation of the particles, which is a matter of concern 

for various clinical applications11.Biver et al 12  synthesized Au nanoparticles   using 

thioalkylated oligoethylene glycols functionalized with various fluorescent Acridine Orange 

derivatives 13. Exchange of organic molecules on Au nanoparticles with PEG can inded be 

performed to prepare biocompatible PEG-stabilized Au nanoparticles5. Wang et al. 

synthesized a Polyethylene glycol (PEG)-modified gold nanoparticle complex by one-step 

reaction by  synchrotron x-ray irradiation method14, 15. A low concentration of unmodified PEG 

macromolecules is very important to control particle size and stabilize gold nanoparticles 

demonstrate high stability under realistic biomedical conditions 16. Other approaches were 

applied to stabilize gold nanoparticles using sulfur-containing polymers, with a possible 

limitation of their suitability for specific biomedical application. As an example of 

biocompatible functionalization, polyethylene glycol (PEG) and poly N-vinyl-2-pyrrolidone 

(PVP) were exploited to modify nanovectors for gene drug/delivery 17-19, tumor targeting 20, 21
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and x-ray imaging 22. For in vivo applications using PEG-gold nanoparticles, all the 

preparations were based on conventional methods (i.e.sodium citrate or sodium borohydrate 

reduction) and post-addition of thiolated PEG leading to gold particles usually larger than 20 

nm 23. Futhermore, the high cost of thiolated PEGs could limit commercial applications. And 

now as it is being synthesized with appropriate size scale and desired structures, it is getting 

much more enthusiasm such as biomedical applications particularly in targeted drug delivery 

therapy by one step approach. The multifunctional doxorubicin (DOX) conjugated AuNPs

(DOX-AuNPs) may also be used to improve imaging contrast for photothermal cancer 

therapy24. Up to now DOX (figure 1) has been considered as an effective anticancer drug and 

its activity is apparently related to the direct interactions with dsDNA 25, 26, Therefore DOX is 

an inhibitor of the topoisomerase II and can inhibit DNA duplication and transcription to 

mRNA 27. DOX-AuNPs facilitate intracellular drug delivery overcoming multidrug resistance in 

cancer cells 28. The study of small ligands interacting with nucleic acids is a major area of 

research that has particular relevance in our understading of drug-DNA interactions involved 

in chemoterapeutic applications.From these studies it is known that drug binding can have 

many distinct modes including intercalation, and  cross linking. We report here a one-solution 

synthesis to prepare polymer-modified gold nanoparticles using dycarboxylic PEG as 

stabilizer. We have thus implemented and evaluated a simple and reproducible method for 

labeling biomolecules with PEG gold nanoparticles without utilizing organic solvents and 

surfactants in order to improve the ability of drug molecules to reach specific cellular site and 

be easily released. The successive steps of functionalized PEG gold nanoparticle synthesis, 

as well as oligonucleotides and Doxorubicin grafting, have been characterized by Raman 

measurements.
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2. Experimental Section

2.1. Materials  

Tetrachloroauric Acid (HAuCl4), sodium borohydride (NaBH4), N-hydroxysuccinimide (NHS),  

1-(3-dimethylaminopropyl)-N’-ethylcarbodiimidehydrochloride (EDC),cysteamine (CYS), 

ethanol (Normapur 99%), buffer solution (PBS pH: 7) ; Polyethylene glycol 600 Diacid (PEG-

diacid), Doxorubicin hydrochloride ,Oligo DNA (NH2-AAC-CAT-AAT-TAA-AAA-TAC-CTC-

TAA-C), Target DNA (GTT-AGA-GGT-ATT-TTT-AAT-TAT-GGT-T), were purchased from 

Aldrich (Saint-Quentin Fallavier, France). All chemicals were used as such without further 

purification. Milli Q water was used throughout the experiments. 

2.2. Synthesis and bioconjugation of PEG-AuNPs: Li et al 29 have reported a facile 

method to synthesize AuNPs from concentrated chloroauric acid by adding sodium hydroxide 

in the presence of citrate as stabilizer. We modified this protocol by adding dicarboxylic PEG 

as surfactant, in the mixture reaction 30 (scheme 1). Briefly, 25 mL of Chloroauric acid 

(HAuCl4) aqueous solution (2.5 x 10-4M) was added to 0.25mL of Dicarboxylic PEG  and 

mixed by magnetic stirring for 10 min at room temperature. To this solution, 20 mL of 

aqueous 0.01M NaBH4 was added at once. The formation of the PEG-AuNPs was observed 

as an instantaneous color change of the solution from pale yellow to bright red after addition 

of the reducing agent. The as-prepared PEG-AuNPs solution was centrifugated at 15.000 

rpm for 26 min for three times and then the supernatant was discarded and the residue was 

redispersed in an equivalent amount of buffer solution (PBS pH: 7). This was repeated twice 

principally to remove excess of dicarboxylic PEG. Stock solutions were stored at 27-29°C 

and characterized using UV-Vis spectroscopy and transmission electron microscopy (TEM).

