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Abstract. A Petri net is reversible if its initial marking is a home
marking, a marking reachable from any reachable marking. This prop-
erty is fundamental in man-made systems as it lets a system return to
its initial state using only internal operations.
Necessary and su�cient conditions are already known for the reversibility
of well-formed Choice-Free and ordinary Free-Choice nets. Like the ho-
mogeneous Join-Free nets, these nets constitute subclasses of Equal-
Conflict nets. In this larger class, the reversibility property is not well
understood.
This paper provides the first characterization of reversibility for all the
live Equal-Conflict systems by extending, in a weaker form, a known
condition that applies to the Choice-Free and Free-Choice subclasses.
We also show that this condition is tightly related to the Equal-Conflict
class and does not apply to several other classes.

Keywords: Reversibility, home markings, liveness, weighted Petri nets,
characterization, Equal-Conflict, Join-Free, Choice-Free, Free-Choice.

1 Introduction

Liveness and reversibility are behavioral properties of Petri nets that are fun-
damental for many real world applications. These systems (such as embedded
or flexible manufacturing systems) have to keep all their functions (transitions)
active over time, a condition modeled by the liveness property. These systems
often also require a steady, regular, behavior and the possibility of returning
to some particular states (markings) using only internal operations, a condition
modeled by the reversibility property.

A system is live if any transition can be fired after a finite number of steps
from any reachable marking. The markings that are reachable from every reach-
able marking–when they exist–are called home markings. A Petri net is re-

versible, or cyclic, if its initial marking is a home marking, in which case all
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reachable markings are home markings. Reversibility avoids a costly transient
phase and favors a steady behavior from the start. Besides, it often simplifies
substantially the study of the reachability graph.

Importance of Weights. In this study, we focus on weighted Petri nets, which
are well suited to the modeling of real-life systems. In the domain of embedded
systems, Synchronous Data Flow graphs [8], equivalent to particular weighted
Petri nets, have been introduced to model the communications between a finite
set of periodic processes. In the domain of flexible manufacturing systems (FMS),
the weights make possible the modeling of bulk consumption or production of
resources [15]. In these cases, weights allow a compact representation of the
volumes of data or resources exchanged.

Important Weighted Subclasses. We focus on subclasses of weighted Petri
nets that are defined by structural restrictions. A net is homogeneous if each
place has all its outputs weights equal. The Equal-Conflict systems form a ho-
mogeneous subclass where transitions that have a common input place share the
same set of input places.

This class generalizes several important subclasses of Petri nets. It contains
the Choice-Free systems, also known as output non-branching systems [3], in
which every place has at most one output transition. Weighted T-systems—
equivalent to Synchronous Data Flow graphs—are Choice-Free systems where
each place has at most one input transition. The homogeneous Join-Free Petri
nets form a subclass of Equal-Conflict nets in which each transition has at most
one input place. The homogeneous S-systems are homogeneous Join-Free systems
in which each transition has at most one output place.

Previous Results. The problem of checking the reversibility property is decid-
able [1, 4], although its complexity is unknown. If the system is supposed to be
bounded, a naive exponential algorithm would check the strong connectedness
of its reachability graph. Moreover, neither one of the properties of liveness and
reversibility implies the other [11].

The relation between liveness and reversibility has been studied in several
weighted subclasses. The systems considered are often bounded, that is, with a
bounded number of tokens in every place for all the reachable markings. Well-
formedness is also commonly assumed for the net, ensuring the boundedness
of the system for any initial marking and the existence of at least one live
marking. Liveness and reversibility are equivalent for any well-formed T-system
[14]. For well-formed Choice-Free systems, a characterization of reversibility was
expressed in terms of the reversibility of particular subsystems under the liveness
assumption in [7]. For the same class, a necessary and su�cient condition for the
conjunction of liveness and reversibility was given in [15], which also applies to
well-formed ordinary Free-Choice nets [5]. To our knowledge, no result of similar
strength exists for homogeneous S-systems, hence for larger classes.

Nevertheless, for Equal-Conflict systems, some characterizations of liveness
have been uncovered. Under the well-formedness assumption, there exist a struc-



tural necessary and su�cient condition of liveness [17] and a checking method
[16]. Also, the existence of reachable home markings is a necessary condition for
the combined liveness and boundedness of an Equal-Conflict system [17].

Liveness and reversibility have been studied in many other classes, notably
liveness in [2] and reversibility in [6].

Contributions. Our main contribution is a necessary and su�cient condition
of reversibility for live, not necessarily bounded, Equal-Conflict systems. It is
based on the existence of a feasible T-sequence, which is a sequence returning to
the initial marking and where each transition is fired at least once.

The existence of a T-sequence is a necessary and su�cient condition for a
well-formed Choice-Free system to be both live and reversible [15]. We exhibit a
simple counter-example for the homogeneous S-system class. Consequently, the
condition does not extend to the Equal-Conflict class.

We show easily that the existence of a feasible T-sequence is a necessary
condition for a system to be both live and reversible. The major result is the
proof that, for live Equal-Conflict systems, the existence of a T-sequence is also
a su�cient condition of reversibility. We also provide various counter-examples
showing that this characterization does not extend to several larger classes.

