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Summary 

Deep brain stimulation (DBS) of the subthalamic nucleus and internal globus pallidus 

deep brain stimulation provides an efficient treatment for the alleviation of motor signs 

in patients with Parkinson’s disease. The effects of DBS on gait and balance disorders are 

less successful and may even lead to an aggravation of freezing of gait and imbalance. 

The identification of a substantia nigra pars reticulata (SNr)-mesencephalic locomotor 

region (MLR) network in the control of locomotion and postural control and of its 

dysfunction/lesion in PD patients with gait and balance disorders led to suggestion that 

DBS should be targeting the SNr and the pedunculopontine nucleus (part of the MLR) for 

PD patients with these disabling axial motor signs. However, the clinical results to date 

have been disappointing. In this review, we discuss the effects of DBS of these basal 

ganglia and brainstem structures on the neurophysiological parameters of gait and 

balance control in PD patients. Overall, the data suggest that both STN and GPi-DBS 

improve gait parameters and quiet standing postural control in PD patients, but have no 

effect or may even aggravate dynamic postural control, in particular with STN-DBS. 

Conversely, DBS of the SNr and PPN has no effect on gait parameters but improves 

anticipatory postural adjustments and gait postural control. 

 

Keywords: Deep brain stimulation, gait, balance, Parkinson’s disease 

 

Résumé 

La stimulation cérébrale profonde du noyau sous-thalamique (NST) ou du globus 

pallidum interne (GPi) représente un traitement efficace des troubles moteurs de la 

maladie de Parkinson. Les effets de la stimulation cérébrale profonde (SCP) sur les 

troubles de la marche et de l’équilibre sont moins probants avec parfois une aggravation 

post-opératoire du freezing de la marche et/ou des chutes. L’identification du circuit 
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substantia nigra pas reticulata (SNr) –région locomotrice mésencéphalique (RLM), qui 

comprend le noyau pédunculopontin (NPP) comme ayant un rôle majeur dans le 

contrôle postural et la locomotion et de leur dysfonctionnement/lésion chez les patients 

parkinsoniens souffrant de troubles de la marche et de  l’équilibre a permis d’envisager 

la SCP de ces régions cérébrales pour améliorer ces signes moteurs invalidants. 

Toutefois, les résultats cliniques ont été assez décevants. Dans cette revue,  nous 

rapportons les effets de la SCP des ganglions de la base et du NPP sur les paramètres 

neurophysiologiques de la marche et du contrôle postural chez les patients 

parkinsoniens. En moyenne, la SCP du NST et du GPi améliore les paramètres 

locomoteurs et le contrôle postural en position statique, mais semble avoir peu ou pas 

d’effet sur le contrôle postural dynamique avec peut-être une aggravation, en particulier 

avec la SCP-NST.  Inversement, la SCP de la SNr ou du PPN ne modifie pas les paramètres 

locomoteurs mais pourrait améliorer les ajustements posturaux anticipatoires et le 

contrôle postural dynamique.  

 

Mots-clés: Stimulation cérébrale profonde, marche, équilibre, posture, maladie de 

Parkinson 
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Introduction 

 In 1987, high frequency stimulation of the thalamus was first proposed as a 

treatment for patients with tremor 7. In accordance with experimental data obtained 

in animals models of Parkinson’s disease (PD) 8, deep brain stimulation of the internal 

part of the globus pallidus (GPi-DBS), one of the major basal ganglia outputs, and 

subthalamic nucleus (STN-DBS) was employed for the treatment of PD and proved an 

efficient means of improving parkinsonian symptoms and alleviating levodopa-induced 

motor complications 111, with in addition a significant decrease of the dopaminergic 

drug treatment with STN-DBS 135. Whereas the efficacy of DBS on segmental motor 

symptoms, i.e. rigidity, tremor and peripheral akinesia, is well established, its effect on 

axial disability remains controversial 36. Published data mainly report an 

improvement of posture, gait and balance control after GPi or STN-DBS, with a greater 

improvement with STN-DBS providing that these symptoms were responsive to 

levodopa treatment before surgery 36,102,130. However, the effects of DBS on balance 

(postural instability) and gait tend to decrease with time 23,38,105. Moreover, some 

authors suggest that DBS may induce or aggravate freezing of gait and postural 

instability with falls in PD patients with DBS 46, but also in non-parkinsonian patients 

139. The role of stimulation parameter settings, in particular the frequency of 

stimulation has been suspected, freezing of gait being reported to be improved with low 

frequency STN stimulation (60-80 Hz) 88,103,138.  

 Besides the loss of dopaminergic nigrostriatal neurons, the neuropathological 

hallmark of PD, the role of additional brain dysfunction and/or lesions in the occurrence 

of balance and gait disorders has been recently pointed out. In PD patients, a loss of 

cholinergic neurons in the pedunculopontine nucleus (PPN), in the mesencephalic 

tegmentum, has been reported in fallers PD patients, with a decrease in thalamic 
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cholinesterase activity 12,13,60,67. In normal and parkinsonian monkeys lesioning 

cholinergic neurons in the PPN induces gait and postural deficits resistant to levodopa 

treatment 51,67. In line with these experimental data, low frequency PPN stimulation, 

thought to increase neuronal activity, has been tested in a few patients to improve 

freezing of gait and falls resistant to levodopa treatment and/or STN-DBS with 

disappointing and controversial results. In open label studies, PPN-DBS improved gait 

and balance in patients previously operated for STN-DBS, but also parkinsonian 

symptoms 69,121. These first results have not been consistently confirmed in double-

blind assessments 42,91,133. However, a subjective improvement in the number of 

falls or freezing episodes has been frequently reported 42,127,133. Lastly, high 

frequency stimulation of the substantia nigra pars reticulata (SNr), the other major basal 

ganglia output, has also been recently tested in PD patients to alleviate gait and balance 

disorders 25,132. The combination of STN and SNr-DBS might specifically improve 

freezing of gait, whereas balance impairment remains unchanged 132. 

 

In this review, we summarise the effects of DBS on neurophysiological 

parameters of balance and gait in PD patients. For this purpose, we first briefly describe 

the different DBS targets used in PD patients from an anatomical and functional point of 

view in relationship with known neural structures and networks involved in balance 

and gait control in humans. We then report the changes induced by DBS from a 

neurophysiological point of view on these two distinct, but interconnected, motor 

processes.  
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Deep brain targets and neural pathways for gait and balance control in human 

 Since the early experiments performed in invertebrate animals that revealed the 

predominant role of spinal cord central pattern generators (CPG), various brain cortical 

and subcortical areas have been identified as playing a major role in the control of gait 

and balance/posture in mammals. In mammals, cortical-basal ganglia-brainstem circuits 

modulate the central pattern generators (CPG) (see for review 95) that activate the 

organised and synchronised activation of forelimb muscles. In humans, the role of the 

CPG is still debated, gait being viewed as a higher-level motor activity (Figure 1). 