2.3. Characterization methods:

The schematic diagram of the chemical immobilization method is depicted in scheme 2

SAMs formation:

Self-assembling monolayers (SAMs) offer the possibility to modify the terminal functions of 

thiol-chains to bind any type of ligands by covalent, ionic or hydrogen interactions .Chemical 

procedures, based on SAMs of Cysteamine in absolute ethanol, have been described 
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previously 31. Briefly the freshly cleaned gold substrate was immersed in an unstirred 10 mM 

ethanol solution of β-mercaptoethylamine (cysteamine) at room temperature, in the dark, for 

6h. The gold substrate was then washed with ethanol and milli Q water to remove the excess 

of thiol ( scheme 2a).

PEG-AuNPs covalent grafting on Cysteamine Gold substrates :

2 ml of PEG-AuNPs were dissolved in 2 ml of buffer solution (PBS pH 7), in which ½ eq of 

EDC/NHS was added, and stirred for 2h (pre-activation). The colloidal solution was 

deposited on cysteamine–gold-coated surface for 12h at room temperature ( scheme 2b). 

Oligonucleotide linking to pegylated gold nanostructured surface:

The gold substrate, after PEG-AuNPs covalent grafting, was treated with a solution of NHS 

(50 mg) and EDC (80 mg) in 3 mL of water for 4h (activation) and then immersed 

successively in these  solutions of Oligonucleotide  in PBS buffer solution (pH 7). These 

experiments were carried out 4 times at room temperature leading to very similar results. 

Probe Oligonucleotide (NH2-AAC-CAT-AAT-TAA-AAA-TAC-CTC-TAA-C) (100 microlitre /L 

in buffer solution) was deposited on the PEG-nano Au chip surface. After 1h, the surface was 

rinsed with buffer solution then with milli Q water for 1h . After this time, the surface was then 

washed  with buffer, water and dried under a stream of nitrogen. The procedure was 

repeated two twice. Hybridization interaction was then evaluated by Oligonucleotide 

complementary target (GTT-AGA-GGT-ATT-TTT-AAT-TAT-GGT-T) during 1h. After this 

time, the surface was rinsed with buffer solution then with milli Q water and dried by the

same procedure ( scheme 2c).

Bioconjugation  of  Doxorubicin to Au-PEG Nanoparticles

 Bioconjugation of Doxorubicin to PEG-AuNPs (DOX-PEG-AuNPs) was described 

previously31 . Briefly, 20 μl of an aqueous solution of EDC-NHS (80mg/20mg) solution was 

added into 5 mL of PEG-AuNPs. After 2h, doxorubicin( 1mL, 1μM) was added and aged for 

2h and then centrifuged 3 times and redispersed in PBS solution to remove of unbound 
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DOX. Scheme 2 e  shows a schematic representation of the interaction between DOX-PEG-

AuNPs  and Oligonucleotides onto gold nanostructured surface , compared to the  DOX free 

interaction in the same conditions ( scheme 2c), in order to detect in a sensitive manner DNA 

hybridisation and intercalation events.

3. Techniques

UV-Vis Absorption Spectroscopy.

All the absorption spectra reported in this work have been recorded using a double-beam 

Varian Cary 500 UV-Vis spectrophotometer. In particular, absorption spectra of the PEG-

AuNPs were recorded in the 300-980 nm spectral range. 

SEM & TEM

SEM images were obtained using a SEM FEG Hitachi SU-70 scanning electron microscope 

with a low voltage of 1 kV, and distance of 1.5-2 mm; the secondary electron detector "in 

Lens” was used. 50 μl of colloidal solution was deposited onto a clean gold substrate and 

dried at room temperature for the SEM images.

Transmission electron microscopy measurements were recorded on a JEOL JEM 1011 

microscope operating at an accelerating voltage of 100 KV. The TEM graphs were taken 

after separating the surfactant from the metal particles by centrifugation. Typically 1mL of the 

sample was centrifuged for 20 min at a speed of 14000 rpm/min. The upper part of the 

colourless solution was removed and the solid portion was re-dispersed in 1 ml of water. 2 μL 

of this re-dispersed particle suspension was placed on a carbon coated copper grid and dried 

at room temperature.