Organization of the Paper. In Section 2, we give general definitions, detail
notations and properties of Petri nets, and define the subclasses that we study
in the paper. In Section 3, we investigate the relationship between liveness and
reversibility in weighted Petri nets and several bounded subclasses. We also intro-
duce the notion of T-sequence and highlight its importance for the reversibility
property. In Section 4, we explore a particular definition of fairness in Equal-
Conflict nets and exploit it to prove the characterization of reversibility for all
the live Equal-Conflict systems. In Section 5, we show by means of counter-
examples that this characterization of reversibility does not extend to several
classes of Petri nets. Finally, Section 6 is our conclusion.

2 Definitions, Notations and Properties

We first recall definitions and notations for weighted nets, markings, systems
and firing sequences. Classical notions, such as liveness and boundedness, are
formalized. Lastly, special classes of nets, including Choice-Free, Join-Free and
Equal-Conflict nets, are recalled.

2.1 Weighted and Ordinary Nets

A (weighted) net is a triple N = (P, T,W ) where:

� the sets P and T are finite and disjoint, T contains transitions and P places,
� W : (P ⇥ T ) [ (T ⇥ P ) 7! N is a weight function.



P [ T is the set of the nodes of the net.

An arc leads from a place p to a transition t (respectively a transition t to
a place p) if W (p, t) > 0 (respectively W (t, p) > 0). An ordinary net is a net
whose weight function W has values in {0, 1}.

The incidence matrix of a net N = (P, T,W ) is a place-transition matrix C

defined as
8p 2 P 8t 2 T, C[p, t] = W (t, p)�W (p, t)

where the weight of each non-existing arc is 0. The weight function W can be
represented by two place-transition matrices Pre and Post defined as follows:
8p 2 P , 8t 2 T , Pre[p, t] = W (p, t) and Post[p, t] = W (t, p). Consequently, the
incidence matrix can be defined as C = Post� Pre.

The pre-set of the element x of P [ T is the set {w|W (w, x) > 0}, denoted
by •

x. By extension, for any subset E of P or T , •
E =

S
x2E

•
x. The post-set

of the element x of P [ T is the set {y|W (x, y) > 0}, denoted by x

•. Similarly,
E

• =
S

x2E

x

•.

We denote by max

N

p

the maximum output weight of p in the net N . The
simpler notation max

p

is used when no confusion is possible.
A join-transition is a transition having at least two input places.

2.2 Markings, Systems and Firing Sequences

A marking M of a net N is a mapping M : P ! N. A system is a couple (N,M0)
where N is a net and M0 its initial marking.

A markingM of a netN enables a transition t 2 T if 8p 2 •
t ,M(p) � W (p, t).

Generalizing to sets, a set T of transitions is enabled by M if every transition
of T is enabled by M . A marking M enables a place p 2 P if M(p) � max

p

.
Generalizing to sets, a set P of places is enabled by M if every place of P is
enabled by M .

The marking M

0 obtained from M by firing an enabled transition t, denoted

by M

t�! M

0, is defined by 8p 2 P,M

0(p) = M(p)�W (p, t) +W (t, p).
A firing sequence � on the set of transitions T is a mapping {1, . . . , n} ! T

with n � 1, or N ! T ; it is finite of length n in the first case and infinite
otherwise. A firing sequence � = t1t2 · · · tn is feasible if the successive markings

obtained, M0
t1�! M1

t2�! M2 · · ·
tn�! M

n

, are such that M
i�1 enables the transi-

tion t

i

for any i 2 {1, · · · , n}. We note M0
��! M

n

.
The Parikh vector ~� : T ! N associated with a finite sequence of transitions

� maps every transition t of T to the number of occurrences of t in �.
A marking M

0 is said to be reachable from the marking M if there exists a
feasible firing sequence � such that M

��! M

0. The set of markings reachable
from M is denoted by [Mi.



A home marking is a marking that can be reached from any reachable
marking. Formally, M is a home marking in the system (N,M0) if 8M 0 2
[M0i,M 2 [M 0i. A system is reversible if its initial marking is a home marking.

2.3 Liveness and Boundedness

Liveness and boundedness are two basic properties ensuring that all transitions
of a system S = (N,M0) can always be fired and that the overall number of
tokens remains bounded. More formally,

� A system S is live if for every marking M in [M0i and for every transition
t, there exists a marking M

0 in [Mi enabling t.
� S is bounded if there exists an integer k such that the number of tokens in each

place never exceeds k. Formally, 9k 2 N 8M 2 [M0i 8p 2 P, M(p)  k .

S is k -bounded if, for any place p 2 P , k � max{M(p)|M 2 [M0i} .
� A system S is well-behaved if it is live and bounded.

A marking M is live (respectively bounded) for a net N if the system (N,M) is
live (respectively bounded). The structure of a net N may be studied to ensure
the existence of an initial marking M0 such that (N,M0) is live and bounded:

� N is structurally live if a marking M0 exists such that (N,M0) is live.
� N is structurally bounded if the system (N,M0) is bounded for each M0.
� N is well-formed if it is structurally live and structurally bounded.

The algebraic properties of consistency and conservativeness are necessary
conditions for well-formedness for all weighted Petri nets [10, 13]. They are de-
fined next in terms of the existence of particular annulers of the incidence matrix.

2.4 Semiflows, Consistency and Conservativeness

Semiflows are particular left or right annulers of an incidence matrix C that is
supposed to be non-empty:

� A P-semiflow is a non-null vector X 2 N|P | such that XT · C = 0.
� A T-semiflow is a non-null vector Y 2 N|T | such that C · Y = 0.

