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Abstract

We define a new graph operator, called the weak-factor graph, which comes
from the context of complex network modelling. The weak-factor operator is
close to the well-known clique-graph operator but it rather operates in terms of
bicliques in a multipartite graph. We address the problem of the termination of
the series of graphs obtained by iteratively applying the weak-factor operator
starting from a given input graph. As for the clique-graph operator, it turns
out that some graphs give rise to series that do not terminate. Therefore, we
design a slight variation of the weak-factor operator, called clean-factor, and
prove that its associated series terminates for all input graphs. In addition,
we show that the multipartite graph on which the series terminates has a very
nice combinatorial structure: we exhibit a bijection between its vertices and the
chains of the inclusion order on the intersections of the maximal cliques of the
input graph.

Keywords: Clean-factor Graph, Multipartite Graphs, Graph Series, Complex
Network Modelling

1. Introduction

The clique-graph operator [24] is a well-known graph operator which, given
a graph G, consists of building the graph G′ whose vertices are maximal cliques
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of G and such that there is an edge between two distinct vertices of G′ iff the
corresponding cliques of G share at least one common vertex. The clique-graph
series, obtained by iteratively applying the clique-graph operator starting from
G, has been widely studied (see e.g. [23, 6]). This series is said to be convergent
(in the sense of [6]) if one of the graphs of the series is the graph with one single
vertex1. Then, all the graphs obtained in the following iterations are the same
(i.e. reduced to a single vertex).

Here we consider a new operator, called weak-factor graph, which comes
from the context of complex network modelling and which operates in terms
of bicliques in multipartite graphs rather than cliques in graphs. One of the
interest of this operator is that it keeps an explicit and complete track of the
original graph at all step of the series: given an arbitrary graph of the series
it generates, one can univocally retrieve the original graph which gave rise to
the series. Given a k-partite graph G = (V0, . . . , Vk−1, E) (see Section 1.2 for a
definition), where k ≥ 2, the weak-factor graph G′ of G is defined as follows (see
Definition 5 for a more formal definition): G′ is the graph G augmented with a
new level Vk of vertices, each of which corresponds to one non-simple maximal
biclique of the bipartite graph which is formed by the edges between the upper
level of G, i.e. Vk−1, and the rest of the vertices of G, i.e.

⋃
0≤i≤k−2 Vi. Note

that we do not add a new vertex at level Vk for all maximal bicliques but only for
the non-simple ones, i.e. those maximal bicliques that have at least two vertices
in Vk−1 and two vertices in

⋃
0≤i≤k−2 Vi. For each new vertex x at level Vk

corresponding to a non-simple maximal biclique B, we define its neighbourhood
in G′ as being the vertices of B. The weak-factor series of a graph G is defined
as the series obtained by iteratively applying the weak-factor operator starting
from the vertex-clique-incidence bipartite graph of G (see Figure 1), where the
vertices of G are at level V0 and the maximal cliques of G are at level V1. This
series is said to terminate iff, at some point, no new vertices are created. Then,
the series is finite and the following graphs are undefined. For example, the
series depicted on Figure 1 terminates since no new vertices are created when
applying the weak-factor operator on graph G3 of the series.

As we will show in Section 2, the weak-factor series does not always termi-
nate. Then, the interest of the multipartite structure of the weak-factor graph
is that it will allow us to restrict the definition of the non-simple bicliques we
use in the weak-factor operator, taking into account the different levels of the
multipartite graphs. In this way, we will be able to devise a refined version of
the weak-factor graph, which we call the clean-factor graph, whose associated
series terminates for all graphs.

1Note that [23] uses a different definition of convergence which includes the one of [6] as
a particular case, and also includes periodic behaviours. The notion of termination we use
throughout the article is somehow equivalent to the one of [6].
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G0 = G G1 = B(G) G2 G3

Figure 1: Example of the weak-factor series of some graph G. From left to right: the original
graph G = G0, its vertex-clique-incidence bipartite graph B(G) = G1, the tripartite graph
G2 of the series, and the quadripartite graph G3 on which the series terminates. The dashed
edges are those belonging to some non-simple maximal biclique used in the factorisation steps.
Note that even if those edges were removed, the multipartite graph obtained at termination
of the series would still constitute an unambiguous encoding of the original graph, as these
edges are encoded by the presence of some vertices in the levels above them.

Our contribution

In this paper, we study a new graph operator called the weak-factor operator
which naturally arises in complex network modelling (see Section 1.1). We show
that there are graphs for which the weak-factor series, obtained by iteratively
applying the weak-factor operator, does not terminate. Therefore, our main
contribution is to define a refinement of the operator, called the clean-factor
graph, whose series terminates for all graphs, thereby defining an object suit-
able for modelling purposes. The difference between our approach and the one
followed by previous works is that we do not try to determine on which graphs
the weak-factor series terminates, but we rather look for minimal constraints
to impose to the operator in order to obtain termination for all graphs. The
solution we present here obtains termination by imposing constraints to only a
bounded number of levels (namely 3) of the multipartite graph on which the
operator is applied.

In addition to our termination result, we show that the multipartite graph on
which the clean-factor series terminates has a remarkable combinatorial struc-
ture. Namely, its vertices are in bijection with the chains of the inclusion order
on the non-simple intersections of maximal cliques of the graph (Theorem 1),
denoted L in the rest of the paper. We believe that this link between the ter-
mination of the series and the structure of the cliques of the original graph is
worth in itself and may be used to study termination of other similarly defined
graph operators.
Finally, we give an upper bound on the size and computation time of the graph
on which the iterated clean-factor series of G terminates, under reasonable
hypotheses on the degree distributions of the vertex-clique-incidence bipartite
graph of G (which hold for most real-world complex networks), therefore show-
ing that this multipartite graph can be used in practice for complex network
modelling.

Let us mention that this work is an improved and complete version of the
extended abstract that appeared in [18]. In [18], the notion of clean-factor is
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slightly different from the one we use here. As a consequence, we could not
prove that imposing constraints only to a bounded number of levels is enough
to guarantee the termination of the series, and we did not have a real bijection
between the multipartite graph obtained at termination and the vertices of L.

Related works

The weak-factor operator we study here operates on multipartite graphs and
is defined using the bicliques between the upper level and the rest of the multi-
partite graph. For graphs, closely related operators have been defined using the
cliques or the bicliques of the graph, and many works addressed the question
of convergence of the series obtained by iteratively applying these operators to
an input graph. There exists several definitions of convergence in the literature.
The notion of termination we use here for the multipartite graph series is some-
how equivalent to the convergence notion used in [6] in the context of graph
series, and is a particular case of convergence of the definition used in [23].

For the well-known clique graph operator (see [24] for a survey) the ques-
tion of convergence has received a lot of attention [23, 6]. Most of the efforts
focussed on obtaining convergence results, or divergence results, for some par-
ticular graphs or graph classes [15, 16, 17, 19]. Similar questions have been
addressed recently for the biclique graph operator [11, 12], which also operates
on graphs2 but using bicliques instead of cliques. It is worth noticing that the
clique graph and the biclique graph are defined as intersection graphs while this
is not the case of the operators we study in this paper. Let us mention, that an-
other closely related graph operator called edge-clique-graph operator has been
studied (see e.g. [8, 7]) but, to the best of our knowledge, the question of the
convergence of its iterated series has not been investigated.

It must be clear that none of these three operators, clique graphs, biclique
graphs and edge-clique graphs, which are defined on graphs, is equivalent to one
of the multipartite-graph operators we consider here. And the convergence or
divergence results obtained previously for these graph operators do not imply
the termination and non-termination results we present here.

Moreover, it is worth noticing that the question we address in this paper
is orthogonal, and complementary, to the one addressed in all the previously
cited works. Indeed, we do not intend to characterise the graphs for which the
iteration of the weak-factor operator terminates or does not terminate. Instead,
we aim at determining minimal constraints that can be imposed to this operator
in order to obtain termination for all graphs.

Finally, we note that recently [9] showed the interest of clique graphs to study
communities in complex networks. However, their approach and results are not
equivalent to ours. In particular, they do not consider the series obtained by
iterating the operator, which is our main concern here in the case of the weak-
factor operator.

2Note that the bicliques we use in the definition of the weak-factor operator are bicliques in
a bipartite graph and not in a general graph as in the definition of the biclique graph operator.
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Outline of the paper

In Section 1.1, we detail further the context where the practical motivation
of our work comes from. Then, Section 1.2 gives a few notations and basic
definitions, useful in the whole paper, including the definition of a fundamental
notion, the factorisation, which plays a key role in the following. In Section 2, we
formally define the weak-factor operator and a natural variation of this operator,
called the factor operator, both of which giving rise to some infinite series. In
Section 3 we propose a deeper refinement of the operator, called the clean-factor
operator, for which we prove termination for all graphs and give a structural
characterisation of the multipartite graph obtained at termination. Finally,
in Section 4, we address the question of efficiently computing and storing the
representation provided by the clean-factor series.