At the subcortical level, in animals, postural muscle tone changes and/or 

locomotion can be induced by electrical or chemical modulation of the STN area, the 

brainstem reticular formation or mesencephalic locomotor region (MLR) that comprises 

PPN and the cuneiform nuclei (CN), the substantia nigra pars reticulata (SNr) and the 

cerebellum. Unilateral injection of GABAergic agents, producing functional lesions of the 

STN, induce postural asymmetry but not locomotion 33, whereas irreversible lesions 

produce both postural asymmetry and increased locomotor activity 2 . In both 

decerebrate cats and monkeys, electrical stimulation of the STN area generates 

locomotor activity while the animals’ feet are in contact with a moving treadmill belt 

34,52. In freely moving rats, STN neuronal activity increases during locomotion, with 

some neural responses being related to the initiation and the termination of gait 116. 

All in all, these data suggest that the STN is involved in postural control and locomotion. 

Similarly, electrical stimulation of the MLR or antagonist GABAergic agents injections 

induce suppression of muscle tone changes in forelimb muscles when performed into 

the caudal and medial part of the MLR, namely the PPN, and trigger quadrupedal 

locomotion when performed in its rostral and lateral part, namely the cuneiform nucleus 

(CN) 34,90,123,125. These effects are abolished by concomitant electrical stimulation 
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of the SNr. When the SNr is electrically stimulated, postural muscle tone changes are 

generated and a delay in the initiation of locomotor activity is observed, with an 

interruption of walking at high stimulation intensities. These effects are abolished by the 

inactivation of the MLR (mainly in the PPN) 124.  This highlights the major role of the 

SNr-MLR system in promoting gait and postural control in animals, in particular for the 

automatic regulation of postural muscle tone and rhythmic limb movements during 

locomotion 124. Finally, the MLR is thought to: 1) activate and control the level of 

activity of the CPGs, 2) control balance during gait, 3) adapt the on-going movement to 

external perturbations and 4) coordinate locomotion with other motor actions 96.  

Beside its connection with the SNr, the PPN is widely connected with the basal ganglia 

system, in particular the STN and the parafascicular and centre-median (Pf-CM) of the 

thalamus, but also with the globus pallidus and the striatum. The PPN is also connected 

to the primary motor and premotor cortices, the supplementary motor area (SMA) and 

the frontal eye field (FEF). In the cerebellum, irreversible lesions produce abnormal 

locomotor pattern and imbalance, more specifically when performed in the vermis 

[134]. At the cortical level, the primary motor cortex has been reported to be mainly 

involved in complex gait tasks that require precise forelimb positioning (obstacle 

avoidance or direction changes) and the SMA for balance control during locomotion 

6,32. The posterior parietal cortex is also necessary to plan and execute gait pattern 

adaptations 6,84. 

In human, the use of SPECT, TEP or NIRS allows real gait cortico-subcortical 

networks imagery. An activation of the premotor, primary sensorimotor, prefrontal, 

SMA, anterior cingulate, parahippocampal, fusiform and lingual gyri, precuneus and 

cuneus, superior parietal and visual cortices, cerebellar vermis with extension to the 

MLR and the thalamus has been reported after and/or during real gait 49,72,87. At the 
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cortical level, perturbation of static balance induces dorsolateral prefrontal (DLPFC), 

medial precentral, SMA and posterior parietal cortex activation 85. Mental imagery of 

standing position, swaying on a balance board, gait or running have been recently 

examined by using functional MRI or PET in healthy subjects. These studies 

demonstrated that imagining 1) standing in a static position induced preferentially 

vestibular, visual and somatosensory cortices, median thalamus, pallidum, striatum, 

dorsal pons, MLR and cerebellum vermis activation 63, 2) swaying on a balance board 

induced preferentially SMA, dorsal premotor, middle cingulate cortex, superior parietal 

lobule, putamen, ventrolateral thalamus, MLR and cerebellum vermis activation 43,68, 

3) gait induced preferentially SMA, parahippocampical, fusigorm and lingual gyri, 

precuneus and cuneus, posterior cingulate and visual cortices, putamen, STN, MLR and 

cerebellar vermis and cortex activation with decreased activity in the vestibular and 

somatosensory cortices 63,66,72,79 (Figure 1) and 4) running induced preferentially 

cerebellar cortex and MLR activation with less cortical activity 63. Lastly, neuronal 

recordings performed in PD patients demonstrate that mental imagery of gait 73,126, 

steps mimicking 99 and real gait 47 modulate MLR-PPN neuronal activity.  

Finally, in humans and experimental animals, two distinct networks with : 1) the 

vermis-pons-MLR (lateral)-thalamus-vestibular-SMA-parietal posterior cortex and 2) 

the vermis-MLR (medial)-basal ganglia (putamen,STN)-fusiform, parahippocampic and 

sensorimotor cortices seem preferentially implicated in the control of balance and 

locomotion, respectively (Figure 1). In PD patients with gait, especially freezing of gait, 

and balance disorders these networks have been reported to be dysfunctional and/or 

lesioned, in particular the SMA, parietal posterior cortex, MLR and cerebellum with 

decreased cholinergic activity 11,44,56,112,114,119. As previously briefly exposed, 

different structures of these two networks, i.e. the STN, GPi, SNr and MLR, have been 
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targeted for DBS to treat motor disability, including gait and balance disorders, in PD 

patients. In the subsequent part of this article, we report on the effects of DBS on 

neurophysiological parameters of gait and balance in PD patients.  

 

Effects of deep brain stimulation on balance and gait control in PD patients 

Balance and gait control can be assessed in humans by the use of specialised 

devices that enable kinematic (motion capture system), biomechanical (force platform) 

and electromyographic (surface electrodes) recording during standing, gait initiation or 

walking, under various conditions (quiet or perturbed standing, eyes open or closed, 

spontaneous or fast gait, etc…). In PD patients, many studies have reported changes in 

these various parameters in the absence of DBS or medical drug treatment, and the 

effects of levodopa treatment on them. Since the advent of deep brain stimulation in PD 

patients, relatively few studies have specifically dealt with the effects of DBS on balance 

and gait control parameters.   

 

Effects of DBS on balance control 

Effects of DBS in the quiet standing position 

Body Position 

Since it was first described, it has been reported that PD patients show an 

abnormal flexed posture when standing 97]. By precisely assessing the inter-segmental 

coupling and electromyographic activity, it has been reported that this abnormal 

posture is related to an abnormally high inter-segmental stiffness (in particular between 

the trunk and hip segments) 81 and higher background EMG activity with co-

contraction 19,20,27,31. An increased inclination of trunk, thigh and shank with 

respect to the vertical, with a related significant increase of external mechanical 
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moments acting at the hip and knee joints 27. With levodopa treatment, all these 

parameters of standing body position are improved 20,27. Similarly, STN-DBS reduces 

the forward trunk-bending with a trend toward a lower inclination of the thigh and 

significant decrease of the inclination of the shank, which induces a reduction of the 

mechanical moment at the hip and ankle. Leg muscles activity is also significantly 

reduced, with a similar effect on extensor and flexor groups 27. Improvements are 

observed with both unilateral and bilateral STN-DBS 27,81, although changes are 

found to be more robust with bilateral DBS 27. 