We denote by I(V ) the set of the indices of the vector V . The support of a vector
V , denoted by |V |, is defined as the largest subset of I(V ) being associated to
non-zero components of V , meaning that 8i 2 |V |, V [i] 6= 0 and 8i 2 I(V )\ |V |,
V [i] = 0. A P-semiflow is minimal if the greatest common divisor of its compo-
nents is equal to 1 and its support is not a proper superset of the support of any
other P-semiflow. Minimal T-semiflows are defined similarly.

We denote by 1n the column vector of size n whose components are all equal
to 1. The conservativeness and consistency properties are defined as follows using
the incidence matrix C of a net N :

� N is conservative if a P-semiflow X 2 N|P | exists for C such that X � 1|P |.
� N is consistent if a T-semiflow Y 2 N|T | exists for C such that Y � 1|T |.

The net on Figure 1 is conservative and consistent.
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Fig. 1. This weighted net is conservative (the left vector [2, 2, 1, 1, 1] is a P-semiflow
and its components are � 1) and consistent (the right vector [2, 2, 2, 1]T is a T-semiflow
and its components are � 1).

2.5 Choice-Free Nets, Join-Free Nets and Subclasses

The following basic subclasses of weighted Petri nets are defined by structural
restrictions on the number of inputs or outputs of nodes. By studying these
particular structures, the understanding of the behavior has been improved in
several larger classes [12, 17].

In Choice-Free nets, each place has at most one output transition, meaning
that choices are not allowed. More formally, N = (P, T,W ) is a Choice-Free net

if 8p 2 P , |p•|  1.
In Join-Free nets, each transition has at most one input place, meaning that

synchronizations are not allowed. More formally, N = (P, T,W ) is a Join-Free

net if 8t 2 T , |•t|  1.
The net of Figure 1 is Choice-Free but not Join-Free: t3 is a join-transition.

A net N is a Fork-Attribution net (or FA net) if it is a Choice-Free net and a
Join-Free net. A net is an S-net if every transition has at most one input and one
output. A net is a T-net if every place has at most one input and one output.

2.6 Equal-Conflict Relation, Sets, Nets and Larger Classes

In order to consider nets that are more expressive than the basic Choice-Free or
Join-Free classes, some choices or synchronizations must be allowed.

However, in presence of structural choices, the behavior depends on the res-
olution of conflicts, which is limited by the preconditions of the conflicting tran-
sitions and by the current marking. When these preconditions are identical, all
the alternatives are equivalent and the study of the behavior is simplified.

This notion of equal preconditions is captured by the next relation on the
transitions of any weighted net, which was defined in [17].

Let N = (P, T,W ) be a net. Two transitions t, t0 of T are in equal conflict

relation if Pre[P, t] = Pre[P, t0] 6= 0|P |, where Pre[P, t] denotes the t-th column
of the matrix Pre. It is an equivalence relation on the set of transitions, and
each equivalence class is an equal conflict set.



We deduce that an equal conflict set is enabled by a marking M if and only
if at least one transition of this set is enabled by M .

A net N = (P, T,W ) is an Equal-Conflict (EC) net if for all transitions t and
t

0 of N , •
t \ •

t

0 6= ? ) Pre[P, t] = Pre[P, t0].

A consequence of this definition is that Equal-Conflict nets are homogeneous,
meaning that for every place p, all the output weights of p are equal. Figure 2
contains an Equal-Conflict net on the left.

The Equal-Conflict class strictly extends the expressiveness of Choice-Free
nets by adding the possibility to model choices that are equally favored.

p1 p2

t1 t2

2

2 3

3

p1 p2

t1 t2

2

3

3

p1 p2

t1 t2

2

4 3

3

Fig. 2. The net on the left is an Equal-Conflict net. In the middle, •
t1 = {p1, p2} 6=

{p2} = •
t2 , hence the net is not Equal-Conflict. On the right, the pre-sets of both

transitions are equal, however it is not Equal-Conflict since it is not homogeneous: the
output weights of p1 are not all equal.

Finally, we recall the following well-known classes, whose weighted versions
generalize the Equal-Conflict class.

Free-Choice nets are ordinary (unit-weighted) Equal-Conflict nets. The weigh-
ted generalization of this class encompasses the Equal-Conflict nets and is de-
picted on the right in Figure 2.

A net N = (P, T,W ), either ordinary or weighted, is Asymmetric-Choice if
8p1, p2 2 P , p•1 \ p

•
2 6= ? ) p

•
1 ✓ p

•
2 or p

•
2 ✓ p

•
1. A weighted homogeneous

Asymmetric-Choice net is shown in the middle of Figure 2.
Figure 3 represents the inclusion relations between the special subclasses of

weighted Petri nets considered in this paper.

3 Liveness, Reversibility and T-sequences

We recall known results and provide examples that explain some interactions
between liveness and reversibility in weighted subclasses. We then introduce the
notion of T-sequence and study its importance in relation with these properties.

3.1 Previous Results on the Reversibility of Live Systems

Since we are interested in systems that are both live and reversible, we first illus-
trate some relations between these properties. While, under the well-formedness
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Weighted Free-Choice
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Fig. 3. Some classes and subclasses of weighted systems.

assumption, liveness is equivalent to reversibility in weighted T-systems [14], it
does not imply reversibility in weighted Fork-Attribution systems and homoge-
neous S-systems, as illustrated in Figure 4.