1.1. Motivation

It is worth to mention that we did not come to the study of the termination
of the weak-factor series only for theoretic motivations: this question is of key
interest in complex network modelling. Complex networks are those graphs
encountered in practice in various domains such as computer science, biology,
social sciences and others. In the last decade, they were shown to share some
nontrivial common properties [30, 1], independently from the context they come
from. A lot of efforts have been done to design models able to capture these
properties while staying general enough. One of the difficulty of the domain is to
encompass in a same model the two major properties of these networks, namely
their heterogeneous degree distribution and their high local density (clustering
coefficient, see [4] for a formal definition).

Among the most promising approaches, [13, 14] propose to model complex
networks based on the properties of their vertex-clique-incidence bipartite graph.
Their idea is to use prescribed-degree-graph generation, which is a powerful
and well understood technique since the works of [5, 20], for the vertex-clique-
incidence bipartite graph instead of the graph itself. In other words, they ad-
vocate for the generation of complex networks by their cliques rather than by
their edges. They show that, in this way, one obtains graphs having a high local
density (thanks to the clique structure) and a heterogeneous degree distribution
that is controlled by the degrees of the vertices in the vertex-clique-incidence
bipartite graph. However, the bipartite model suffers from a severe limitation:
when generating the edges of the bipartite graph at random, the obtained neigh-
bourhoods of the upper vertices intersect only on one (or zero) vertex with a
very high probability (see [13, 14]). This is not the case in real world networks,
where most of the maximal cliques have non-simple overlaps with some others
(i.e. overlaps of cardinality at least two). Thus, even though it gives the desired
properties concerning degree distribution and local density, the bipartite model
results in graphs having a caricaturistic structure.

The weak-factor graph (see Section 2) was introduced in [18] in order to
correct this drawback. The idea is to define an object that encodes the non-
simple intersections of maximal cliques of a graph G by the neighbourhoods
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of vertices in some other suitably defined graph, so that such objects can be
randomly generated using the prescribed-degree generation technique of [5, 20].
In order to define such an encoding of a graph G, we can proceed as follows. We
start from the vertex-clique-incidence bipartite graph B(G) = (V0, V1, E) of G
and we create a new level V2 where each vertex x corresponds to a non-simple
maximal biclique B of B(G). Then, we can delete the edges of B as they are
now encoded by the presence of x. Doing so simultaneously for all non-simple
maximal bicliques of B(G) gives a tripartite graph in which the neighbourhoods
on V0 of vertices at level V1 have no non-simple intersections anymore. Then, we
can iteratively repeat the operation by considering, at each stage of the process,
the maximal bicliques between the vertices on the uppermost level and the rest of
the vertices of the multipartite graph, until the process hopefully terminates. In
this case, we obtain a multipartite graph3 without any non-simple intersection of
neighbourhoods. We can therefore generate similar structures at random using
the prescribed-degree generation method without bumping into the problem
raised by [13, 14]. Of course, in order to obtain a multipartite graph that has
no non-simple neighbourhood intersections, it is mandatory that the iterative
factorising process terminates. This is the reason why we came to study the
termination of the weak-factor series.

Note that, opposite to the process described above, in the definition of the
weak-factor operator we do not delete edges of the bicliques involved in one
factorisation step. This has no impact on the set of nodes created in the rest
of the process, as those edges are not involved in further factorisation steps.
On the other hand, keeping those edges helps to describe the structure of the
graphs of the weak-factor series (Definition 2 below) and this is the reason why
we keep them in the rest of the paper.

1.2. Notations and preliminary definitions

All graphs considered here are finite, undirected and simple (no loops and no
multiple edges). A graph G having vertex set V and edge set E will be denoted
by G = (V,E). We also denote by V (G) the vertex set of G. The edge between
vertices x and y will be indifferently denoted by xy or yx. K(G) denotes the set
of maximal cliques of a graph G, and N(x) the neighbourhood of a vertex x in
G.

An ordered k-partition P of a set V is a partition of V into k parts (non
empty and pairwise disjoint, from the classical definition of partition) which are
numbered from 0 to k − 1. It is denoted as a k-tuple: P = (V0, . . . , Vk−1). In
this paper, a k-partite graph is always given together with a partition of its
vertices as in the following definition.

Definition 1 (k-partite graph). A k-partite graph is a couple (G,P) where
G = (V,E) is a graph and P = (V0, . . . , Vk−1) is an ordered k-partition of its

3Note that this multipartite graph is an encoding of the original graph, as the factorising
operation is reversible.
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vertex set V such that all edges of G are between vertices in different parts of
P. It is denoted by G = (V0, . . . , Vk−1, E).

A multipartite graph is a k-partite graph with k ≥ 2. For a k-partite graph
G = (V0, . . . , Vk−1, E), the vertices of Vi, for any i, are called the i-th level of G,
and the vertices of Vk−1 are called its upper vertices. We denote by Ni(x), where
0 ≤ i ≤ k−1, the set of neighbours of x at level i: Ni(x) = N(x)∩Vi. A biclique
of a graph is a set of vertices of the graph inducing a complete bipartite graph.
We denote by B(G) the vertex-clique-incidence bipartite graph of G = (V,E):
B(G) = (V,K(G), E′) where E′ = {vc | c ∈ K(G), v ∈ c}. A non-simple
biclique of a bipartite graph is a biclique having at least two vertices in the
upper level and at least two vertices in the bottom level. Two sets have a non-
simple intersection if they share at least two elements. In the whole paper, we
denote L the inclusion order of the non-simple intersections of maximal cliques
of a graph G (there will be no confusion on the graph G referred to when we
use this notation).

For two non-negative integers a, b ∈ N, we use the notation Ja, bK for the set
{p ∈ N | a ≤ p ≤ b}, with the convention Ja, bK = ∅ if a > b.

In the sequel, an operation will play a key role, we name it factorisation and
define it generically as follows.

Definition 2 (factorisation with respect to V ′k(G)). Given a k-partite graph
G = (V0, . . . , Vk−1, E) with k ≥ 2 and a set V ′k(G) of subsets of V (G), we de-
fine the factorisation of G with respect to V ′k(G) as the (k + 1)-partite graph
G′ = (V0, . . . , Vk, E ∪ E+) where:

• Vk is the set of maximal (with respect to inclusion) elements of V ′k(G),

• E+ = {Xy | X ∈ Vk and y ∈ X}.
When Vk 6= ∅, the factorisation is said to be effective.

Provided that the set V ′k(G) is properly defined for all multipartite graphs
G, such a factorisation operation defines a multipartite graph operator, the
iteration of which gives rise to a series of multipartite graphs as defined below.

Definition 3 (series associated to a factorisation operation). Given a fac-
torisation operation that associates any k-partite graph G = (V0, . . . , Vk−1, E)
with k ≥ 2 to a (unique) k+1-partite graph G′, we define the series of multipar-
tite graphs (Gi)i≥1, associated to this factorisation operation and generated by
a graph G0 = (V0, E0), by: G1 = B(G0) is the vertex-clique-incidence bipartite
graph of G0 (in which the cliques are on the upper level of B(G0)) and, for all
i ≥ 1, Gi+1 = G′i when the factorisation of Gi is effective, and Gi+1 is undefined
otherwise.

Definition 4 (termination of the series). We say that the series (Gi)1≤i≤n
associated to some factorisation operation terminates iff for some i ≥ 1 the fac-
torisation is not effective, then all subsequent graphs of the series are undefined
and the series reduces to a finite sequence.
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In the rest of the paper, we will refine the notion of factorisation by using
different sets V ′k(G) on which is based the factorisation operation. And we will
study termination of the graph series resulting from each of these refinements.
As, in the following, the graph G referred to is always clear from the context,
we denote V ′k instead of V ′k(G). But all the sets V ′k we define still depend on the
graph considered.

2. Weak-factor series and factor series

2.1. Weak-factor series

Thanks to the generic notion of factorisation, we will now formally define
the weak-factor operation we introduced above.

Definition 5 (V +
k and weak-factor graph). Given a k-partite graph G =

(V0, . . . , Vk−1, E) with k ≥ 2, we define the set V +
k as:

V +
k = {{x1, . . . , xl}∪

⋂
1≤i≤l

N(xi) | l ≥ 2, ∀i ∈ J1, lK, xi ∈ Vk−1 and |
⋂

1≤i≤l

N(xi)| ≥ 2}.

The weak-factor graph G+ of G is the factorisation of G with respect to V +
k .

e

cd

ba

b da ce

b da ce

...