 

Centre of foot pressure displacement and velocity 

The major parameters recorded to describe static posture and standing position 

are generally assessed by the use of a force platform which records the centre of foot 

pressure (CoP) displacements and velocities in the anteroposterior (AP) and 

mediolateral (ML) directions during quiet stance. Although in normal subjects without 

postural instability during quiet standing the CoP is perpetually in movement, it exhibits 

slow and short CoP displacements contained in a restricted area, preferentially oriented 

in the sagittal direction 136. Among the postural sway measures yielded from CoP, the 

CoP velocity has been suggested to be most sensitive for detecting changes in balance 

ability due to aging and/or neurological diseases 80,108. 

While in a standing position, PD patients as a result of their higher amplitude and 

faster upper and lower body displacements, AP and ML displacements and velocities of 

the CoP are increased to cover a large area. These abnormal parameters are frequently 

related to a history of falls and clinical imbalance 86. Both an abnormal anterior or 

posterior shift of the CoP average position has been reported in PD patients 27,53. 

Dopaminergic replacement therapy appears ineffective in improving with these 
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parameters and as been reported in some cases to aggravate the situation with an 

increase in CoP displacements and area covered (Table 1) 53,76,107. The effect of DBS 

on these parameters remains controversial (Table 1). Some studies report an 

improvement with a reduction in the CoP displacements and velocities, close to control 

values with both STN-DBS and GPi-DBS 26,53,107 27, whereas others report an 

aggravation with an increase in swaying 81] or no effect 76,93,94,128]. The posterior 

shift of the CoP in the standing position is also reduced by STN-DBS 27,53, but not to 

within the normal range, however. More recently, in relation to the clinical observations 

of an improvement in axial signs with low frequency STN-DBS, the effects of low (60 Hz) 

versus high (130 Hz) frequency of STN-DBS on CoP displacements and velocities during 

standing have been examined. Whatever the STN-DBS frequency or voltage, no 

significant change in the CoP velocities and ML displacements have been observed, 

although there was a decrease (improvement) in the AP direction with low frequency 

stimulation 128. Lastly, the combination of levodopa treatment and STN-DBS results in 

an average effect of the two treatments taken separately, which may correspond to an 

improvement or a worsening 27,53,81. 

 

Centre of foot pressure frequency 

The increased stiffness and CoP velocities observed in PD patients lead to an 

increased CoP frequency in both AP and ML directions, in particular the 0.7-1.1 Hz 

range, with an asymmetrical mean CoP frequency between the two feet 

81,107,109,131. In addition, some patients exhibit a 5Hz power peak corresponding to 

postural tremor. Both levodopa, GPi and STN-DBS restored the CoP frequency values to 

the normal range 81,107,109,131 (Table 1). Conversely, the asymmetrical mean 
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frequency between the feet experienced is increased with levodopa but reduced by STN-

DBS 107.  

 

Effects of DBS on perturbed standing position 

The sensory organization test is presumed to identify deficits in the processing of 

somatosensory, visual and vestibular information that contribute to dynamic postural 

control. The subject is placed on a force platform and by means of calibrated ‘sway 

referencing’ of the support surface and/or the visual surround, visual and 

somatosensory inputs are abolished creating sensory conflict situations.  These 

conditions isolate the vestibular balance control, as well as stressing the adaptive 

responses of the central nervous system. In short, patients may display either an 

inability to make effective use of specific sensory systems, or inappropriate adaptive 

responses, resulting in the fallback use of less accurate sense(s). PD patients usually 

show difficulties in maintaining an upright stance when sensory feedback is limited, 

with increased sway 15, a reduced postural mean velocity and increased reaction 

times 26,118. When the standing position is perturbed by an AP tilt or forward 

translation, PD patients are unable to move fast and react quickly enough to correct 

sudden perturbations, with increased and delayed destabilising medium and long 

latency response amplitudes resulting in an increase of the AP CoP displacements 10. 

Finally, PD patients are unable to adapt their postural responses to functional demand 

with fixed gain 5. Levodopa treatment has been reported to have no significant 

positive effect on these postural responses 10.  

 In PD patients, STN-DBS significantly improves postural control in the sensory 

deprived and incongruent conditions. The quality of postural sensorimotor strategies is 

improved, patient being able to provide better adapted responses to destabilisation with 
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increased agonist muscle activity duration 26,120, as well as during a rapid arm 

movement in standing position 9. GPi-DBS also improves postural responses to 

platform perturbations 120. The combination of STN-DBS and levodopa treatment 

induces a degradation of postural responses, whereas the combination of GPi-DBS and 

levodopa induces no such change 120.  

Finally, conversely to that observed with levodopa treatment leading to a more or 

less severe degradation of static postural control, STN-DBS and GPi-DBS improve central 

integration of sensory feedback and reduce induced sensory conflicts 15,120 with an 

improvement in the processing of the sensory and internally generated signals 

necessary for postural control.   

 

Effects of DBS on gait control  

Effects of DBS on the initiation of gait (Table 2) 

In healthy subjects, gait initiation comprises two parts: the preparation phase 

and the execution phase. During the preparation phase, different anticipatory postural 

adjustments have been described before raising the swing foot from the floor 28, 

54,131. From a biomechanical point of view, the CoP is first projected backward toward 

the swing leg (S1), then towards the heel of the stance leg (S2) to enable the 

contralateral foot to be raised from the ground and finally towards the tiptoe stance 

(S3). During this phase, the centre of mass (CoM) moves forward creating an AP 

disruption between the CoM and CoP positions. During the execution phase (swing 

phase), the vertical CoM velocity curve describes a V shape that corresponds to a 

forward fall that is restored before the foot hits the ground (braking index) 14,134. 

Finally, just after the foot-contact, the CoP moves under the heel of the displaced foot, 

and then under the toe tips and so on… enabling the gait to smoothly progress 54,136.  
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In PD patients, in the absence of levodopa treatment, the APAs are perturbed 

with reduced AP and ML CoP displacement amplitude and velocity, longer duration and 

presence of atypical sequences of lateral and forward CoP displacements directed 

towards the stance leg 21,50,54. The transition between the different phases (i.e. S1, 

S2, S3) is perturbed with high variability in the relative proportions of the 3 phases. 

These changes have been related to an abnormal interaction between the initial body 

fall and abnormal leg muscle baseline activity, i.e. persistent tonic activity in the triceps 

surae followed by activation of the antagonist tibialis anterior 28,54. During the 

execution phase, the length and velocity of the first step are reduced with an increase in 

the double-stance duration 21. Conversely, the cadence of the first step is not or mildly 

modified in PD patients, in comparison to age-matched controls 54. The dopaminergic 

treatment improved APAs with a reduction of the APAs duration and an increase of the 

AP and ML CoP displacements and velocities 21,106. The muscles activity pattern is 

also improved and the length and velocity of the first step significantly increased with 

levodopa treatment 21 ,106. Conversely, the levodopa treatment does not significantly 

improve the balance control during the first step (as reflected by the braking index) 

24,129.  