2

1 1

2 2 2

1 1

t2 t3

t4t5

p1 p2p3

1 1

2

1 1

11

t3 t2

t1

Fig. 4. On the left, a live S-system. On the right, a live Fork-Attribution system. None
of them is reversible.

Thus, since a live system may not be reversible, other notions, such as T-
sequences, must be introduced to study the reversibility property.

3.2 T-sequences

We introduce next the notion of T-sequence and show that the existence of such
a sequence is necessary to have both liveness and reversibility.

Definition 1 (T-sequences, partial T-sequences). Consider a Petri net

with set of transitions T . A T-sequence is a sequence whose Parikh vector is

equal to a T-semiflow whose support is T . A partial T-sequence is a sequence

whose Parikh vector is equal to a T-semiflow whose support is di↵erent from T .

The alternative expressions feasible or realizable T-semiflow may be found
in the literature when there exists a feasible (partial or not) T-sequence. Such



a sequence, when feasible at the initial marking, defines weak reversibility in [14].

The next lemma provides a necessary condition to obtain both liveness and
reversibility.

Lemma 1. If a system S = (N,M0) is live and reversible, then it enables a

T-sequence.

Proof. Suppose that the system is live and reversible. By the liveness assumption,
there exists a feasible sequence �0 whose support is the set of all transitions. By
the reversibility assumption, there exists a feasible sequence �1 returning to M0.
Thus, the feasible sequence �0 �1 is a feasible T-sequence. ut

Consequently, any live and reversible Petri net is consistent.

In the other direction, the existence of a feasible T-sequence implies both
liveness and reversibility in (weighted) Choice-Free nets [15] and (ordinary) Free-
Choice nets [5] under the well-formedness assumption. However this implication
is false in general. Indeed, a well-formed homogeneous S-system may have a fea-
sible T-sequence while it is neither live nor reversible, as illustrated in Figure 5.

1

2 2

1 1 1

2 2

t1 t2

t3t4

Fig. 5. This well-formed homogeneous S-system is not live (fire t1 t2) although a T-
sequence is feasible (fire t1 t1 t4 t2 t2 t3).

Other particular classes have been studied in [9], which investigates the
relationship between the reversibility property and the existence of reachable
markings that enable a partial T-sequence associated to a minimal T-semiflow.

This fact justifies the study of reversibility under liveness hypothesis in the
next section. We also show in that section that the existence of a feasible T-
sequence is su�cient for reversibility in the Equal-Conflict class when liveness is
assumed.

4 Reversibility of Live Equal-Conflict Systems

Under the liveness hypothesis, we investigate the reversibility property in Equal-
Conflict systems, which may be unbounded. First, we define a notion of fairness



and develop an associated property for sequences. Then, we use the fairness
to facilitate the proof of the characterization of reversibility for all live Equal-
Conflict systems.

4.1 Fairness in Equal-Conflict Systems

Taking inspiration from [17], we define a fairness property adapted to the Equal-
Conflict class. Then, we present a result about fairness that will prove useful for
the study of the reversibility property.

Definition 2 (Fairness in Equal-Conflict systems). An infinite firing se-

quence is globally fair if it fires every transition of the system an infinite number

of times. An infinite firing sequence is locally fair if
- when an equal conflict set contains a transition that is fired an infinite number

of times, all of its transitions are fired an infinite number of times, and

- when an equal conflict set is enabled, one of its transitions is fired after a finite

number of firings.

The following theorem is similar to a result of [17] which uses a slightly
di↵erent definition of fairness. Comparing with [17], we replace the boundedness
and strong connectedness assumptions by the liveness assumption.

Theorem 1 (Fairness in live Equal-Conflict systems). Let S be a live

Equal-Conflict system. An infinite sequence � that is feasible in S is globally fair

if and only if it is locally fair.

Proof. If � is globally fair, it is easy to see that � is locally fair. Let us prove
the converse. Suppose that � is locally fair.

Denote by Q the set of the equal conflict sets containing a transition that
occurs infinitely often in � and by Q the set of the other equal conflict sets. The
set Q is non-empty since there is only a finite number of equal conflict sets and
� is infinite. If Q is empty, then we are done. Now suppose that Q is non-empty.

By definition of Q and by the local fairness assumption, all the transitions of
the sets in Q are fired an infinite number of times in �, while all the transitions of
the sets in Q are fired a finite number of times and become forever non-enabled
after the firing of a finite prefix sequence �0 of �. Denote by M the marking
reached by firing �0 in S and by �

0 the infinite su�x sequence of � satisfying
� = �0 �

0.
By the liveness assumption, there exists a transition t in Q and a finite

sequence �1 feasible atM such that �1 contains only transitions of Q and enables
t. The sequence �1 may not be a prefix of �

0, however all the transitions of
Q are fired an infinite number of times in �

0. We deduce that a finite prefix
sequence �2 of �0 exists such that ~�2 � ~�1. Moreover, since only transitions of
Q are structurally allowed to remove tokens from the inputs of t, the transition
t becomes enabled after the firing of the finite sequence �0 �2, contradicting the
fact that every transition of Q stays forever non-enabled after the firing of �0.
Thus, Q is empty and � is globally fair. ut



In the following, we will use fair sequences to study the reversibility of live
Equal-Conflict systems.

4.2 A Characterization of Reversibility under the Liveness
Assumption

By Lemma 1, in every live Petri net, the existence of a feasible T-sequence is
necessary for reversibility. We show that it is also su�cient for the class of live
Equal-Conflict nets.