Figure 2: An example graph for which the weak-factor series is infinite. From left to right:
the input graph G, its vertex-clique-incidence bipartite graph B(G), and the tripartite graph
B(G)+ of its weak-factor series (note that for sake of readability of the drawing, the edges
between levels V1 and V0 have been removed in B(G)+). The shaded edges are the ones
involving vertex e, which plays a special role: all the vertices of the upper level of the mul-
tipartite graph are linked to e. The structure of edges between vertices of V2 and vertices of
V1 ∪ {e} in B(G)+ is identical to the one between levels V1 and V0 in B(G), revealing that
the series will not terminate.

Figure 1 gives an illustration for this definition. In this case, the weak-factor
series is finite. However, it is not difficult to find examples of graphs which
lead to infinite weak-factor series. Figure 2 provides such an example for which
the structure of the upper level is infinitely reproduced on the further levels.
Intuitively, this is due to the fact that a vertex may be the base for an infinite
number of factorisation steps (vertex e in the example of Figure 2). The aim of
the next sections is to avoid this case by using a more restrictive definition of
factorisation.
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2.2. Factor series

In this section, we examine a first restriction of the operator, called factor
graph, that forbids the repeated use of the same vertex to produce infinitely
many factorisations, which is the phenomenon responsible for the non termina-
tion of the series for the example of Figure 2.

Definition 6 (V ◦k and factor graph). Given a k-partite graph G = (V0, . . . , Vk−1, E)
with k ≥ 2, we define the set V ◦k as:

V ◦k = {X ∈ V +
k such that |

⋂
y∈X∩Vk−1

Nk−2(y)| ≥ 2}.

The factor graph G◦ of G is the factorisation of G with respect to V ◦k .

This new definition results from the restriction of the weak-factor definition
by considering only sets X ∈ V +

k such that the vertices of X ∩ Vk−1 have at
least two common neighbours at level k − 2. The reason is that, in this way,
a vertex cannot contribute to more than two factorising steps: once when it is
on the upper level of the multipartite graph, once when it is on the level just
below. Indeed, even if the vertices of levels lower than the two upper levels (i.e.
Vk and Vk−1) may be involved in a factorisation step, they are not responsible
for the creation of a new vertex. Such a creation depends only on the edges
between the two upper levels of the multipartite graph.

Finding examples of input graphs that generate infinite factor series is not
straightforward. In particular, one natural candidate that one could have in
mind, namely the graph whose vertex-clique-incidence bipartite graph is the
anti-matching on 2n vertices, which generates an infinite series for the clique-
graph operator [21], actually gives rise to a finite series for the factor operator.
The anti-matching is the bipartite complement of a perfect matching between
the n upper vertices and the n bottom vertices (also known as the octahedron
in clique-graph theory and as the crown in poset theory). The anti-matching
is known for being the bipartite graph on 2n vertices that has the maximum
number of bicliques. Regarding the factor series, it implies that there is a com-
binatorial explosion of the number of vertices on the first next levels. Despite of
this, one can check that the series of the anti-matching on 2n vertices terminates.

Nevertheless, [22] recently provided an example of a graph that gives rise to
an infinite factor series. This is the reason why in the next section, we constraint
further the factor operation: we do not only require that the neighbourhoods
of vertices at level Vk−1 involved in the creation of a new vertex at level Vk
share at least two vertices on level Vk−2 but we also require that those vertices
have the same neighbourhood at level Vk−3 (see Definition 7 of the clean-factor
graph). This supplementary condition is not only a technical condition used to
guarantee termination: we will show that the graph on which terminates the
clean-factor series is a fundamental combinatorial object.
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3. Clean-factor series

In the previous section, we studied two series of multipartite graphs based on
two different factorisation operations, both of them giving rise to some infinite
series. In this section, we introduce a more constrained refinement of these two
factorisation operations, which we call the clean-factor operator, for which we
prove that the associated series always terminates. One interesting point of our
solution is that the constraints introduced in order to guarantee termination
are light: they apply on only 3 levels of the multipartite graph. In addition,
the multipartite graph obtained at termination has a very deep combinatorial
meaning: its vertices are the chains of the inclusion order L of the non-simple
intersections of maximal cliques of the input graph G.

We now give the formal definition of the clean-factor graph of a multipartite
graph: the general factorisation step is the case where k ≥ 5, the construction
of levels V2, V3 and V4 are subject to particular conditions. It should be clear
that these particular conditions may be simplified while preserving termination.
But on the other hand, those exact conditions are necessary in order to obtain
the bijection with the chains of order L.

Definition 7 (V ∗k and clean-factor graph). Given a k-partite graph G =
(V0, . . . , Vk−1, E) with k ≥ 2, we define the set V ∗k as:

• If k ≥ 5, V ∗k = {X ∈ V +
k | |

⋂
x∈X∩Vk−1

Nk−2(x)| ≥ 2 and ∀x, y ∈
X ∩ Vk−1, Nk−3(x) = Nk−3(y) and |

⋂
x∈X∩Vk−1

N1(x)| ≥ 2}.

• If k = 4, V ∗4 = {X ∈ V +
4 | |

⋂
x∈X∩V3

N2(x)| ≥ 2 and |
⋂

x∈X∩V3
N1(x)| ≥

2 and ∀x, y ∈ X ∩ V3, N0(x) = N0(y)}.

• If k = 3, V ∗3 = {X ∈ V +
3 | |

⋂
x∈X∩V2

N1(x)| ≥ 2 and |
⋂

x∈X∩V2
N0(x)| ≥

2}.

• If k = 2, V ∗2 = V +
2 .

The clean-factor graph G∗ of G is the factorisation of G with respect to V ∗k .

The rest of this section is devoted to proving the termination of the clean-
factor series (Gi)i≥1 generated by any graph G (Theorem 2) and the bijection
between vertices of level Vi of the series, with i ≥ 2, and the chains of length
i − 2 of L (Theorem 1). We start by proving Theorem 1 since Theorem 2 will
be obtained as a direct corollary from it.

Theorem 1 gives a characterisation of Vi, i ≥ 2 by associating to each of its
nodes a chain of length i − 2 in order L. Formally, we associate to a node x
of Vi a sequence S(x) of subsets of V (G) which are precisely the elements of L
defining the chain associated to x. Before formally defining S(x) (Definition 10)
and stating Theorem 1, we need to establish some basic definitions, notations
and properties of the non-simple intersections of the maximal cliques of a graph.
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Definition 8. We denote by O′ the set of intersections of maximal cliques of G
(possibly only one clique or none), that is O′ = {O ⊆ V (G) | ∃Pc ⊆ K(G), O =⋂

C∈Pc
C}, using the convention that

⋂
C∈∅ C = V (G). And we denote by O

the subset of O′ formed by the elements that contain at least two vertices of G
and that are obtained as the intersection of at least two distinct maximal cliques
of G, that is O = {O ∈ O′ | |O| ≥ 2 and ∃k ≥ 2,∃C1, . . . , Ck ∈ K(G), (∀j, l ∈
J1, kK, j 6= l⇒ Cj 6= Cl) and O =

⋂
1≤i≤k Ci}.

Definition 9. For any subset A ⊆ V (G) of vertices of G, we denote by K(A)
the set of maximal cliques of G containing A, that is K(A) = {C ∈ K(G) | A ⊆
C}. And we denote by C the family of subsets of K(G) defined by C = {K(O) | O ∈
O′}.

Note that the set A defining K(A) is not unique: there may exist A′ 6= A
such that K(A′) = K(A). This is the reason why we now need to state some
basic properties of sets K(A) that we will use in the following.

Remark 1. For any subsets A,B ⊆ V (G), if A ⊆ B then K(B) ⊆ K(A). And
for any subsets A ⊆ V (G) and O ∈ O′, if K(O) ⊆ K(A) then A ⊆ O.

Proof: The first part of the remark is self-evident. For the second part, note
that, by definition of O′, O =

⋂
C∈K(O) C. And on the other hand, we have

A ⊆
⋂

C∈K(A) C ⊆
⋂

C∈K(O) C = O. �

Remark 2. For any A,B ⊆ V (G), K(A) ∩K(B) = K(A ∪B). Conversely, if
A1, . . . , An ⊆ V (G), with n ≥ 2, and if O ∈ O′ and if

⋂
1≤i≤nK(Ai) = K(O),

then
⋃

1≤i≤nAi ⊆ O.

Proof: Let A,B ∈ V (G). The cliques in K(A) ∩K(B) are exactly the cliques
that contain both A and B, i.e. the cliques that contain A ∪ B. Therefore
K(A) ∩K(B) = K(A ∪B).

LetA1, . . . , An ⊆ V (G), with n ≥ 2, and letO ∈ O′ such that
⋂

1≤i≤nK(Ai) =
K(O). From what precedes,

⋂
1≤i≤nK(Ai) = K(

⋃
1≤i≤nAi). Consequently, we

have K(O) ⊆ K(
⋃

1≤i≤nAi). And since O ∈ O′, from Remark 1, we have⋃
1≤i≤nAi ⊆ O. �

Lemma 1. O′ and C are closed under intersection.