The effects of STN-DBS on APAs differed from a study to another. It seems that 

STN-DBS generally induces an increase in the AP CoP displacement during the APAs 

whereas no change or an increase in the ML direction is seen 75,106,128. Its effect on 

the APAs duration is also unclear with either a decrease 27 or no significant change 

being found 75,106,128. Bilateral STN-DBS generates an improvement in the leg 

muscular imbalance coupling with a restoration of near normal patterns with a clearer 

inhibition of the triceps surae along with a more intense and synchronised recruitment 

of the tibialis anterior 27(Figure 2). Interestingly, unilateral STN-DBS produces similar 
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effects on the APAs of both the ipsi- and contralateral foot of the stimulated STN 27. 

However, unilateral STN-DBS induces smaller changes in the AP and ML CoP directions 

compared to bilateral STN-DBS. The application of low-frequency (60 Hz) STN-DBS 

provoked no significant changes in the APAs in comparison to high-frequency (130 Hz), 

with an increased ML velocity during the S2 phase with both (low and high) frequencies 

at high voltages 128. The combination of STN-DBS and levodopa treatment appears to 

improve both amplitude and duration of the APAs, that remain, however, significantly 

different from control values 106]. In addition to its positive effects on the APAs, STN-

DBS significantly increased the length and velocity of the first step, similarly to levodopa 

treatment 25,27,75,106(Figure 2). Decreasing frequency of STN-DBS has no significant 

impact on step length and velocity of the first step 128. The balance control during the 

execution of the first step (braking control) is also improved with bilateral STN-DBS in 

relationship with an increased stance leg soleus muscle activity during the swing phase 

25(Figure 2).  

When applied in the GPi, DBS appears to have little or no impact on the APAs 

(amplitude, velocity, duration) 106 but provokes an improvement of transfer of the 

CoP under the support leg with decreased shoulder amplitude, increased ankle velocity 

and time displacement 29. The length and velocity of the first step significantly 

increases with a reduction in the double-stance duration 29,106. Up to now, the effects 

of SNr-DBS on the APAs has not been reported but an improvement of balance control 

during gait initiation (braking index) has been observed in some PD patients with no 

significant change in length and velocity of the first step 25. Low frequency unilateral 

PPN-DBS has been reported to increase the CoP displacement and velocity during the S2 

phase with no change in the APAs phase duration 82. This change was not significant 

when compared to the no-levodopa treatment condition, however 82]. Lastly, bilateral 



 16 

PPN-DBS has been reported to significantly increase the ML CoP displacement during 

the APAs and decrease the double stance duration 133. Conversely, the length and 

velocity of the first step were un-modified with PPN-DBS but increased after surgery, 

probably as a result of a lesioning effect 133.   

 

Effects of DBS on automatic gait 

 In PD patients, in the absence of levodopa treatment, stride length and gait 

velocity are significantly lower than controls (reflecting gait hypokinesia) whereas the 

cadence has been generally reported unmodified or increased to compensate for the 

reduced length 1,92. Other parameters have been also identified as of particular 

interest in PD patients: the stride-to-stride variability (or gait rhythm), the bilateral 

coordination of stepping and the double-stance duration, being related to freezing of 

gait and/or risk of falling 58,101. Kinematic recordings also reveal a reduction in the 

angular excursion at leg joints, range of trunk torsion amplitude and lateral flexion, 

amplitude of arm and leg swing movements and forward bending of the trunk.  

Both levodopa treatment and STN-DBS improve gait parameters with an increase 

in step length, gait velocity, angular leg excursion, reduced double-stance duration and 

normalisation of the leg muscles pattern 1,22,35,39,40,70,76,89,104,122,137  (Table 

3). STN-DBS also reduces the spatial foot position asymmetry, stride-to-stride variability 

and inter-limb coordination, with a more physiological alternating gait cycle 57,64. 

Decreasing frequency of STN-DBS has no or few significant impact on gait parameters  

89,128. The combination of levodopa treatment and STN-DBS produces a greater 

increase in gait velocity 35,40,57,78,122. When applied in the GPi, DBS has been 

reported to also significantly increase gait velocity and decrease the double-stance 

duration 1,29, with also an increase or no change in step length, cadence and swing 
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time (Table 4). PPN-DBS alone induces no significant change in the gait velocity or upper 

and lower limbs movements [89,98 (Table 4).  The combination of low frequency PPN 

(25 Hz) and STN (60 Hz) DBS seems to produce a higher increase in stride length and 

velocity than PPN or STN-DBS alone (with both 60 or 180 Hz) 89].
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Discussion 

Both STN and GPi DBS improve gait parameters and quiet standing postural control in 

PD patients. Its effects on dynamic and gait postural control, including the APAs, are still 

controversial, with on average a tendency to aggravate postural control with STN-DBS 

and with either no change or a small positive effect with GPi-DBS. Conversely, SNr and 

PPNa-DBS lead to no change in gait parameters but tend to improve APAs and gait 

postural control.  

 From a clinical point of view, the effects of DBS on gait and postural control have 

mainly been examined in relationship with their levodopa response. From a 

neurophysiological point of view, levodopa treatment has been reported to be 

ineffective at improving static and dynamic postural control, and may even worsen some 

parameters 10,24,48,81,107,120. However, it is effective at improving APAs and the 

parameters of gait kinematics and biomechanics, with the restoration of leg muscle 

activity patterns to normal levels 24,27,106,128. These data suggest that STN-DBS and 

levodopa treatment have similar positive effects on neurophysiological parameters of 

gait and postural control, with an additional improvement of gait velocity when both are 

combined 35,78,122,137. This is in line with the strong relationship observed between 

the improvement of axial motor signs with levodopa treatment before surgery and STN-

DBS after surgery 3,36,102,135. Axial motor sign improvement is recognized as the 

major preoperative clinical parameter predicting best post-operative outcome [135]. 