SERS Spectroscopy:

SERS Surface-enhanced Raman scattering spectra were recorded in the 500–1,900 cm−1 

range on a modular Raman spectrometer (Model HL5R of Kaiser Optical Systems, Inc.) 

equipped with a high-powered near-IR laser diode working at 785 nm. Before spectra 

acquisition, an optical microscope (Olympus; objective, ×50) was used to focus the laser 

beam. Measurements were carried using an objective ×100. The laser output power was 10 
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mW, which corresponds to ∼1 mW on samples. For each spectrum, 30 acquisitions of 5 s 

were recorded to improve the signal-to-noise ratio. To ensure a representative 

characterization of surfaces, a minimum of three measurements were taken on different parts 

of the surface.

4. Results 

4.1. Synthesis and bioconjugation of PEG-AuNPs

Figure.2 (left panel; black line) shows the adsorption band centered at ≈ 516 nm originating 

from the surface Plasmon of the gold nanoparticles 32 with an average size of 7.2 nm ± 0.5

nm. Thus indicating that gold nanoparticles were formed following the reduction of AuCl4
-33

The synthesis was carried out by reducing tetrachlororoauric acid (HAuCl4) in the presence 

of PEG-diacid using sodium borohydride (NaBH4) as a reducing agent. The color of the 

dispersion indeed instantly changed from yellow to red when sodium borohydride was added 

to a solution of gold precursor in the presence of PEG-diacid, confirming the formation of 

PEG-AuNPs in the solution. Figure.2 (right panel) reports the observed changes of the SPR 

band during hybridization between the DNA probes (dsDNA)(figure. 2-a),complementary 

DNA target sequences(ssDNA) (figure.2-b) and after intercalation of free DOX (figure.2-c)

and DOX-PEG-AuNPs (figure.2-d). The spectrum (figure.2-a) displays a strong resonance 

peak at around 520 nm caused by SPR of individual nanoparticles after DNA immobilization. 

The progressive changes in the SPR band of the gold particles resulting from the 

hybridization with complementary target is apparent from the shift around 535 nm in the 

intensity of the SPR band towards higher wavelengths (figure.2-c). After interaction between

free DOX , with DNA/DNA capped PEG-AuNPs, we observed a small peak at 535 nm and a 

second broadened band at 597nm. A dramatic shift at 640 nm was observed when DOX-
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PEG-AuNPs intercalate onto  DNA oligonucleotides capped PEG-AuNPs (figure.2-c).These 

results clearly show that the shift in LSPR wavelength reflects small changes in the refractive 

index at the particle surface caused by the DNA/DNA, DNA/DNA/DOX, DNA/DNA DOX-

PEG-AuNPs events. 

4.2. Transmission electron microscopy (TEM) and Scanning electron microscopy 

(SEM)    analysis of PEG-AuNPs

A droplet (10 microL) of the colloidal solution, corresponding to the absorption spectra shown 

in figure. 2 (right panel black-line), was then deposited, on a microscope grid, leading to the 

transmission electron microscopy (TEM) image of figure.3 (a-b). In contrast to those reported 

in a very similar synthetic system, i.e.,CTAB/n-butanol/octane/water32, the TEM picture of 

PEG-AuNPs  were well dispersed in size and shape. The histogram of 1623 particles fits a 

Gaussian behaviour with a mean size of 7.2 nm with a standard deviation of 0.5 nm. Gold 

Nps were then covalently grafted on the cysteamine-modified gold surface. Surface 

organization and density were investigated using scanning electron microscopy (SEM).

Figure.4 shows a typical SEM image of the planar gold surface after immobilization of PEG-

AuNPs on the cysteamine layer. A layer of well-defined, highly dispersed NPs on the gold 

surface has indeed been formed. The coverage of PEG-AuNPs onto gold surface was 

estimated by calculating the ratio between the surface area covered by gold nanoparticles 

and the total gold area 32.The evaluation made from a of 1 x1 μm2 image, leads to a surface 

NPs coverage ,  to 1.6 x 1014 per square centimeter of the planar gold surface covered with 

Nps ,The height size distribution was made on the basis of 100 cross sections performed 

along the 1 x 1 μm2 image. The surface density is calculated as a ratio between the surface 

area covered by gold nanoparticles and the overall surface area36.Based of this equation, our 

surface density is 70% .
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4.3. SERS analysis of the interaction between DOX-PEG-AuNPs and oligonucleotides:

Pegylated Gold Nanostructured surface were functionalized with amino probe

oligonucleotides and our complementary target in order to evaluate the enhancement of 

Raman Signal before and after interaction of free DOX molecules and DOX-PEG-AuNPs.