Proof: The fact that O′ is closed under intersection is clear from the defi-
nition. Let us show that C is closed under intersection. Let k ≥ 2 and let
O1, . . . , Ok ∈ O′. We prove that

⋂
1≤i≤kK(Oi) ∈ C. For that purpose, consider

a set O ∈ O′ such that O ⊇
⋃

1≤i≤k Oi and which is minimal under inclusion.
We will show that

⋂
1≤i≤kK(Oi) = K(O). Since O ⊇

⋃
1≤i≤k Oi, we have

K(O) ⊆ K(
⋃

1≤i≤k Oi) =
⋂

1≤i≤kK(Oi), from Remark 2. For the converse in-
clusion, consider C ∈ K(

⋃
1≤i≤k Oi). By definition, C ∈ O′ and

⋃
1≤i≤k Oi ⊆ C.

11



Since
⋃

1≤i≤k Oi ⊆ O, we also have
⋃

1≤i≤k Oi ⊆ O ∩C. And since O ∩C ∈ O′
(as O′ is closed under intersection), the minimality of O implies that O∩C = O,
that is O ⊆ C. Thus, C ∈ K(O) and it follows that K(

⋃
1≤i≤k Oi) ⊆ K(O),

which completes the proof. �

The following lemma is the first step toward the bijection theorem (Theo-
rem 1). It establishes the bijection between vertices of V2 and the chains of
length 0 of L. We will use it in the initialising step of the recursion of the proof
of Theorem 1.

Lemma 2. In the clean-factor series, V0 = V (G), V1 = K(G) and V2 = O in
the sense that the map φ defined by x 7→ N0(x) is a bijection from V2 to O.
Moreover, ∀x ∈ V2, N1(x) = K(N0(x)).

Proof: Let us start with the second part of the lemma. Let x ∈ V2. By
definition of V +

2 , all the elements y in N1(x) are such that N0(x) ⊆ N0(y).
Then, y ∈ K(N0(x)), by identifying V1 and K(G). On the other hand, the
maximality of x in V +

2 implies that all y ∈ K(N0(x)) belong to N1(x). Thus,
N1(x) = K(N0(x))

Let us prove that the map φ is a bijection from V2 to O. First, if x ∈ V2
then by definition, |N0(x)| ≥ 2, |N1(x)| ≥ 2, and N0(x) =

⋂
y∈N1(x)

N0(y),

hence N0(x) belongs to O, and the map φ is well defined.
Second, φ(x) = φ(x′) means N0(x) = N0(x′). But N1(x) is the set of all

maximal cliques containing N0(x), and N1(x′) is the same. Then, if φ(x) =
φ(x′), we have x = x′: φ is injective.

We now prove that φ is surjective. Let O be an element of O, we show that
the element x = K(O)∪

⋂
y∈K(O)N0(y) is an element of V2 and φ(x) = O. It is

clear that x ∩ V0 = O, so |x ∩ V0| ≥ 2. Since O ∈ O, |K(O)| ≥ 2, and we have
|x ∩ V1| ≥ 2. Then x ∈ V +

2 . Moreover, by definition, K(O) is exactly the set of
all maximal cliques containing O, then x is maximal in V +

2 . It follows that x is
an element of V2, and φ(x) = O. �

We are now ready to give the definition of the sequence S(x) that we associate
to a vertex x ∈ Vi with i ≥ 2.

Definition 10 (Characterising sequence S(x)). Let G be a graph and let
(Gi)i≥1 be its clean-factor series. The characterising sequence S(x) = (O1(x), . . . , Ok−1(x))
of a vertex x ∈ Vk, with k ≥ 2, is defined by:

• O1(x) = N0(x), and

• for k ≥ 3, ∀j ∈ J2, k − 1K, Oj(x) is the unique element of O′ such that
K(Oj(x)) =

⋂
y∈Nj(x)

N1(y).

Note that Oj is properly defined. Indeed, from Lemma 2, ∀y ∈ V2, V1(y) ∈ C.
And since C is closed under intersection, a simple recursion shows that for all
i ≥ 3 and for all y ∈ Vi, N1(y) =

⋂
z∈Vi−1

N1(z) ∈ C. Then, for any j ≥ 2,

12



⋂
y∈Nj(x)

N1(y) is in C and there exists some Oj in O′ satisfying the condition.

The fact that such an Oj ∈ O′ is unique comes from the fact that for any set
O ∈ O′, we have O =

⋂
C∈K(O) C. Then, if there exists some O such that

K(O) = K(Oj), necessarily O = Oj . Consequently, Oj is unique and properly
defined.

We will often use the following remark in the proof of Theorem 1.

Remark 3. For any x ∈ Vk, with k ≥ 2, K(Ok−1(x)) = N1(x).

Proof: For k = 2, the remark rewrites K(O1(x)) = N1(x). Since O1(x) =
N0(x) and since, from Lemma 2, K(N0(x)) = N1(x), then the result follows. For
k > 2, the remark simply follows from the fact that

⋂
y∈Nk−1(x)

N1(y) = N1(x).
�

We will now state the bijection theorem (Theorem 1) which is our main
combinatorial tool for proving the termination of the clean-factor series (Theo-
rem 2). Its proof is rather intricate, but it gives much more information than
the termination of the series. By associating a sequence of sets to each vertex in
levels greater than V2 in the multipartite graph, we show that each such vertex
corresponds to a chain of the inclusion order L of the non-simple intersections
of maximal cliques of G.

Theorem 1 (Bijection theorem). Let G be a graph and (Gi)i≥2 its clean-
factor series. For any k ≥ 2, the map φ defined by x 7→ S(x) is a bijection from
Vk to {(O1, . . . , Ok−1) ∈ Ok−1 | O1 ( . . . ( Ok−1} (see Figure 3).

Proof:
The case k = 2 directly follows from Lemma 2, then, in the following, we only

deal with the cases where k ≥ 3. We prove Theorem 1 by recursion, using the five
recursion hypotheses below, namely Htar, Hinj , Hsur, HN and HE . Actually,
hypotheses Htar, Hinj and Hsur are the targeted properties: they imply that
map φ is a bijection. Hypotheses HN and HE contain the fundamental structure
of the multipartite graph series. Hypothesis HN is essential, it gives a complete
characterisation of the neighbourhood of a vertex on the lower levels. Hypothesis
HE shows that the condition of equality of the neighbourhood at level k − 3 of
the children of x in Definition 7 actually induce a control of the neighbourhoods
of the children of x on all the lower levels.

Htar(k) : If x ∈ Vk then O1(x) ( . . . ( Ok−1(x) and (O1(x), . . . , Ok−1(x)) ∈
Ok−1,

Hinj(k) : If x, y ∈ Vk then x 6= y implies S(x) 6= S(y),

Hsur(k) : For any sequence (O1, . . . , Ok−1) ∈ Ok−1 with O1 ( . . . ( Ok−1,
there exists x ∈ Vk such that S(x) = (O1, . . . , Ok−1).
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Figure 3: Top left: a graph G. Top center: its maximal cliques. Top right: the inclusion order
L of the non-simple intersections of maximal cliques of G. Bottom: the multipartite graph
M obtained at termination of the clean-factor series of G. M has 5 levels. Level V0 is for the
vertices of G and level V1 for the maximal cliques of G. The bijection between the vertices
of M and the chains of order L appears in the rest of the levels: each vertex x of M in levels
V2 to V4 has been labelled with the corresponding chain of L, i.e. its characterising sequence
S(x) (see Definition 10). Level V2 is for the non-simple intersections of maximal cliques of G
(i.e. the chains of L of length 0), level V3 is for the chains of L of length 1, and level V4 is for
the chains of L of length 3, which is precisely the height of L. For sake of clarity, only a few
links of M have been drawn on the figure, namely all the links between two consecutive levels
higher than level V2. The black bold lines are for the link between a vertex x at level Vi, for
i ≥ 3, and the unique vertex of Vi−1 whose characterising sequence is a prefix of the sequence
of x (of length length(S(x))− 1, necessarily). In this way, we obtain a clearer representation
of the bijection with the chains of L, as one can clearly see the four prefix trees of the chains
starting at a given element of L: these prefix trees are rooted at level V2 and two of them are
reduced to one single node, labelled (abcd) and (abce).

HN (k) : If x ∈ Vk, then for all j such that 2 ≤ j < k, Nj(x) = Wj(x); where
Wj(x) is the set {y ∈ Vj | (O1(y), . . . , Oj−2(y)) = (O1(x), . . . , Oj−2(x)) and Oj−1(x) ⊆
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Oj−1(y) ⊆ Oj(x)} (using the convention (O1(.), . . . , Oj−2(.)) = () for
j = 2).

HE(k) , for k ≥ 4: If y1, y2 ∈ Vk such that Nk−2(y1) = Nk−2(y2) then ∀p ∈
J0, k − 2K \ {1}, Np(y1) = Np(y2).