Beside improvement, as well as with levodopa treatment, a disruption of APAs and both 

significant decreases and increases in the sway amplitude during quiet stance have been 

described with STN-DBS, with no or little effect on the poor compensation for external 

destabilising postural perturbation 61,81,104. The APAs disruption and postural 

degradation could participate in both the occurrence or aggravation of freezing of gait 
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after surgery, as suggested for non-operated PD patients 62, and the increased fall rate 

reported in patients with STN-DBS but not with GPi-DBS 46. These data suggest that 

STN-DBS operates on gait and postural control, at least partly, through the functional 

restoration of the dopaminergic systems 16,17. How STN-DBS restores the 

dopaminergic transmission within the BG circuitry is not clearly established. In animals 

rendered parkinsonian and PD patients, STN-DBS decreases the increased STN neuronal 

activity, burst-type activity and abnormal oscillations 30, as well as the levodopa 

replacement therapy 74,77. STN-DBS also provokes changes in other output and input 

structures with anti- and orthodromic activation resulting in a ‘global’ effect within the 

entire cortico-striato-pallido-thalamo-cortical system, with pattern regularisation and 

decreased abnormal oscillations 113. However, some differences exist between the 

effects of STN-DBS and levodopa. Indeed, the dynamic and gait postural control have 

been reported to improve with STN-DBS whereas levodopa has no positive impact 

25,120. Moreover, the combination of STN-DBS and levodopa treatment induces 

greater increase in gait velocity compared to STN or levodopa treatment alone 35,41. 

Conversely, a lower effect of levodopa treatment on APAs has been reported when 

combined with STN-DBS 106. These observations suggest that the STN is per se 

involved in gait and balance control in human. In line with this hypothesis, electrical 

stimulation of the STN in normal animals induces locomotion 34. In PD patients, 

modifying the electrical parameters or the site of the STN-DBS induced significant 

changes in dynamic postural and gait parameters. An increase AP CoP velocity during 

the unloading phase of gait initiation, regularisation of the cadence, improvement in leg 

coordination with reduced step length and velocity variability have been reported with 

lower frequency STN-DBS (60 Hz) 37,88,128 and greater increase in step length and 

velocity with dorsal versus ventral STN-DBS 65,83. Lastly, recent imaging studies using 
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fMRI in healthy humans also show that the STN is activated during mental imagery of 

gait 72 and that PD patients with freezing of gait presented a disruption of the 

functional coupling between the STN (but also the GPi ) and the sensorimotor and 

frontoparietal cortical regions [117]. 

The effects of GPi-DBS on postural and gait control are less clearly established. In 

the few studies reported, GPi-DBS seems to have little or no effect on static and dynamic 

postural control, with an improvement or no change in the APAs 29,106 but a 

significant increase in stride length, step length and velocity during active walking 

1,71, but to a lesser extent than with STN-DBS 1,106. Comparison of levodopa 

treatment and GPi-DBS revealed no clear relationship between the effects of these two 

treatments. This observation and the fact that in PD patients with GPi-DBS levodopa 

replacement therapy could not be reduced after surgery 45,110 suggest that GPi-DBS 

may act differentially on the cortico-BG-cortical network with no ‘dopaminergic like’ 

effect, maybe by the modulation of the descending pathways to the MLR. When DBS is 

applied in the SNr or in the PPN, dynamic postural control is improved with no 

significant impact on gait parameters 25,98,133. These data suggest that 1) the GPi and 

the SNr, the two main basal ganglia output structures, are preferentially involved in 

locomotion and postural control, respectively and 2) the PPN is also preferentially 

involved in postural control, depending on their level of activity. This hypothesis is in 

line with data obtained in animals and humans. In normal primates, injections of 

GABAergic agents in the GPi induce dystonic and choreiform limb movements whereas it 

produces severe axial postural anomalies when injected in the SNr 18. In decerebrate 

cats, local inhibition of the SNr by GABAergic agonist agents (eg muscimol) induces 

locomotion and lowers leg muscle tone with the reverse effects when excitatory high 

frequency electrical stimulation is applied 123,124. In parkinsonian monkeys, SNr 



 21 

lesions produce a reversal of body orientation, with no improvement in bradykinesia 

59. In PD patients, high frequency SNr also leads to axial motor changes with an 

improvement of clinical gait and postural stability 25,132 and an increase in dynamic 

postural control 25. As the SNr projects GABAergic inputs to the MLR, the effects of the 

SNr-DBS on gait and postural control may be related, at least partly, to a modulation of 

the MLR-PPN activity. In PD patients, low frequency PNN-DBS does not affect gait 

parameters but improves postural control 98,133. This could result from the partial 

restoration of the cholinergic pathway to the basal ganglia, thalamus and to the 

descending pathways to the spinal cord 55. Indeed, PPN-DBS generates cerebral blood 

flow increases in the thalamus, cerebellum and midbrain region 4 and restores the H-

reflex 100. PPN-DBS also improves the connectivity between the PPN and the SMA, 

shown to be defective in PD patients with freezing of gait 115.  

 Finally, all these data suggest that two main subcortical networks are involved in 

gait (gait length, velocity and rhythmicity) and balance (static and dynamic posture) 

control in humans, the first comprising mainly the subthalamo-pallidal-MLR pathway 

and the second the subthalamo-nigro-pedunculopontine pathway. These two subcortical 

networks are functionally connected with sensorimotor and frontoparietal cortices and 

a dysfunction across these two coordinated neural networks has been reported in PD 

patients with gait and balance disorders. Future studies are needed to further explore 

the specific role of these two networks in gait and balance control, in particular, high-

resolution analyses with functional or metabolic brain imagery combined with precise 

neurophysiological assessment of balance and postural control.  
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Figure Legends 

Figure 1. Anatomical structures and pathways involved in the control of gait and 

balance in human. Left: schematic representation of anatomical and cortico-subcortical 

networks; Right: Cortical and subcortical activations during mental imagery of gait in 

comparison to mental imagery of object movement (red: gait versus movement; blue: 

movement versus gait) in a healthy subject. Note an activation of the bilateral medial 

primary motor cortex (legs and trunk motor region), bilateral parietal cortex, 

cerebellum and the MLR. AC: Anterior Cingulate, BG: basal ganglia, CBL: cerebellar 

cortex, CBM: cerebellar vermis, FEF: frontal eye field, Fus: fusiform gyrus, GPe: external 

globus pallidus, GPi: internal globus pallidus, M1: primary motor cortex, MLR: 

mesencephalic locomotor region, PF: prefrontal cortex, pHip: parahippocampic gyrus, 

PreM: premotor cortex, SMA: supplementary motor area, RF: reticular formation, STN: 

subthalamic nucleus, Put: putamen, PPN: pedunculupontine nucleus, SNr: substantia 

nigras pars reticulata; S: somatosensorial cortex, Thal: Thalamus, V: visual cortices.  

 

Figure 2. Effects of levodopa treatment and STN-DBS on biomechanical 

parameters of gait initiation in a Parkinsonian patient. 