To obtain the su�ciency, we show that after the firing of any feasible se-
quence, we can use the T-sequence to construct another sequence that leads to
the initial marking.

Starting from an initial marking, any firing sequence that is a prefix of a
feasible T-sequence can be trivially completed to reach the initial marking again.
More generally, any firing sequence that solves conflicts by following the local
ordering induced by the adequate multiple of the T-sequence can be completed
to reach the initial marking. However, if a transition is fired that solves a conflict
by following a di↵erent ordering, the possibility to reach the initial marking is not
ensured anymore. The occurrences of other transitions in the same conflicting
set that should have been fired earlier are called delayed occurrences.

The proof of the characterization is constructive and makes use of two algo-
rithms that compute this sequence. The first algorithm (Algorithm 1) fires at
least all the delayed occurrences and returns the corresponding sequence �

t

. The
second algorithm (Algorithm 2) starts after the end of the first algorithm and
builds a sequence �

0
t

returning to the initial marking. These two sequences are
illustrated in Figure 6.

M

0
t

M0 Mt
t

�r

�t�

0
t

Fig. 6. If the T-sequence �r is feasible and t is fired, then Algorithm 1 builds the
sequence �t and Algorithm 2 computes the sequence �

0
t, which returns to the initial

marking.

Notations. For every transition t, we denote by E

t the equal conflict set contain-
ing t. We introduce �

n, n being a positive integer, to denote the concatenation
of the sequence � taken n times, and represent its infinite concatenation by �

1.
The notation K

n

ti
(�), n � 1, or more simply K

n

i

(�), denotes the largest prefix
sequence of � preceding the n-th occurrence of t

i

in �, thus containing n � 1



occurrences of t
i

. For example, considering the sequence � = t1 t2 t1 t3 t1 t2 t3,
K

3
t1
(�) = t1 t2 t1 t3 and K

1
t3
(�) = t1 t2 t1.

Consider an equal-conflict set E and sequences ⌧ and  such that ~⌧ < ~.
Assume there exists a transition t in E for which ~⌧(t) < ~(t). Consider for each
transition t

0 in E such that ~⌧(t0) < ~(t0), its next occurrence in  after its ~⌧(t0)-th
occurrence. The transition t

0 in E whose next occurrence is the first to appear
in  is returned by a function, called the next transition function and denoted
by tnext(E, ⌧,). Figure 7 illustrates these notations.

1 1

1 12

11

2

t1 t3

t4t2

p0 p1 p2

Fig. 7. The equal conflict sets are E

t1 = {t1, t3}, Et2 = {t2} and E

t4 = {t4}. Consider
the feasible sequence � = t4 t4 t1 t3 t1 t2 t3. The subsequences of � obtained by projec-
tion on each set, �1 = t1 t3 t1 t3, �2 = t2 and �4 = t4 t4, define local orderings. Define
⌧ = t3 t4 t1. Then ~� > ~⌧ , and the next transition to be fired in E

t1 is the one whose
next occurrence appears first in �1. Since ~⌧(t1) = 1 and ~⌧(t3) = 1, we deduce that
tnext(Et1

, ⌧,�) = t1.

Algorithm 1 determines a way of firing the delayed occurrences while follow-
ing the local ordering induced by the T-sequence in every other equal conflict
set. Lemma 2 shows the termination of this algorithm. Then, Lemma 3 provides
an equality indicating a match between occurrence counts.

The next technical lemma proves the termination of Algorithm1, which com-
putes a particular sequence �

t

and is illustrated in Figure 8.

Lemma 2. Let (N,M0) be a live Equal-Conflict system in which a T-sequence

�

r

is feasible. Then, for every transition t enabled by M0, with M0
t�! M

t

,

Algorithm1 terminates and computes the sequence �

t

that is feasible at M

t

.

Proof. Consider the marking M

t

reached by firing a transition t from M0. We
prove that Algorithm 1 computes such a sequence �

t

that is feasible at M
t

.
The objective of the outer loop is to fire the transitions di↵erent from t in E

t

until the number of their occurrences in ⌧ equals that in 0. Every time E

t is
enabled, a firing occurs in this set that follows the order of 0 until completion.

The objective of the inner loop is to fire transitions that do not belong to E

t

by following the associated order in (�
r

)1 so as to enable E

t.



Algorithm 1: Construction of a sequence �

t

that fires the delayed transi-
tions of Et by following the ordering of the T-sequence �

r

Data: The system (N,Mt) obtained by firing t in S, the feasible T-sequence �r.
Result: The sequence �t that is feasible in (N,Mt) and fires the delayed

occurrences of 0 = K

1
t (�r).

1 ⌧ := t;

2 while 9 t0 2 E

t \ {t}, ~0(t
0) > ~⌧(t0) do

3 while the equal conflict set E

t
is not enabled do

4 Among the transitions that belong to enabled equal conflict sets, fire
the transition ti whose next occurrence after the ~⌧(ti)-th appears first in
(�r)

1;
5 ⌧ := ⌧ ti;

6 end

7 Fire the transition tj = tnext(Et
, ⌧,0);

8 ⌧ := ⌧ tj ;

9 end

10 ⌧ is of the form t�t;
11 return �t

Let us show that the inner loop always terminates and enables E

t. First,
by the liveness assumption, every reachable marking enables at least one equal
conflict set. Now suppose that the inner loop does not terminate. Consequently,
an infinite feasible sequence ⌧ is fired that never enables Et. Since the firings in
the loop follow the order of (�

r

)1 and the support of �
r

is T , the sequence ⌧

is locally fair, thus globally fair by Theorem 1, contradicting the fact that E

t

never becomes enabled. We deduce that Et becomes enabled and the inner loop
terminates.