At each level k of recursion, we start by showing HN (k), using HE(k − 1),
then we use it to prove Harr(k), Hinj(k), and Hsur(k), and we finish by proving
HE(k).

Initialisation step. We will prove that HN (3), Htar(3), Hinj(3), and Hsur(3)
are true. We do not prove HE(3) since it is undefined. It is worth to note that
we do not need HE(3) in the proof of HN (4): instead, we use Definition 7 that
provide us the initialisation we need.
Proof of HN (3). Since in HN (k), j varies from 2 to k − 1, then in HN (3), j
only takes the value 2. Then, to prove HN (3), we just have to prove that for
all x ∈ V3, N2(x) is equal to W2(x) = {y ∈ V2 | O1(x) ⊆ O1(y) ⊆ O2(x)}.
Let x ∈ V3; we first show that N2(x) ⊆ W2(x). We denote by a1, . . . , al, with
l ≥ 2, the elements of the set N2(x). Clearly, for any i ∈ J1, lK,

⋂
1≤i≤lN0(ai) ⊆

N0(ai) ⊆
⋃

1≤i≤lN0(ai). From Definition 10, we have N0(ai) = O1(ai), O1(x) =
N0(x) =

⋂
1≤i≤lN0(ai), and K(O2(x)) =

⋂
1≤i≤lN1(ai). Moreover, from Re-

mark 3, N1(ai) = K(O1(ai)), so we have K(O2(x)) =
⋂

1≤i≤lK(O1(ai)). And
since, by definition, O2(x) ∈ O′, then, from Remark 2,

⋃
1≤i≤lO1(ai) ⊆ O2(x).

Consequently, for any i ∈ J1, lK, O1(x) ⊆ O1(ai) ⊆ O2(x). That is N2(x) ⊆
W2(x).

Conversely, we show that if y ∈W2(x), then y ∈ N2(x). To that purpose, we
show that N0(x) ⊆ N0(y) and N1(x) ⊆ N1(y), which implies, by maximality of
x in V ∗3 (see Definition 2), that y ∈ N2(x). First, we have N0(x) = O1(x), and
since y ∈ W2(x), we also have O1(x) ⊆ O1(y) = N0(y). Then, N0(x) ⊆ N0(y).
Since O1(y) ⊆ O2(x), we have K(O2(x)) ⊆ K(O1(y)). And from Remark 3,
we have K(O1(y)) = N1(y) and K(O2(x)) = N1(x). Thus, N1(x) ⊆ N1(y) and
we conclude that y ∈ N2(x). Finally, we showed that N2(x) = W2(x), and so
HN (3) is true.

Proof of Htar(3). Since, from HN (3), N2(x) = W2(x) and since |N2(x)| ≥ 2,
it follows that O1(x) ( O2(x), otherwise W2(x) would contain at most one
element. By definition of V ∗3 , |N0(x)| ≥ 2. Since O1(x) = |N0(x)|, it follows
that O1(x), and so O2(x), contains at least two elements. Moreover, from
Remark 3, we have K(O2(x)) = N1(x). And from Definition 7, |N1(x)| ≥ 2.
It follows that K(O2(x)) contains at least two elements, and so does K(O1(x))
since K(O2(x)) ⊆ K(O1(x)). Thus O1(x) and O2(x) both belong to O: Htar(3)
is true.
Proof of Hinj(3). For any z ∈ V3, N2(z) = W2(z). Thus, for any x, y ∈ V3,
(O1(x), O2(x)) = (O1(y), O2(y)) implies that N2(x) = N2(y), which implies that
x = y. So Hinj(3) holds.
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Proof of Hsur(3). Let O1, O2 ∈ O such that O1 ( O2. We will find an element
x of V3 such that O1(x) = O1 and O2(x) = O2. Let Y = {y ∈ V2 | O1 ⊆
O1(y) ⊆ O2}. Let x = Y ∪

⋂
y∈Y N(y), we prove that x is the desired element.

First, to prove that x ∈ V3, we must prove that x ∈ V ∗3 , that is |x ∩ V2| ≥ 2
and |x ∩ V1| ≥ 2 and |x ∩ V0| ≥ 2. From Lemma 2 , there exists two dis-
tinct elements y1, y2 ∈ V2 such that O1(y1) = O1 and O1(y2) = O2. Clearly,
{y1, y2} ⊆ Y , which gives |x ∩ V2| ≥ 2. Furthermore, x ∩ V1 =

⋂
y∈Y N1(y) =⋂

y∈Y K(O1(y)), from Remark 3. Since, for any y ∈ Y , O1(y) ⊆ O2, we have
also K(O2) ⊆ K(O1(y)). It follows that K(O2) ⊆ x ∩ V1, and O2 ∈ O implies
that |K(O2)| ≥ 2, then |x ∩ V1| ≥ 2. We also have x ∩ V0 =

⋂
y∈Y N0(y) =⋂

y∈Y O1(y). And since O1 ⊆ O1(y) for all y ∈ Y , then O1 ⊆ x ∩ V0. It follows
that |x ∩ V0| ≥ 2.

We now show that x is maximal in V ∗3 . Let z ∈ V2 \ Y i.e. O1 6⊆ O1(z) or
O1(z) 6⊆ O2, we prove that x∩V0 6⊆ N0(z) or x∩V1 6⊆ N1(z), which implies that⋂

y∈Y ∪{z}N(y) (
⋂

y∈Y N(y) and that x is maximal, since this holds for all z ∈
V2 \Y . Let us first note that x∩V0 =

⋂
y∈Y N0(y) =

⋂
y∈Y O1(y) = O1, the last

equality coming from the fact that ∀O ∈ O,∃z ∈ V2, O1(z) = O (see Lemma 2).
On the other hand x∩V1 =

⋂
y∈Y N1(y) =

⋂
y∈Y K(O1(y)) = K(

⋃
y∈Y O1(y)) =

K(O2), again using Lemma 2 for the last equality. Now, if O1(z) 6⊆ O2, since
O1(z) ∈ O′, then, from Remark 1, K(O2) 6⊆ K(O1(z)). And since, from what
precedes, K(O2) = x ∩ V1 and, from Remark 3, K(O1(z)) = N1(z), we obtain
x∩V1 6⊆ N1(z). On the other hand, if O1 6⊆ O1(z), since O1 = x∩V0 (see above)
and O1(z) = N0(z) (by definition), we obtain x ∩ V0 6⊆ N0(z). Consequently, x
is maximal in V ∗3 and then x ∈ V3.

The last condition we have to check for proving Hsur(3) is that O1(x) =
O1 and O2(x) = O2. We already have O1 = N0(x) = O1(x). Moreover by
definition, O2(x) is the unique element of O′ such that K(O2(x)) =

⋂
y∈Y N1(y),

and we also have from above that K(O2) =
⋂

y∈Y N1(y), then O2(x) = O2.
Finally, Hsur(3) is true.

Recursion step. Now, let us suppose that k ≥ 4 and that for all i such that
3 ≤ i < k, Htar(i), Hinj(i), Hsur(i) and HE(i) are true. Note that we did
not prove HE(3), which is not even defined, but we don’t need it. Actually,
in step k of the recursion, HE(k − 1) is used only in the proof of HN (k). For
proving HN (4), the use of HE(3) is replaced by the use of the definition of V ∗3
(Definition 7).

Proof of HN (k). Let x ∈ Vk. We denote by a1, . . . , al the elements of the set
Nk−1(x). Let i1, i2 ∈ J1, lK. If k ≥ 5, by hypothesis HE(k − 1), we have that
Np(ai1) = Np(ai2) = Np(x) for all p ∈ J0, k− 3K \ {1}. If k = 4, by Definition 7,
we have that N0(ai1) = N0(ai2) = N0(x). Thus, independently of the value of
k ≥ 4 we have Np(ai1) = Np(ai2) = Np(x) for all p ∈ J0, k − 3K \ {1}. Then,
using the Definition 10 of the characterising sequence, it follows that, for p = 0,
we obtain O1(ai) = O1(aj) and for p ∈ J2, k− 3K, we obtain Op(ai) = Op(aj) =
Op(x).

Let j ∈ J2, k − 3K and let i ∈ J1, lK. From recursion hypothesis HN (k − 1)
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applied to ai, we have Nj(ai) = Wj(ai). Since for all q ∈ J1, k − 3K we have
Oq(x) = Oq(ai), then, from the definition of Wj , it follows that Wj(x) = Wj(ai).
Finally, since Nj(x) = Nj(ai), we obtain Nj(x) = Wj(x), for all 2 ≤ j ≤ k − 3.
Then we just have to prove that Nk−2(x) = Wk−2(x) and Nk−1(x) = Wk−1(x).