Curves represent from top to bottom, the mediolateral (ML) and anteroposterior (AP) 

CoP displacements, antero-posterior and vertical (V) CoM velocity. The mediolateral 

displacement of the CoP enables the measurement of the lateral displacement of the CoP 

before foot-off (mediolateral APAs) and the step width (W). The anteroposterior 

displacement of the CoP enables the measurement of the posterior displacement of the 

CoP before the foot-off (anteroposterior APAs) and the step length (L). With the 

anteroposterior velocity of the CoM, the maximum forward velocity (Vm) is measured at 

the end of the first step. The CoM vertical velocity curve enables the measurement of the 

position of V1 (negative peak of the CoM vertical velocity) and V2 (CoM vertical velocity 
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at the time of foot-contact) and the braking index ((V1-V2)/V1*100). Here, before 

surgery both wihtout (OFF) and with levodopa treatment (ON), the fall of the CoM  is 

stopped when the foot touches the ground, i.e. no braking occurs (V1=V2). After surgery, 

with STN-DBS, vertical velocity of the CG describes a V shape indicating that an active 

braking occurs. Tibialis anterior (TA) and Soleus muscles activity of the stance and 

swing legs. t0: time of the first biomechanical event; HO = heel-off of the swing leg; FO1 = 

foot-off of the swing leg; FC = foot-contact of the swing leg; FO2 = foot-off of the stance 

leg.    
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Table 1. Effects of subthalamic nucleus deep brain stimulation on neurophysiological parameters of static postural control in PD patients  

 
 

Rocchi et al. 
2002 

Maurer et al.  
2003 

Rocchi et al. 
2004 

Vrancken et al. 
2005 

Colnat-Coulbois et al. 
2005 

Liu et al. 
2005 

Crenna et al. 
2006 

Guehl et al. 
2006 

Nilsson et al. 
2009 

Nantel et al. 
2012 

Vallabhajosula et al. 
2015 

n. of patients 6 8 5 14 12 11 10 7 7 28 19 

Age (yrs) 61 ± 9 48 ± 8 60 ± 6 50 ± 8 59 (54-67) 54 ± 9 60 ± 5 57 ± 12 66 (59-69) 60 ± 8 62 ± 9 

Disease duration (yrs) 16 ± 5 13 ± 7 19 ± 2 15 ± 4 112 (10-14) 14 ± 6 17 ± 6 13 ± 4 18 (10-22) 10 ± 5 14 ± 4 

Time after surgery (months) 6 15 ± 11 6 18 ± 12 6 16 ± 10 10 ± 7 3 37 (15-70) 10 ± 2 35 ± 24 
 LD DBS            

Before surgery OFF 
ON 

- 
- 

  
 

  X 
X 

X 
X 

 X 
X 

 X 
X 

 

After surgery OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

 
 
X 
X 

 
 
 
X 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
 

 
X 
 
X 

X 
X 
 
 

UPDRS III OFF 
ON 

- 
- 

    49 (44-58) 
15 (11-22) 

41 ± 7 
26 ± 10 

 37 ± 7 
11 ± 6 

 36 ± 13 
18 ± 9 

 

OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

58 ± 26 
36 ± 17 
26 ± 8 
25 ± 2 

49 ± 16 
7 ± 3 
14 ± 7 
4 ± 2 

64 ± 6 
40 ± 13 
26 ± 5 
20 ± 6 

 
 
51 ± 10 
31 ± 8 

 
 
 
14.0 (9-19) 

 
26 ± 10 
 
21 ± 9 

62 ± 11 
21 ± 10 
24 ± 14 
13 ± 7 

35 ± 11 
13 ± 5 
12 ± 7 
6 ± 4 

41 (35-84) 
22 (11-31) 

 
11 ± 8 
 
8 ± 7 

29 ± 2 
24 ± 2 
(No difference 60 vs > 100 
Hz DBS-STN) 
 

DOPA effect No change  PF tilt response    CoP ML/AP D  CoP D 
CoP Area 

   

 Increase  CoP/UB/LB D (& var) 
CoP/UB/LB ML D (& var) 
CoP/UB/LB AP D (& var) 
CoP D RMS 
CoP A 
CoP/UB/LB D low Frequency 
CoP D mild Frequency 
UB-LB coupling 

CoP AP&ML D 
CoP Velocity 
CoP RMS 
 

      CoP ML&AP D 
CoP ML&AP Velocity 

 

 Decrease  CoP/UB/LB Velocity 
CoP/UB/UL D high Frequency 

CoP Frequency     CoP Post shift    

Effects of STN-
DBS 

No change CoP D RMS asymmetry PF tilt response  CoP ML/AP Velocity CoP AP sway (Eyes 
open&close) 

CoP ML/AP D CoP L shift 
Thigh inclination 
Knee moment 

 CoP ML/AP D CoP ML/AP D RMS 
CoP ML/AP Velocity 

CoP ML/AP D, RMS 
CoP Amplitude 
CoP ML/AP Velocity  
& RMS 
(No difference 60 vs > 100 
Hz DBS-STN) 

Increase  CoP/UB/LB D. 
CoP/UB/LB ML D. 
CoP/UB/LB AP D. 
CoP A 
CoP/UB/LB D low Frequency 
CoP D mild Frequency 
CoP/UB/LB V low Frequency 
UB-LB coupling 

         

Decrease CoP Velocity 
CoP V RMS asymmetry. 
CoP D RMS 
CoP D Frequency 
CoP D Frequency 
RMS asymmetry 

CoP/UB/LB Velocity 
CoP/UB/UL D high Frequency 
 

CoP Velocity 
CoP Frequency 
CoP AP&ML D  
CoP RMS 

CoP ML/AP D  
CoP high Frequency 

CoP area 
CoP ML D 
(Eyes open&close) 

 CoP P shift 
Trunk inclination 
Shank inclination 
Hip moment 
Ankle moment 
Limb extensors RMS 
Limb flexor RMS 

CoP Post shift 
CoP D 
CoP Area 

   

Values are mean ± SD or mean (range); AP: anteroposterior; CoP: centre of foot pressure; D: displacement; DBS: deep brain stimulation; F: frequency; LB: lower body; LD: levodopa; ML: mediolateral; RMS: root 

mean square; STN: subthalamic nucleus; UB: upper body; V: velocity. An increase of the CoP displacements, velocities, RMS, asymmetry, frequency, body segment inclinations and muscles means an aggravation of 

static postural control. An increase in the upper-body/lower-body coupling means an improvement of body position. 



 42 

Table 2. Effects of deep brain stimulation on neurophysiological parameters of gait initiation in PD patients  
 
 Liu et al. 