Stock solutions of doxorubicin, were prepared in phosphate-buffered saline (PBS at 

concentration of 10-3M and diluted to the 10-8M concentration before each experiment).

Experimental Raman (o SERS) spectra in the spectral range of 500-1900 cm -1 are shown in

Figure 5. The spectral finger-print of DOX33 deposited onto pegylated gold nanostructured 

surface had  several broad bands evident in figure 5 with the major peaks in the range 1100-

1300 cm-1 and 1500-1600 cm-1 which correspond to the C=O in plane deformation, C-O-H, C-

H skeletal ring vibrations, and hydrogen-bonded C=O stretching modes, respectively.  Figure 

5-4 shows a SERS spectrum of double stranded DNA grafted onto pegylated gold 

nanostructured surface ( see scheme 2c). The intense peak at 731 cm-1 is assigned  to the 

ring –breathing vibration of adenine 33, 34  and the weaker peak at 639 cm-1 corresponds to 

the ring-breathing mode of the other purine base, guanine. The localization of doxorubicin 

molecule in DNA, can influence the NH2 vibration of adenine molecule. Figure 5-3 shows the 

SERS spectra of 1,0 x 10-8M of DOX after interaction with DNA. If we compare SERS spectra

of free DOX onto pegylated gold nanostructured surface (figure 5-3), and DOX-DNA complex 

at the some conditions, reveal modification in the vibrational frequencies and intensities with 

disappereance of some bands upon complexation. The appareance of the 1591 cm-1 band 

confirm complex formation35,36,37 . The intensity of the thymine band from at 1312 cm-1

increased because there is a deformation of the hydrogen bond between the NH2 group of 

adenine and the C40 group of thymine molecule. In the case of guanine, the band at 1467

cm-1 is caused by the C8H-N9C8 and C8N7 guanine group vibrations 38,39. The band at 1586

cm-1 (Ring breathing ,Ring(Phe),δC-H (aro)) is very weak upon complexation. From this 

reason, we suggested that the interaction sites of doxorubicin were C-O-NH and ring phenil 

group. When DOX molecules were conjugated to the PEG AuNPs (see scheme 3 e), several

RAMAN signal of DOX and the intercalation process in DNA molecules were significantly 
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enhanced 40. RAMAN spectrum was similar to that of free DOX molecules, except that all 

bands were broadened  and the some new bands  around 800-1100 cm-1 appeared. There is 

a blu-shift from 1372 cm-1 to 1312 cm-1 and a enhancement of the peak 1312 cm-1 due at the 

deformation of the hydrogen bond ,Ring C20/15 and C16-OH bending A prominent peak  at 

1123 cm-1 is due at  C-N band and a small peak appears at 640 cm-1 may be due at C-S 

guanine41. The SERS enanchement factor was calculated  by comparing SERS signal 

excited of the DOX intercalated in DNA/DNA complex onto pegylated nanostructured surface 

before and after  conjugation with PEG AuNPs. Here we adopted the estimation of the SERS 

enhancement factor reported by Gupta and Weimar 42 .Thus , the value of G was 0.47.

5.Discussion

Particles formation and growth were controlled by the amphiphilic (dual nature) character of 

the PEG-diacid polymers described previously43,44. Other authors have reported the 

mechanism of gold nanoparticles formations in presence of poly (ethylene oxide)-poly 

(propylene oxide)-poly (ethylene oxide) block copolymers (PEO-PPO-PEO) varying 

temperature and solvent quality45.This block copolymers bind metal ions45, and reduction of 

bound AuCl4
- ions can proceed via oxidation of the oxyethylene and oxypropylene segments 

by the metal center 45. The main difference with other synthetic procedures of PEG-AuNPs is 

that PEG-diacid is used in the same way as citrate for the stabilization of the particles 

through electrostatic interactions between the carboxylic acid groups and the gold surface44 .