We now prove the termination of the algorithm. Since the inner loop always
terminates, a transition t

j

is fired at the end of every iteration of the outer loop
such that ~0(tj) > ~⌧(t

j

) and t

j

is concatenated to the current ⌧ , decreasing the
number of remaining steps to attain ~0(tj). Hence the outer loop terminates. ut

In Algorithm 1, the firings that did not belong to Et followed the order of �1
r

.
At the end, there is no delayed occurrence of any transition in E

t. We deduce
the next property on the number of occurrences in ⌧ .

Lemma 3 (Property of ⌧ = t�

t

). Let S = (N,M0) be a live Equal-Conflict

system in which a T-sequence �

r

is feasible. Consider the sequence �

t

constructed

by Algorithm 1 after the firing of any transition t in S. Consider the sequences

⌧ = t�

t

and  = �

↵

r

where ↵ � 1 is the smallest integer such that ~⌧  ↵ · ~�
r

.

Then, for each equal-conflict set E such that t

u

= tnext(E, ⌧,) is defined, with

m = ~⌧(t
u

)+1 and K

u

= K

m

u

(), and for every transition t

0 2 E, ~⌧(t0) = ~

K

u

(t0).
For every other equal-conflict set E, for each transition t

0
in E, ~⌧(t0) = ~(t0).
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Fig. 8. Consider the T-sequence �r = t1 t4 t1 t2 t3, which is feasible for the system
(N,M0) on the left. Setting t = t3, (N,Mt) is pictured on the right. Since the first
output transition of p1 to be fired in �r is t1 6= t3, two occurrences of t1 are delayed.
Starting from the system on the right, Algorithm 1 constructs the sequence �t that
fires the delayed occurrences while following the local ordering in every other place.
Before the loop, ⌧ = t3 and 0 = K

1
t3(�r) = t1 t4 t1 t2. The sequence computed is

�t = t4 t1 t4 t1.

Proof. Algorithm 1 terminates by Lemma 2. At the end of the outer loop, for
every equal-conflict set E such that t

u

= tnext(E, ⌧,) with ~⌧(t
u

) < ~(t
u

), two
cases have to be considered.

If t
u

does not belong to E

t, then all firings of E appeared in the same order
and are as many in ⌧ as in K

u

in the inner loop. We deduce that every transition
t

0 of E satisfies ~⌧(t0) = ~

K

u

(t0). Otherwise, t
u

belongs to E

t and the first loop
fired precisely all the occurrences of Et that belong to 0, in addition to the first
unique firing of t. Thus, every transition t

0 of Et satisfies ~⌧(t0) = ~

K

u

(t0).
Finally, in every other equal-conflict set, there is no transition t

u

such that
~⌧(t

u

) < ~(t
u

). Since ~⌧  ~, we deduce the second equality. ut

At the end of Algorithm 1, take the example of Figure 8, with E

t1 = {t1, t3},
E

t2 = {t2}, Et4 = {t4}, ⌧ = t3 �t

= t3 t4 t1 t4 t1 and  = (�
r

)2.

For E

t1 , tnext(Et1
, ⌧,) = t1, K1 = t1 t4 t1 t2 t3, ~⌧(t1) = 2 = ~

K1(t1) and
~⌧(t3) = 1 = ~

K1(t3).

For Et2 , tnext(Et2
, ⌧,) = t2, K2 = t1 t4 t1 and ~⌧(t2) = 0 = ~

K2(t2).
For Et4 , the second equality of the lemma is satisfied: ~⌧(t4) = 2 = ~(t4).

Using Lemma 3, the next theorem shows that Algorithm 2 builds a sequence
�

0
t

that is feasible after the firing of ⌧ = t�

t

and reaches the initial marking. The
sequence is illustrated in Figure 6 and an application of this second algorithm
is presented in Figure 9.

Theorem 2. Let S = (N,M0) be a live Equal-Conflict system, with N =
(P, T,W ). Suppose there exists a feasible T-sequence �

r

in S. For every transi-

tion t enabled by M0 such that M0
t�! M

t

, there exists a sequence �

?

that is

feasible at M

t

such that � = t�

?

is a T-sequence satisfying ~� = k · ~�
r

for some

integer k � 1.



Algorithm 2: Computation of the feasible sequence �

0
t

Data: The sequences ⌧ = t�t and  = (�r)
↵, the marking M

0
t such that

M0
⌧�! M

0
t

Result: The completion sequence �

0
t that is feasible in (N,M

0
t) such that

M

0
t

�0
t�! M0

1 while ~⌧ 6= ~ do

2 Fire the transition ti whose next occurrence after its ~⌧(ti)-th appears first in
;

3 ⌧ := ⌧ ti;

4 end

5 ⌧ is of the form t�t �
0
t;

6 return �

0
t

Proof. In the rest of the proof, we note 0 = K

1
t

(�
r

) the largest prefix sequence
of �

r

preceding the first occurrence of t, meaning that �
r

is of the form 0 t�2,
while the sequence 0 does not contain any occurrence of t. This sequence is
well-defined since the support of ~�

r

is T .
If t is the first transition of Et to be fired following the order of �

r

, meaning
that 0 does not contain any occurrence of transitions in E

t, then the sequence
0 does not use any token from the input places of t, thus one can execute 0

after the firing of the first occurrence of t and the sequence t0 �2 is feasible at
M0. Hence, �? = 0 �2.