We start with Nk−1(x). We will first show that for any i ∈ J1, lK we have
ai ∈ Wk−1(x), that is Nk−1(x) ⊆ Wk−1(x). As explained above, we already
know that, for all q ∈ J1, k − 3K, Oq(x) = Oq(ai). Then, we only need to show
that Ok−2(x) ⊆ Ok−2(ai) ⊆ Ok−1(x).

Let us show the first inclusion: Ok−2(x) ⊆ Ok−2(ai). By definition, Nk−2(x) =⋂
t∈J1,lKNk−2(at) ⊆ Nk−2(ai). Then, we have

⋂
b∈Nk−2(ai)

N1(b) ⊆
⋂

b∈Nk−2(x)
N1(b).

And since, by definition,
⋂

b∈Nk−2(ai)
N1(b) = K(Ok−2(ai) and

⋂
b∈Nk−2(x)

N1(b) =

K(Ok−2(x), then we obtain K(Ok−2(ai)) ⊆ K(Ok−2(x)). Thus, from Remark 1,
we have Ok−2(x) ⊆ Ok−2(ai).

Let us now show the second inclusion: Ok−2(ai) ⊆ Ok−1(x). SinceNk−2(ai) ⊆⋃
t∈J1,lKNk−2(at) then

⋂
b∈Nk−2(ai)

N1(b) ⊇
⋂

b∈
⋃

t∈J1,lK Nk−2(at)
N1(b), and by

definition
⋂

b∈Nk−2(ai)
N1(b) = K(Ok−2(ai)). In order to show the inclusion we

aim at, we will show that
⋂

b∈
⋃

t∈J1,lK Nk−2(at)
N1(b) =

⋂
t∈J1,lKN1(at). Since,

by definition again,
⋂

t∈J1,lKN1(at) = K(O1(x)), this will give K(Ok−2(ai)) ⊇
K(Ok−2(x)), which implies Ok−2(ai)) ⊆ Ok−2(x), the inclusion we aim at.

Then, let us show the equality
⋂

b∈
⋃

t∈J1,lK Nk−2(at)
N1(b) =

⋂
t∈J1,lKN1(at) by

a double inclusion. Let z ∈
⋂

t∈J1,lKN1(at), then for all t ∈ J1, lK, z ∈ N1(at). It

follows that for all b ∈ Nk−2(at), z ∈ N1(b). Since this holds for all t ∈ J1, lK and
for all b ∈ Nk−2(at), then we obtain z ∈

⋂
b∈

⋃
t∈J1,lK Nk−2(t)

N1(b). Conversely,

let z ∈
⋂

b∈
⋃

t∈J1,lK Nk−2(at)
N1(b), we show that z ∈

⋂
t∈J1,lKN1(at). For all

b ∈
⋃

t∈J1,lKNk−2(at) we have z ∈ N1(b). In particular, for any t ∈ J1, lK and

for any b ∈ Nk−2(at), we have z ∈ N1(b), and so z ∈ N1(at). As this holds
for any t ∈ J1, lK, then z ∈

⋂
t∈J1,lKN1(at), that is

⋂
b∈

⋃
t∈J1,lK Nk−2(t)

N1(b) ⊆⋂
t∈J1,lKN1(at). Finally, as we already showed the converse inclusion, we obtain⋂
b∈

⋃
t∈J1,lK Nk−2(t)

N1(b) =
⋂

t∈J1,lKN1(at).

We can now finish the proof of the inclusion Nk−1(x) ⊆ Wk−1(x). Remem-
ber that

⋂
b∈Nk−2(ai)

N1(b) ⊇
⋂

b∈
⋃

t∈J1,lK Nk−2(t)
N1(b) and that by definition⋂

b∈Nk−2(ai)
N1(b) = K(Ok−2(ai).

In addition, we just proved that
⋂

b∈
⋃

t∈J1,lK Nk−2(t)
N1(b) =

⋂
t∈J1,lKN1(at),

and, by definition again, we have
⋂

t∈J1,lKN1(at) = K(Ok−1(x)). We then ob-

tain K(Ok−2(ai)) ⊇ K(Ok−1(x)), and Remark 1 concludes that Ok−2(ai) ⊆
Ok−1(x), for all i ∈ J1, lK. So finally, putting everything together (we proved
above that Ok−2(x) ⊆ Ok−2(ai)) we get Ok−2(x) ⊆ Ok−2(ai) ⊆ Ok−1(x), for all
i ∈ J1, lK, which completes our proof of ai ∈ Wk−1(x), for all i ∈ J1, lK, that is
Nk−1(x) ⊆Wk−1(x).

Let us now prove the converse inclusion: Wk−1(x) ⊆ Nk−1(x). Let y ∈
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Wk−1(x), we have Oq(y) = Oq(x) for all q ∈ J1, k− 3K. Moreover, as we showed
at the beginning of the proof of HN (k), for all i ∈ J1, lK, and all q ∈ J1, k−3K we
have Oq(ai) = Oq(x) and so Oq(ai) = Oq(y). For q = 1, from the definition of
O1, this gives N0(ai) = N0(y). For q ≥ 2 (which occurs only for k ≥ 5), using
recursion hypothesis HN (k − 1) that characterises, for any z ∈ Vk−1 and any
q ≥ 2, Nq(z) as a function of only O1(z), . . . , Oq(z), we then obtain that since y
and ai have the same sequence O1(y), . . . , Ok−3(y) = O1(ai), . . . , Ok−3(ai), they
necessarily have the same neighbourhood Nq(y) = Nq(ai), for all q ∈ J2, k− 3K.
Since we showed that y and ai also have the same neighbourhood on V0, and
since we showed at the beginning of the proof of HN (k) that Np(ai) = Np(x)
for all p ∈ J0, k − 3K \ {1}, it follows that for all p ∈ J0, k − 3K \ {1}, we
have Np(y) = Np(x). Then, in order to show that y ∈ Nk−1(x), we only
need to show that N1(x) ⊆ N1(y) and Nk−2(x) ⊆ Nk−2(y), which implies, by
maximality of x (see Definition 2), that y ∈ Nk−1(x). First, let us show that
N1(x) ⊆ N1(y). Since y ∈Wk−1(x), we have Ok−2(y) ⊆ Ok−1(x), which implies
K(Ok−1(x)) ⊆ K(Ok−2(y)). And since, from remark 3, K(Ok−1(x)) = N1(x)
and K(Ok−2(y)) = N1(y), then we get the desired inclusion: N1(x) ⊆ N1(y).

Let us now show that Nk−2(x) ⊆ Nk−2(y). Let z ∈ Nk−2(x). By recursion
hypothesis HN (k − 1), we know that Nk−2(y) = Wk−2(y). Thus, our aim
is to show that z ∈ Wk−2(y), that is Oq(z) = Oq(y) for all q ∈ J1, k − 4K
and Ok−3(y) ⊆ Ok−3(z) ⊆ Ok−2(y). Let i ∈ J1, lK, since z ∈ Nk−2(x) then
z ∈ Nk−2(ai). It follows by recursion hypothesis HN (k − 1) that for all q ∈
J1, k − 4K, Oq(z) = Oq(ai). And since we already showed that Oq(ai) = Oq(x),
then we obtain Oq(z) = Oq(x) for all q ∈ J1, k − 4K. On the other hand, since
y ∈Wk−1(x), then Oq(y) = Oq(x) for all q ∈ J1, k − 4K, which finally gives that
Oq(y) = Oq(z) for all q ∈ J1, k − 4K.

Let us now show that Ok−3(z) ⊆ Ok−2(y). Since y ∈ Wk−1(x), we have
Ok−2(x) ⊆ Ok−2(y). Then, it is sufficient to show that Ok−3(z) ⊆ Ok−2(x). We
state this fact as a proposition as we use it further in the proof:
(Prop. A) for any vertex z ∈ Nk−2(x), we have Ok−3(z) ⊆ Ok−2(x).
Clearly, since z ∈ Nk−2(x), we have N1(z) ⊇

⋂
b∈Nk−2(x)

N1(b). By definition,

N1(z) = K(Ok−3(z) and
⋂

b∈Nk−2(x)
N1(b) = K(Ok−2(x)). We then obtain

K(Ok−3(z)) ⊇ K(Ok−2(x)), which gives, from Remark 1, Ok−3(z) ⊆ Ok−2(x).
And since y ∈ Wk−1(x), we have Ok−2(x) ⊆ Ok−2(y). Thus, Ok−3(z) ⊆
Ok−2(y).

We now show that Ok−3(y) ⊆ Ok−3(z). Since y ∈Wk−1(x), then Ok−3(y) =
Ok−3(x). As we already showed, for any i ∈ J1, lK, we have Ok−3(x) = Ok−3(ai),
and so Ok−3(y) = Ok−3(ai). Moreover, since z ∈ Nk−2(x) then z ∈ Nk−2(ai).
And by recursion hypothesis HN (k − 1), we have Wk−2(ai) = Nk−2(ai). Thus,
z ∈ Wk−2(ai) satisfies Ok−3(ai) ⊆ Ok−3(z). Finally, we obtain Ok−3(y) ⊆
Ok−3(z), which achieves the proof of z ∈ Nk−2(y). Thus, we have Nk−2(x) ⊆
Nk−2(y).