2005&2006 
Crenna et al.  
2006 

Chastan et al. 
2009 

Rocchi et al. 
2012 

Vallabhajosula et al. 
2015 

Defebvre et al. 
2002 

Rocchi et al. 
2012 

Chastan et al. 
2009 

Mazzone et al. 
2014 

Welter et al. 
2015 

Target STN STN STN STN STN GPi GPi SNr Unilateral PPN Bilateral PPN 

N of patients 11 10 7 15 19 7 14 7 10 4 

Age (yrs) 54 (41-66) 60 ± 5 61 ± 7 61 ± 6 62 ± 9 58 ± 11 61 ± 8 61.0 ± 7 60 ± 7 62.0 ± 11.0 

Disease duration (yrs) 13 ± 5 17 ± 6 18 ± 4 12 ± 5 14 ± 4 15 ± 3 13 ± 10 18 ± 4  15.8 ± 5.9 
Time after surgery (months) 16 ± 10 10 ± 7 44 ± 20 6 39 ± 24  6 44 ± 20 12 4-6 

 LD DBS           

Before surgery OFF 
ON 

- 
- 

   X 
X 

 
 

X 
X 

X 
X 

X 
X 

 X 
X 

After surgery OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
 

X 
X 
X 
X 

X 
X 
 
 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

 
X 
 
X 

X 
X 
X 
X 

UPDRS III OFF 
ON 

- 
- 

 
 

 31 ± 11 
7 ± 5 

49 ± 12 
21 ± 11 

 50 ± 6 
19 ± 6 

51 ± 18 
29 ± 14 

 
 

 48.5 ± 9.7 
21.0 ± 6.2 

OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

41 ± 7 
26 ± 10 
26 ± 11 
21 ± 9 

62 ± 11 
21 ± 10 
24 ± 14 
13 ± 7 

36 ± 14 
9 ± 7 
12 ± 6 

51 ± 21 
34 ± 12 
35 ± 15 
21 ± 8 

29 ± 2 
24 ± 2 
 

 
31 ± 10 
 
18 ± 6 

47 ± 17 
35 ± 18 
32 ± 13 
23 ± 13 

36 ± 14 
9 ± 7 
- 
29 ± 15 

 
69.6 ± 21.4 
 
2.8 ± 0.9 

45.5 ± 11.0 
48.3 ± 10.2 
26.0 ± 3.6 
26.0 ± 10.2 

  Anticipatory Postural Adjustments 

Effects of LD No change APAs duration&amplitude 
Stance & swing leg  
shear forces 
CoP AP & ML D 

    S1 duration     

Increase    CoP AP & ML D   S2 ankle peak Velocity 
S2 shoulder amplitude 
Velocity of transfer 

CoP AP & ML D    CoP AP & ML D 

Decrease    APAs duration  S2 duration APAs duration   APAs duration 
Effects of DBS No change CoP ML D 

APAs duration 
  CoP AP & ML D 

APAs duration 
S1&S2 duration 
S1&S2 CoP D&Velocity 

S1 duration CoP AP & ML D 
APAs duration 

 APAs duration 
S2 CoP ML D 
S2 CoP Velocity 

APAs duration 

Increase Co AP D CoP AP & ML D 
TA reinforcement 

  S3 CoP AP Velocity 
S3 CoM distance 
Resultant CoM-CoP 

moment arm 

S2 ankle peak Velocity 
S2 shoulder amplitude 
Velocity of transfer 

  S1 CoP AP D 
S1 CoP Velocity 

CoP AP & ML D 

Decrease Stance & swing leg  
shear forces 
 

APAs duration    S2 duration     

  First step execution 

Effects of LD No change   Braking index 
TA and Soleus activity 

    Braking index 
TA and Soleus activity 

  

Increase   Length and velocity Length and Velocity   Length and Velocity Length and Velocity  Length and Velocity 
Braking index 

Decrease   Fall in the CoM     Fall in the CoM  Double stance duration 
Effects of DBS No change Cadence Length and Velocity Stance leg TA activity 

Stance & swing leg sole 
Length and Velocity Length and Velocity 

Var 
Time Var 

 Length and Velocity Length and Velocity 
TA and Soleus activity 

 Length and Velocity 
Braking Index 

 Increase Velocity  Length and velocity 
Braking index 
Stance leg soleus activity 

 Length and Velocity 
(higher with 60 Hz vs > 
100 Hz STN-DBS) 

  Braking index 
Stance leg soleus activity 

  

 Decrease   Fall in the CoM      CoP Velocity Double stance duration 

Values are mean ± SD or mean (range); AP: anteroposterior; APAs: anticipatory postural adjustments; CoP: centre of foot pressure; CoM: centre of mass; D: displacement; DBS: deep brain stimulation; F: 

frequency; LD: levodopa; ML: mediolateral; STN: subthalamic nucleus. An increase of the APAs amplitude, CoP displacements, velocities, cadence, braking index and lower limbs muscles activities and angles 

means an improvement in the spatiotemporal and kinematics parameters of gait initiation. An increase of the APAs duration and double stance duration means an aggravation of gait initiation. 
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Table 3. Effects of subthalamic nucleus deep brain stimulation on neurophysiological parameters of gait in PD patients  

 Allert et al. 
2001 

Faist et al., 
2001 

Stolze et al., 
2001 

Xie et al., 
2001 

Ferrarin et al., 
2002 

Bastian et al., 
2003 

Krystkowiak et 
al., 2003 

Ferrarin et al., 
2005 

Liu et al., 
2005 

Lubik et al., 
2006 

Hausdorff et 
al., 2009 

Johnsen et al., 
2009&2010 

Cantiniaux et 
al., 2011 

McNeely et al., 
2011 

Vallabhajosula 
et al., 2015 

n. of patients 8 8 9 10 4 6 10 10 11 12 13 11 7 16 19 

Age (yrs) 57 ± 3 48 ± 7 56 ± 7 56 ± 10 56 ± 3 54 ± 13 57 ± 8 52-68 54 (41-66) 62 ± 8 64 ± 9 61 (41 - 69) 65 ± 5 62 ± 9 62 ± 9 

Disease duration (yrs) 12 ± 5 13 ± 7 13 ± 5 13 ± 5 19 ± 6  13 ± 5 17 ± 6 13 ± 5  13 ± 6 13 ± 4 13 ± 4 15 ± 6 14 ± 4 

Time after surgery 
(months) 

3 15 ± 11 3 6 (3-36) 11 ± 3 8 ± 2 3 10 ± 7 16 ± 10 23 ± 13 12 ± 7 19 (12 – 30) 10 ± 7  39 ± 24  

 LD DBS            

Before 
surgery 

OFF 
ON 

- 
- 

X 
X 

 
 

X 
X 

  
 

 X 
X 

 
 

X 
X 

  
 

  X 
X 

 

With STN-
DBS 

OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

 
X 
 
 

X 
X 
X 
X 

X 
X 
 
X 

X 
X 
X 
X 

X 
X 
 
 

X 
X 
 

 
X 
 
X 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
 
 

X 
X 
X 
X 

X 
X 

X 
X 
 

UPDRSIII OFF 
ON 

- 
- 

17 ± 4 
6 ± 5 

50 ± 15 
8 ± 3 

52 ± 8 
18 ± 4 

   52 ± 16  
25 ± 8 

 41 ± 7 
26 ± 11 

    36 ± 2 
29 ± 2 

 

OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

15 ± 4  
6 ± 4 
9 ± 5 
6 ± 5 

49 ± 16 
14 ± 7  
7 ± 3  
4 ± 2 

 
27 ± 7 
 
20 ± 7 

43 ± 13  
19 ± 10  
19 ± 14 
13 ± 9 

59 ± 8 
18 ± 8 
 
 