Otherwise, t is not the first transition in E

t to be fired following the order
of �

r

, meaning that 0 contains at least one occurrence of another transition of
E

t. We show next that Algorithm 2, whose inputs are the sequences computed
by Algorithm 1, completes ⌧ up to  by following the order of the remaining
unfired occurrences in . We deduce that the sequence �

? obtained at the end
reaches the initial marking.

To achieve this objective, we prove that the following loop invariant I(k) is
true for k � 0:
I(k): “at the end of iteration k, for every transition t

u

such that ~⌧(t
u

) < ~(t
u

)
and t

u

= tnext(Etu
, ⌧,), then for every transition t

j

of Etu , ~⌧(t
j

) = ~

K(t
j

),
where K denotes the sequence K

m

u

() and m is the value ~⌧(t
u

) + 1”.
Before starting the loop, k = 0 and Lemma 3 applies.
Now assume that k iterations of the loop occurred and I(k) is true. During

iteration k + 1, a new transition t

i

is fired following the order of . At the end
of iteration k + 1, for every transition t

u

such that ~⌧(t
u

) < ~(t
u

) and t

u

=
tnext(Etu

, ⌧,), we denote by K

0 the sequence K

m

0

u

() where m

0 = ~⌧(t
u

) + 1
and consider two cases. First, if t

u

does not belong to E

ti , then K

0 is the same
sequence as in the previous iteration and for every transition t

j

of Etu , ~⌧(t
j

)

has not changed either, thus ~⌧(t
j

) = ~

K

0(t
j

). Otherwise, if t
u

belongs to E

ti ,
implying E

ti = E

tu , then K

0 contains the same number of occurrences of every
transition t

j

of Eti as in the sequenceK associated to t
i

in the previous iteration,



except for t

i

, whose number has been incremented by one. Besides, the only
transition whose number of occurrences in ⌧ has been incremented by one is t

i

.
Consequently, for every transition t

j

of Etu , we have ~⌧(t
j

) = ~

K

0(t
j

). We deduce
finally that all the equalities that are supposed to be true at the end of iteration
k remain true at the end of iteration k + 1.

Hence, the invariant is true at every iteration of the loop. Furthermore, by
definition of the t

i

chosen at every step, for which we define the current value
m = ~⌧(t

i

)+1 and the sequence K = K

m

i

(), all the occurrences in K are already
present in the sequence ⌧ of the current iteration. Thus, at the beginning of every
iteration, for every transition t

j

2 T , ~⌧(t
j

) � ~

K(t
j

).
Moreover, the sequence K is feasible at M0 and leads to a marking that

enables t
i

, by definition of the feasible sequence . Thus, ⌧ fired the input tran-
sitions of the input places of t

i

at least as many times as inK. Then, the invariant
implies that the transitions of Eti fired exactly as many times in K as in ⌧ . Thus,
the input places of t

i

received at least the number of tokens they would receive
by firing K from M0, implying that t

i

is enabled.
We deduce that the loop completes ~⌧ up to ~ and terminates.
Finally, since  is of the form (�

r

)↵ for some integer ↵ > 0, the feasible
sequence t�

? is a T-sequence. ut
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 = (�r)
2 = t1 t4 t1 t2 t3 t1 t4 t1 t2 t3

⌧ = t3 �t = t3 t4 t1 t4 t1

�

0
t = t2 t1 t1 t2 t3

Fig. 9. On the left, the system obtained at the end of Algorithm 1 and the correspond-
ing value of ⌧ on the right. The crosses indicate the occurrences of transitions in 

that have been fired in ⌧ = t�t, setting t = t3. In Algorithm 2, ↵ = 2 and  = (�r)
2.

Following the ordering of , the sequence �0
t = t2 t1 t1 t2 t3 is fired, leading to the initial

marking. Finally, after the initial firing of t3, the sequence �t �
0
t = t4 t1 t4 t1 t2 t1 t1 t2 t3

returns to the initial marking.

The next corollary provides the characterization of reversibility for all live
Equal-Conflict systems and is illustrated in Figure 10.

Corollary 1. Consider a live Equal-Conflict system S = (N,M0) such that

N = (P, T,W ). The system S is reversible if and only if it enables a T-sequence.

Proof. For the necessity, Lemma 1 applies.



We prove the su�ciency next. Suppose there exists a feasible T-sequence �

r

in the live system S. We show that after the firing of any feasible sequence �, with
M0

��! M

0, there exists a feasible sequence �? that leads to the initial marking.
For that purpose, we show by induction on the length n of � the property P (n):

“If a sequence � of length n is feasible in a live Equal-Conflict system
S = (N,M0) and a feasible T-sequence, denoted by �

r

, exists in S, then there

exists a feasible sequence �

? such that M0
� �

?

�! M0.”

If n = 0, � and �

? are empty sequences and the initial marking is reached.