In summary, we showed that for any y ∈ Wk−1(x), we have Np(y) = Np(x)
for all p ∈ J0, k−3K\{1} and N1(x) ⊆ N1(y) and Nk−2(x) ⊆ Nk−2(y). Then, by
maximality of x (see Definition 2), y belongs to Nk−1(x). That is, Wk−1(x) ⊆
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Nk−1(x). As we also showed the converse inclusion, we obtain Nk−1(x) =
Wk−1(x).

In order to achieve the proof of HN (k), we still have to show that Nk−2(x) =
Wk−2(x). We start with Wk−2(x) ⊆ Nk−2(x). Let z ∈ Wk−2(x). Let i ∈
J1, lK, we show that z ∈ Nk−2(ai). By recursion hypothesis HN (k − 1) we
know that Nk−2(ai) = Wk−2(ai) = {w ∈ Vk−2 | (O1(w), . . . , Ok−4(w)) =
(O1(ai), . . . , Ok−4(ai)) and Ok−3(ai) ⊆ Ok−3(w) ⊆ Ok−2(ai)}. As we already
mentioned several times, we have (O1(ai), . . . , Ok−4(ai)) = (O1(x), . . . , Ok−4(x)).
Since z ∈Wk−2(x), we also have (O1(z), . . . , Ok−4(z)) = (O1(x), . . . , Ok−4(x)),
and then (O1(z), . . . , Ok−4(z)) = (O1(ai), . . . , Ok−4(ai)). Again, since z ∈
Wk−2(x), we have Ok−3(x) ⊆ Ok−3(z) ⊆ Ok−2(x). Since we already proved
that Nk−1(x) = Wk−1(x), we know that Ok−3(ai) = Ok−3(x) and Ok−2(x) ⊆
Ok−2(ai). It follows that Ok−3(ai) ⊆ Ok−3(z) ⊆ Ok−2(ai), which shows that
z ∈ Nk−2(ai). As this holds for any i ∈ J1, lK, then we conclude that z ∈
Nk−2(x).

Conversely, let z ∈ Nk−2(x). Then, for all i ∈ J1, lK, z ∈ Nk−2(ai). From
recursion hypothesis HN (k − 1) applied to ai, we get (O1(z), . . . , Ok−4(z)) =
(O1(ai), . . . , Ok−4(ai)). And for the same reason, we also have Ok−3(ai) ⊆
Ok−3(z). As we know that (O1(ai), . . . , Ok−3(ai)) = (O1(x), . . . , Ok−3(x)), we
obtain (O1(z), . . . , Ok−4(z)) = (O1(x), . . . , Ok−4(x)) and Ok−3(x) ⊆ Ok−3(z).
Then, the only thing left we have to show in order to prove that z ∈ Wk−2(x),
which is our goal, is to prove that Ok−3(z) ⊆ Ok−2(x). In fact, we already
proved this proposition in the proof of Wk−1(x) ⊆ Nk−1(x) above, referred as
(Prop. A) in the text. So we finally obtain that Nk−2(x) ⊆Wk−2(x), and since
we already proved the converse inclusion, we obtain the equality between the
two sets, Nk−2(x) = Wk−2(x), which completes our proof of HN (k).

Proof of Htar(k). FromHN (k) we know that for any i ∈ J1, lK, (O1(ai), . . . , Ok−3(ai))
= (O1(x), . . . , Ok−3(x)). Then, from recursion hypothesis Htar(k − 1), we have
O1(x) ( . . . ( Ok−3(x) and, in particular, we have O1(x) ∈ O and so |O1(x)| ≥
2. Since Nk−2(x) = Wk−2(x) and |Nk−2(x)| > 1, necessarily Ok−3(x) (
Ok−2(x). Similarly, the fact that Nk−1(x) = Wk−1(x) and |Nk−1(x)| > 1 im-
plies that Ok−2(x) ( Ok−1(x). At last, from Remark 3, we have K(Ok−1(x)) =
N1(x), and since |N1(x)| ≥ 2, it follows that |K(Ok−1(x))| ≥ 2. Combined
with the fact that |O1(x)| ≥ 2, this implies that for all j ∈ J1, k − 1K, we have
Oj(x) ∈ O. Thus, Htar(k) is true.

Proof of Hinj(k). Let x, x′ ∈ Vk such that S(x) = S(x′). From HN (k),
Nk−1(x) = Wk−1(x) and Nk−1(x′) = Wk−1(x′). And since S(x) = S(x′), we
have Wk−1(x) = Wk−1(x′). As a consequence, Nk−1(x) = Nk−1(x′) and so
x = x′. Therefore Hinj(k) is true.

Proof of Hsur(k). Let (O1, . . . , Ok−1) ∈ Ok−1 such that O1 ( . . . ( Ok−1.
From recursion hypothesis Hsur(k − 1), for any P ∈ O such that Ok−3 ( P ,
there exists yP ∈ Vk−1 such that S(yP ) = (O1, . . . , Ok−3, P ). We denote by Y
the set Y = {y ∈ Vk−1 | (O1(y), . . . , Ok−3(y)) = (O1, . . . , Ok−3) and Ok−2 ⊆
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Ok−2(y) ⊆ Ok−1}. Let x = Y ∪
⋂

y∈Y N(y). We will show that x is maximal in
V ∗k and that the corresponding element of Vk has the desired sequence S(x) =
(O1, . . . , Ok−1).

Let us start by showing that x ∈ V ∗k . Since Ok−2 ( Ok−1, we have
|Y | ≥ 2, that is |x ∩ Vk−1| ≥ 2. From recursion hypothesis HN (k − 1), for
any y ∈ Y , Nk−2(y) = {t ∈ Vk−2 | (O1(t), . . . , Ok−4(t)) = (O1, . . . , Ok−4) and
Ok−3 ⊆ Ok−3(t) ⊆ Ok−2(y)}. And since, by definition, Ok−2 ⊆ Ok−2(y), then
Nk−2(y) contains at least the two elements of Vk−2 having characterising se-
quences (O1, . . . , Ok−4, Ok−3) and (O1, . . . , Ok−4, Ok−2), which do exist from
recursion hypothesis Hsur. Since this is true for all y ∈ Nk−2(x), then x itself
has these two elements as neighbours on level Vk−2. Then, |x ∩ Vk−2| ≥ 2.
Let us now show that |x ∩ V1| ≥ 2. For any y ∈ Y , from Remark 3, we have
N1(y) = K(Ok−2(y)). Since Ok−2(y) ⊆ Ok−1 then K(Ok−2(y)) ⊇ K(Ok−1).
Thus, we obtain x ∩ V1 =

⋂
y∈Y N1(y) =

⋂
y∈Y K(Ok−2(y)) ⊇ K(Ok−1).

And since Ok−1 ∈ O, Ok−1 contains at least two elements and so does x ∩
V1. In order to complete the proof of x ∈ V ∗k , we need to show that for
all y, y′ ∈ Y , we have Nk−3(y) = Nk−3(y′). First, note that, by definition,
(O1(y), . . . , Ok−3(y)) = (O1(y′), . . . , Ok−3(y′)) = (O1, . . . , Ok−3). Moreover, re-
cursion hypothesis HN (k−1) gives that the neighbourhood at level Vk−3 of any
vertex z ∈ Vk−1 only depends on the piece of sequence (O1(z), . . . , Ok−3(z)).
And since y and y′ have the same such pieces of sequence, it follows that
Nk−3(y) = Nk−3(y′). Thus x ∈ V ∗k .

We will now show that x is maximal in V ∗k . Let z ∈ Vk−1\Y , we show that if
for some j ∈ J1, k − 3K, Oj(z) 6= Oj then there is no element B ∈ V ∗k containing
Y ∪{z}. We denote y ∈ Y an arbitrary element of Y and we distinguish between
the case where k = 4 and the case where k ≥ 5.