47 ± 10 
22 ± 13 

 
26 ± 7 
 
14 ± 5 

62 ± 11  
21 ± 10 
24 ± 14 
13 ± 7 

19 ± 9 
 
18 ± 8 

56 ± 12 
31 ± 5 
21 ± 5 
20 ± 5 

31 ± 13 
18 ± 1 
20 ± 12 
9 ± 5 

38 ± 13 
17 ± 8 
 

37 ± 17 
16 ± 13 
11 ± 8 
9 ± 7 

 29 ± 2 
24 ± 2 (>100 Hz) 
25 ± 2 (60 Hz) 
 

Effects of 
LD 

No change  Cadence (& Var) 
Stride Length Var 
Velocity Var 
SL Support 

Cadence Cadence 
Stride Time 
SL&DL Support 

  SL Support Cadence 
SL/DL Support 
Pelvis yaw ROM 
Trunk pitch ROM & 
mean 
Ankle moment & power 
peak 

Cadence 
Velocity 

Cadence 
Step Length 
SL Support 
Asymmetry 
Index 

Cadence 
Stride Time 
(&Var) 
SL Support Var 

 Cadence   

 Increase  Velocity 
Stride Length 
Swing Velocity 
Hip, knee, ankle 
ROM 

Velocity 
Stride 
Length 
Step Height 
Hip, knee, 
ankle ROM 

Velocity 
Stride Length 
 

  Velocity 
Cadence 
Stride&Step 
Length 
SL/DL ratio 

Velocity 
Stride Length 
Hip, knee, ankle ROM 
Pelvis tilt&roll ROM 
Trunk roll&yaw ROM 
Hip moment&power 
peak 

 Velocity Velocity 
Stride Length 
SL Support 

 Velocity 
Step Length 

  

 Decrease  DL Support     DL Support  
Stride&Step Time 

  Step Time 
DL Support 

     

Effects of 
STN-DBS 

No change Cadence 
Step Time 
Asymmetry  
Index 
DL Support  
Var 

Cadence 
Stride Length Var 
Velocity Var 
SL Support 

Cadence Cadence 
Stride Time 
 SL&DL Support 
 

Cadence 
SL/DL Support 
Ankle ROM 
Pelvis roll ROM 
Trunk yaw 
ROM 

Cadence 
Asymmetry Index 
SL Support 

 Cadence 
SL/DL Support 
Pelvis roll & yaw ROM 
Trunk-Pelvis roll ROM 
Trunk pitch ROM 
Hip moment peak 
Ankle moment & power 
peak 

Cadence Cadence 
Step Length 
SL Support 

Cadence 
Velocity 
Stride Length 
Stride Time  
(& Var) 
SL Support Var 

Cadence 
Stride Time 

Cadence 
 

 Cadence Var 
Velocity Var 
Stride Time 
Stride Length 
SL&DL Support  
(& Var) 

Increase Velocity 
Step Length 
SL Support 
SL/DL 
Support 

Velocity 
Stride Length 
Swing Velocity 
Hip, knee, ankle  
ROM 

Velocity 
Stride 
Length 
Step Height 
Hip, knee, 
ankle ROM 

Velocity 
Stride Length 
Step Height 

Velocity 
Stride Length 
Hip&Knee 
ROM 
Trunk pitch & 
roll ROM 

Velocity 
Stride Length 

Velocity 
Cadence 
Stride T & Length 
Step T & Length 
SL Support 

Velocity 
Stride Length 
Hip, knee, ankle ROM 
Trunk-Pelvis yaw ROM 
Hip moment peak 

Velocity Velocity SL Support Velocity 
Step Length 
Stride Length 
Hip, knee, 
ankle ROM 

Velocity 
Step Length 
 

Velocity 
Stride Length 

Velocity 
Step Length 

Decrease Step T Var 
SL Support  
Var 

DL Support Stride Var    DL Support   Step Time  
Asymmetry 
Index 
DL Support 

 DL Support 
Asymmetry 
Index 

   

Values are mean ± SD or mean (range); DL: double-limb; SL: single-limb; Var: variability; ROM: range of motion, DBS: deep brain stimulation; LD: levodopa; TN: subthalamic nucleus; UB: upper body; An increase 

of the velocity, stride time, stride length, step time, step length, step height, SL Support, SL/DL ratio and cadence means an improvement of spatiotemporal and kinematics parameters of locomotion. An increase 

of the double limb support and asymmetry index means an aggravation of locomotion. 
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Table 4. Effects of deep brain stimulation of the GPi and PPN on neurophysiological parameters 

of gait in PD patients   

 Allert et al., 2001 Defebvre et al., 
2002 

Moreau et al.,  
2009 

Peppe et al.,  
2010 

Mazzone et al., 
2014 

Target GPi GPi Bilateral PPN* Bilateral PPN* Unilateral PPN 

n. of patients 10 7 4 5 10 

Age (yrs) 55 ± 10 58 ± 11  58 ± 9 60 ± 7 

Disease duration (yrs) 11 ± 3 15 ± 3  16 ± 10  

Time after surgery 
(months) 

3 3  3 12 

 LD DBS      

Before 
surgery 

OFF 
ON 

- 
- 

X 
X 

 
 

   
 

With DBS OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

X 
X 
 
 

X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 

 
X 
 
X 

UPDRS III OFF 
ON 

- 
- 

17 ± 4.5 
6 ± 5.5 

50 ± 6 
19 ± 6 

   
5.3 ± 3.0 

OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 

  
31 ± 10 
 
16 ± 8 

 
28 
 
 

68 ± 5 
43 ± 9 
37 ± 10 
25 ± 9 

 
70 ± 21 
 
28 ± 9 

Effects of 
LD 

No change  Cadence  Mean velocity  

 Increase  Velocity 
Stride T 
Stride Length 
Step Length 
SL Support 

 Hip, Knee, Arm 
&Elbow angles 

 

 Decrease  DL Support    

Effects of 
DBS 

No change Cadence 
Step Time&Length 
Asymmetry Index 
SL&DL Support  
(&Var) 
SL/DL Support 

SL Support Cadence 
Mean velocity 
Step Time&Length 
SL&DL Support 

Mean velocity 
Stride&Step Length 
SL& DL Support 
SL/DL Support 
Hip, Knee, Ankle, 
ROM 

Step Width 
SL& DL Support 
IL pelvis tilt ROM 
Hip, knee ROM 
 

Increase Velocity 
 

Velocity 
Cadence 
Stride Time&Length 
Step Length 

  Velocity 
Cadence 
Stride Length 
 

Decrease  DL Support    

Values are mean ± SD or mean (range); DBS: deep brain stimulation; DL: double limbs; IL: 

interlimb; T: time, SL: single limb; ROM: range of motion; GPi: internal part of the globus pallidus; 

PPN: pedunculopontine nucleus. An increase of the stride time and length, velocity, step length, 

SL Support and ROM means an improvement of gait parameters.. An increase of the DL Support 

and Step Width means an aggravation.* In this study patients were previously operated for STN-

DBS. 
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Figure 1 
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Figure 2 

 
 
 