Otherwise, suppose n > 0, with � = t�

0, note M0
t�! M

�

0
�! M

0, and
assume that the property P (n� 1) is true. Applying Theorem 2, there exists a

sequence �0
t

that is feasible at M such that M
�

0
t�! M0 and the sequence t�0

t

is a
T-sequence. Thus, the T-sequence �

0
t

t is feasible at M . Applying the induction
hypothesis on the sequence �

0 of size n� 1, which is feasible in the live system
(N,M), we obtain a sequence �

d

that is feasible at M 0 and returns to M . Thus,
the sequence �

? = �

d

�

0
t

is feasible at M 0 and leads to M0.

M0 M

M

0t �

0

�

0
t

�d

�r

Fig. 10. If the T-sequence �r and the sequence � = t�

0 are feasible at M0, then the
sequence �

? = �d �
0
t is feasible at M 0 and leads to M0.

We deduce that after the firing of any feasible sequence in S, there exists
a feasible sequence that returns to the initial marking. We conclude that S is
reversible. ut

Some examples of the previous sections provide some insight into the condi-
tions of this characterization. Indeed, Figure 4 pictures non-reversible systems
that are Equal-Conflict, live and do not enable any T-sequence. Figure 5 depicts a
non-reversible system that is Equal-Conflict, non-live and enables a T-sequence.

5 T-sequences in Larger Classes

In the previous section, we showed that the existence of a feasible T-sequence
is necessary and su�cient for reversibility in live Equal-Conflict systems, which
are not necessarily bounded.

Now we provide some counter-examples for this condition in other subclasses
of Petri nets. They are all strongly connected, live, and not reversible systems
allowing a T-sequence.



First, the characterization does not carry over to systems that are just well-
formed, even if the net is ordinary, as shown in Figure 11, which is inspired from
a system of [5].

p0

p1

p2

p3
p4

p5

t0
t1

t2

t3

1, 1, 1, 0, 0, 1

0, 1, 1, 0, 1, 2

0, 1, 0, 1, 1, 2

1, 0, 0, 1, 0, 2

t0

t3

t2

t1

1, 1, 0, 1, 0, 1

1, 2, 1, 0, 0, 0

0, 2, 1, 0, 1, 1

0, 2, 0, 1, 1, 1

t3

t1

t0

t3

t2

Fig. 11. The system allows the T-sequence t0 t3 t2 t1. Liveness, boundedness and non-
reversibility of the system can be deduced from its reachability graph on the right.
Multiplying the input and output weights of p0 by 2 yields a system in which any
transition firing preserves the overall number of tokens. We deduce that (2, 1, 1, 1, 1, 1)T

is a conservativeness vector, hence the net is structurally bounded. Since it is also
structurally live, it is well-formed.

Second, it does not apply either to the class of ordinary Asymmetric-Choice
systems, as shown by the unbounded system of Figure 12.

p0

p1

p2

p3
p4

t0
t1

t2

t3

Place p Output set p•

p0 t0

p1 t2

p2 t0, t3

p3 t1, t2

p4 t2

Fig. 12. This ordinary Asymmetric-Choice system is unbounded since the place p1 is
unbounded (fire (t3 t1)

↵ for any positive integer ↵). It is live since t1 and t3 can always
be fired after a finite number of firings, thus allowing new firings of t0 and t2. It is not
reversible since there is always an occurrence of t1 between two occurrences of t2. The
system allows the T-sequence t0 t3 t2 t1.

Last, it does not extend to weighted Free-Choice systems, even when they
are very close to Join-Free, as illustrated in Figure 13 where the system has only



one synchronization—a join-transition with just two inputs—that distinguishes
it from the Join-Free class. We have not found yet a counter-example belonging
to the Join-Free class.

2
3

2

2

2

p0

p1

p2

p3

t0 t1

t2

t3

Fig. 13. In this weighted Free-Choice system, the T-sequence t1 t3 t2 t0 is initially en-
abled. The place p1 is unbounded (fire the sequence (t3 t2 t3 t2 t0)

↵ for any positive
integer ↵), thus the system is unbounded. Two consecutive firings of t1 are not possi-
ble, and t0 is either enabled by a firing of t1 followed by a firing of t3, or by two firings
of t3 with a firing of t2 in between. Firing only occurrences of t2 and t3 generates
tokens in p1 that cannot be destroyed. Hence the system is not reversible. After any
firing sequence, it is possible to send three tokens back to p0 while p1 contains one or
more tokens. Such a marking enables the T-sequence and we deduce the liveness.

6 Conclusion

In any weighted Petri net, the existence of a feasible T-sequence is necessary
to have both liveness and reversibility, which are fundamental behavioral prop-
erties for embedded and flexible manufacturing systems and other real-world
applications. This necessary condition was already known to be su�cient for
well-formed, strongly connected, weighted Choice-Free and ordinary Free-Choice
systems. It is no longer su�cient for the well-formed homogeneous S-systems, a
class with both choices and weights included in the Equal-Conflict class.

By taking the liveness property as an assumption, we relaxed this condition
and proved that it is su�cient for reversibility in all the live Equal-Conflict
systems. Petri nets of this expressive class may not be strongly connected nor
be bounded.

Finally, we exhibited several counter-examples, all live, non-reversible and
allowing a T-sequence, belonging to larger classes of Petri nets.

As a consequence, extensions of our new characterization of reversibility
would require more constraints. We believe that non-homogeneous Join-Free
nets, bounded or not, or homogeneous bounded Asymmetric-Choice nets are
worth investigating.
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