Particle formation and growth were tuned by the amphiphilic character of the PEG-diacid 

polymer and include three steps: (1) reduction of HAuCl4 facilitated by dicarboxylic acid-

terminated PEG to form gold clusters; (2) adsorption of PEG diacid molecules on the surface 

of the gold clusters and reduction of metal ions in that vicinity; and (3) growth of gold 

particles and colloidal stabilization by PEG polymers. These findings indicate that PEG-

AuNPs, when immobilized on functionalized gold surface, via covalent link, preserve their 

size and shape. The low aggregation level observed may be due to the repulsive interactions 

between PEG-chains present at the surface of NPs. Note that E.M.S. Azzam et al also 
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realized the chemisorption of gold nanoparticles on a self assembled monolayer (SAM) 

(decanedithiol)-modified gold surface; they observed the formation of Np aggregates on the 

surface due at the presence of ion charges of citrate molecules  as surfactants that prevent a 

good dispersion after immobilization46.

Other authors M.H.Tu et al have demonstrated that aggregation and density depend on the 

nanoparticle size, smaller nanoparticles corresponding to higher surface densities47. The 

reason for this is that an AuNPs is normally covered by negative ions of citrate when 

synthetized. When the AuNPs is bigger in size, a large number of negative citrate ions would 

surround a single particle. When they are immobilized on the surface of a coverslip, it would 

be harder for a bigger particle to achieve high surface density than for a smaller one. Lee et 

al  have reported a similar effect and noted that, achieving highest surface density might not 

be necessarily conjugated with better sensitivity of the sensor48. In our case the absence of 

ion charges of citrate and the presence of PEG chains as surfactant, allows a better 

coverage after funzionalization on gold surface without cluster aggregates. The covalent 

conjugation of DOX onto PEG-AuNPs was achieved using carbodiimide-based conjugation 

of the carboxylic-terminated polymer and the amine function of DOX and characterized by 

PM-IRRAS and X-Ray photoelectron microscopy (XPS)49.The formation of an amide bond is 

evidenced by the presence of broad band at 1675 and an additional one at 1536 cm-1 (amide 

II)32. This amide bond may be responsible of a different steric arrangement of DOX onto 

PEG-Au NPs  and consequently interaction with DNA molecules.

The biological activity of the DOX molecule has been attributed to the formation of complex 

between the cromophore and the base pairs of DNA. In order to evaluate the intercalation 

effect of DOX and DOX-PEG-AuNPs, Dna oligonucleotides was binding onto gold 

nanoparticles (PEG-AuNPs) and monitored by UV-VIS spectroscopy. A dramatic blue-shift 

after interaction of DOX (figure 2-c) and DOX-PEG-AuNPs (figure 2-d) with oligonucleotides 

capped onto PEG-AuNPs, confirm the formation of complex .Several researchers have been 

demonstrate, the electron transfer mechanism and stability of intercalation of antraquinones 

(doxorubicin) into suitable DNA double helices that involve  dipolar interactions highly .
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The comparison between the SERS spectrum of free DOX and that of the DOX-DNA/DNA

complex onto gold nanostructured surface, show a loss intensity together the disappearance 

of some bands upon complexation. The use of this technique as a probe  for the study of the 

molecular interaction of DOX (figure.1) and its complexes with DNA may allow us to have 

additional information on the changes in the spectra of DOX and on its interaction with DNA.

A new band at 1273 cm-1 correspond to the ring stretching mode coupled with ν (C-O) of ring 

A which is not intercalated within DNA. The band at 1642 cm-1 (assigned to hydrogen 

bonding to the C=O). Loss intensity  of the bands at 1214 and 1246 cm-1, assigned to the 

vibrations involving in the plane C-O, C-O-H and C-H bending modes, is observed. This 

confirms the intercalation of rings B and C whthin the double helix. The intensity increase of 

band at 1318 cm-1 and the red shift from 1586 to 1571 cm-1 of adenine are caused mainly by 

the doxorubicin interaction with the N7 position of adenine, which is accessible for 

doxorubicinin the DNA structure. Bin Kang et all have analysed SERS signal of Doxorubicin

linked to  gold nanoparticles of 30 nm of diameter by thiol group in order to evaluate the 

release of the drug in the cells 39. The presence of AuNPs surface influences SERS signal 

and some bands are broadened. Conjugation of DOX to the AuNPs surface increases the 

Raman signal by the near –field plasmon of the AuNPs. In our case, the surface of AuNPs 

was modified by dicarboxyilic polyethilenglycol (PEG) to improve the biostability and reduce  

non specific binding of protein. The tickness of about 10 nm of pegylated gold nanostructured 

surface modified with DNA molecules , and the presence of PEG-AuNPs loaded with DOX 

improve the intercalation process  with a impressive  enhancement of SERS signal in the 

region 1300-1600 cm-1 at low concentration of Doxorubicin (10-8M)  due at double gold 

nanostructuration. The prominent peak at 1312 cm-1 explain the steric arrangement  of DOX-

PEG-Au NPs  by C-C ring and CO-NH that is  different  by chemical funzionalization  studied 

by others in which DOX was binding by different linker thiol group. The peak at 450 cm-1, 

correspond to the C=O in plane deformation of DOX 50; the decrase of SERS intensity at 450 

cm-1 from 1 to 3 (see inset graph figure 5) confirms the interaction with oligonucleotides and 

success of the analysis.
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6. Conclusions

In this work, uniform PEG-AuNPs with low size polydispersity can be synthetized to

developed a pegylated nanosructured surface that show a good sensitivity. These plateforms 

were used to build up a biosensor and test its reactivity and selectivity for a model 

antigen/antibody or amino oligonucleotides with your complementary target. Double gold 

nanostructuration by Doxorubicin as chemotherapeutic intercalator agent showed a better 

enhancement of SERS spectrum. The observed spectral changes, as a result of the complex 

formation, lead us to the following conclusions: the interaction of doxorubicin with  DNA in an 

aqueous solution was realized by the drug binding to adenine and guanine. Doxorubicin 

interacted with the N7 position of adenine and guanine via a hydrogen bond formation 

between the N7 position of purine bases and the hydroxyl group of doxorubicin. We 

demonstrated that doxorubicin-modifed gold nanoparticles are efficient for the amplifcation of 

the SERS signal associated with DNA hybridization events. The stability of the DOX- PEG-

AuNPs  over a long time when compared to PEG-AuNPs modifed with DNA makes the 

concept new and an interesting alternative for SERS based DNA sensing in an an easy 

manner. This approach will be extended to the realization of  pegylated  gold  nanostructured 

surfaces in which  different longer chains and functional groups of PEG polymers  will be 

utilized to conjugate many type of tumoral biomarker in order  to monitor the release of DOX 

in cancer cells.
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Figure.1 : Chemical structure of doxorubicin
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Figure.2  : UV-Vis spectra of the SPR band changes of PEG-AuNPs before (left

panel λmax = 516 nm, black line) and after (right panel) (a) immobilisation dsDNA

monolayer onto PEG-AuNPs (b) hybridization dsDNA/ssDNA monolayer onto PEG-

AuNPs (c) intercalation of doxorubicin free (DOX) onto  PEG-AuNPs dsDNA/ssDNA

oligonucleotides (d) intercalation of  dox nanoparticles (DOX-PEG-AuNPs) onto  

PEG-AuNPs DNA oligonucleotides. 

400 600 800
0,0

0,2

0,4

0,6

0,8

A
b

so
rb

an
ce

Wavelength (nm) 400 500 600 700 800

0,2

0,4

0,6

0,8

d)

c)

b)

A
b

s
o

rb
a

n
ce

Wavelength (nm)

a)



Page 20 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

20 nm

5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Size (nm)

P
e

rc
e

n
ta

g
e

 (
%

)

d 7 nm

Figure. 3: Structural analysis of PEG-AuNPs: (a) TEM images, (b) particle size 

distribution
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Figure. 4: SEM images of PEG-AuNPs immobilized on a planar gold surface
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Figure. 5 Raman spectroscopy of  DOX molecules free (1) and surface enhanced 

Raman spectra of DOX bound to PEG-AuNPs  onto DNA-DNA pegylated gold 

nanostructured surface (2) Intercalation of DOX free onto DNA-DNA pegylated gold 

nanostructured surface (3) Compared DNA-DNA pegylated gold nanostructured 

surface onto CYS monolayer (4) (see inset graph ) decrase of SERS intensity at 450 
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Scheme 1: Proposed formation mechanism of PEG-AuNPs in dicarboxylic acid-termninated PEG, 

HAuCl4 and NaBH4. 
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Scheme 2: Schematic representation of the biosensor elaboration strategy: (a) Au 

surface modification with cysteamine self-assembled monolayer, (b)  PEG-AuNPs

immobilisation via amide bond formed between activated COOH groups (using 
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EDC/NHS)  originating from NPs and amine group of cysteamine, (c) second 

activation of PEG-AuNPs and binding of amino oligonucleotide and complementary 

target recognition. (d) interaction of Doxorubicin with DNA onto Pegylated gold 

nanostructured surface. (e)  interaction of Doxorubicin loaded to PEG-AuNPs  with 

DNA onto Pegylated gold nanostructured surface.