Let us start with the general case where k ≥ 5, we show that Nk−3(z) 6=
Nk−3(y), which implies, from Definition 7, that there is no element of V ∗k con-
taining both y and z. So let j ∈ J1, k − 3K, such that Oj(z) 6= Oj . Since
Oj(y) = Oj , then we have Oj(z) 6= Oj(y). Moreover, from recursion hypothesis
HN (k − 1), we have Nk−3(z) = Wk−3(z) and Nk−3(y) = Wk−3(y). We again
distinguish several cases depending on the value of j.
If j ≤ k − 5 (which may occur only when k ≥ 6), from recursion hypothesis
Hsur(k − 3), there exists t1 ∈ Vk−3 such that S(t1) = (O1(z), . . . , Ok−4(z)).
Clearly, from the definition of Wj(z), we have t1 ∈Wk−3(z) = Nk−3(z). On the
opposite, from the definition of Wj(y), and since Oj(z) 6= Oj(y) with j ≤ k− 5,
we obtain t1 6∈Wk−3(y) = Nk−3(y) and it follows that Nk−3(z) 6= Nk−3(y).
If j = k−4. SinceOk−4(z) 6= Ok−4(y), then one of the two setsOk−4(z), Ok−4(y)
is not included in the other, say Ok−4(y) 6⊆ Ok−4(z) without loss of gen-
erality. Consider again the element t1 ∈ Nk−3(z) described above. Since
Ok−4(t1) = Ok−4(z) 6⊇ Ok−4(y), then it follows, from the definition of Wk−4(y),
that t1 6∈Wk−3(y) = Nk−3(y), and so Nk−3(z) 6= Nk−3(y).
If j = k− 3, without loss of generality we can assume that Ok−3(z) 6⊆ Ok−3(y).
From recursion hypothesisHsur(k−3), there exists t2 ∈ Vk−3 such thatOk−4(t2) =
Ok−3(z) and (O1(z), . . . , Ok−5(z)) = (O1(z), . . . , Ok−5(z)) (using, as usual,
the convention (O1(z), . . . , Ok−5(z)) = () if k = 5). From the definition of
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Wk−3(z) and Wk−3(y), we obtain that t2 ∈ Wk−3(z) = Nk−3(z) but, since
Ok−3(z) 6⊆ Ok−3(y), we have t2 6∈ Wk−3(y) = Nk−3(y). Thus, in all cases
where k ≥ 5, if there exists some j ∈ J1, k − 3K such that Oj(z) 6= Oj , then
Nk−3(z) 6= Nk−3(y).

Let us now deal with the particular case where k = 4. In this case, necessarily
the index j ∈ J1, k − 3K such that Oj(z) 6= Oj is j = 1. We immediately obtain
that N0(z) = O1(z) 6= O1(y) = N0(y). Then, from Definition 7 (case k = 4),
there is no element B ∈ V ∗k containing both y and z.
Finally, we conclude that, regardless of the value of k ≥ 4, if for some j ∈
J1, k − 3K, Oj(z) 6= Oj then there is no element B ∈ V ∗k containing Y ∪ {z}.

Thus, to show that x is maximal in V ∗k we only need to show that for any
z ∈ Vk−1 such that (O1(z), . . . , Ok−3(z)) = (O1, . . . , Ok−3), if Ok−2 6⊆ Ok−2(z)
or Ok−2(z) 6⊆ Ok−1, then we have

⋂
y∈Y N(y) 6⊆ N(z).

We first treat the case where Ok−2(z) 6⊆ Ok−1. In this case, from Remark 1,
K(Ok−1) 6⊆ K(Ok−2(z)). From Remark 3, we have K(Ok−2(z)) = N1(z). We
now show that K(Ok−1) =

⋂
y∈X∩Vk−1

N1(y), which will give us the desired

result:
⋂

y∈x∩Vk−1
N1(y) 6⊆ N1(z). From Remark 3, for any y ∈ Vk−1, N1(y) =

K(Ok−2(y)). It follows that
⋂

y∈x∩Vk−1
N1(y) =

⋂
y∈x∩Vk−1

K(Ok−2(y)) and we

also have
⋂

y∈x∩Vk−1
K(Ok−2(y)) =

⋂
P∈O and Ok−2⊆P⊆Ok−1

K(P ), fromHsur(k−
1) and the definition of x. From Lemma 2, we get

⋂
P∈O and Ok−2⊆P⊆Ok−1

K(P ) =

K(
⋃

P∈O and Ok−2⊆P⊆Ok−1
P ), which is clearly equal to K(Ok−1). And so we

have
⋂

y∈x∩Vk−1
N1(y) = K(Ok−1). As a consequence, we obtain

⋂
y∈x∩Vk−1

N1(y) 6⊆
N1(z). Then, adding z to x ∩ Vk−1 would strictly decrease

⋂
y∈x∩Vk−1

N1(y).

Let us now consider the case where Ok−2 6⊆ Ok−2(z). Using recursion hy-
pothesisHN (k−1), for all y ∈ x∩Vk−1 we haveNk−2(y) = {t ∈ Vk−2 |Ok−3(y) ⊆
Ok−3(t) ⊆ Ok−2(y) and (O1(t), . . . , Ok−4(t)) = (O1, . . . , Ok−4)}. Let us denote
Z = {t ∈ Vk−2 |

⋃
y∈x∩Vk−1

Ok−3(y) ⊆ Ok−3(t) ⊆
⋂

y∈x∩Vk−1
Ok−2(y) and (O1(t), . . . ,

Ok−4(t)) = (O1, . . . , Ok−4)} (as usual, we use the convention (O1, . . . , Ok−4) =
() when k = 4). We show that

⋂
y∈x∩Vk−1

Nk−2(y) = Z. Let t ∈
⋂

y∈x∩Vk−1
Nk−2(y),

then for all y ∈ x∩Vk−1, Ok−3(y) ⊆ Ok−3(t) ⊆ Ok−2(y) and so
⋃

y∈x∩Vk−1
Ok−3(y) ⊆

Ok−3(t) ⊆
⋂

y∈x∩Vk−1
Ok−2(y), that is t ∈ Z. Conversely, if t ∈ Z then we

have
⋃

y∈x∩Vk−1
Ok−3(y) ⊆ Ok−3(t) ⊆

⋂
y∈x∩Vk−1

Ok−2(y) and so Ok−3(y) ⊆
Ok−3(t) ⊆ Ok−2(y) for all y ∈ x ∩ Vk−1, that is t ∈

⋂
y∈x∩Vk−1

Nk−2(y). Thus,⋂
y∈x∩Vk−1

Nk−2(y) = Z. By definition, for all y ∈ x ∩ Vk−1, Ok−3(y) = Ok−3
and Ok−2 ⊆ Ok−2(y). It follows that

⋃
y∈x∩Vk−1

Ok−3(y) = Ok−3 and Ok−2 ⊆⋂
y∈x∩Vk−1

Ok−2(y). Moreover, from recursion hypothesis Hsur, there exists t′ ∈
Vk−2 such that Ok−3(t′) = Ok−2 and (O1(t′), . . . , Ok−4(t′)) = (O1, . . . , Ok−4).
From what precedes, since Ok−3 ⊆ Ok−2 ⊆

⋂
y∈x∩Vk−1

Ok−2(y), then t′ ∈ Z. On

the other hand, from recursion hypothesis HN (k − 1), we have Nk−2(z) = {t ∈
Vk−2 | Ok−3 ⊆ Ok−3(t) ⊆ Ok−2(z) and (O1(t), . . . , Ok−4(t)) = (O1, . . . , Ok−4)}.
And since Ok−2 6⊆ Ok−2(z), it follows that t′ 6∈ Nk−2(z), while t′ ∈ Z =⋂

y∈x∩Vk−1
Nk−2(y). Thus,

⋂
y∈x∩Vk−1

Nk−2(y) 6⊆ Nk−2(z) and adding z to

x ∩ Vk−1 would strictly decrease
⋂

y∈x∩Vk−1
Nk−2(y). Finally, x is maximal in
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V ∗k and is therefore an element of Vk.
In order to conclude the proof of Hsur(k), let us now show that the ele-

ment x of Vk has the desired characterising sequence (O1, . . . , Ok−1). First,
from HN (k), which we already proved, we know that (O1(x), . . . , Ok−3(x)) =
(O1(y), . . . , Ok−3(y)) for any y ∈ Nk−1(x), which gives (O1(x), . . . , Ok−3(x)) =
(O1, . . . , Ok−3), from the definition of x = Y

⋃
y∈Y N(y). Second, from Re-

mark 3, we have K(Ok−1(x)) = N1(x) and we already know that |N1(x)| ≥
2 (see beginning of the proof of Hsur(k)). This gives |K(Ok−1(x))| ≥ 2,
and as we have |O1(x)| ≥ 2 and O1(x) ⊆ . . . ⊆ Ok−2(x) ⊆ Ok−1(x), we
obtain that Ok−2(x), Ok−1(x) ∈ O. Now, from HN (k), we know that the
couple (Ok−2(x), Ok−1(x)) is such that Nk−1(x) = {y ∈ Vk−1 | Ok−2(x) ⊆
Ok−2(y) ⊆ Ok−1(x) and (O1(y), . . . , Ok−3(y)) = (O1, . . . , Ok−3)}. And by def-
inition of x, the couple (Ok−2, Ok−1) also satisfies this condition. But since
Ok−2, Ok−1, Ok−2(x), Ok−1(x) all belong to O, then, from recursion hypoth-
esis Hsur(k − 1), for any P ∈ {Ok−2, Ok−1, Ok−2(x), Ok−1(x)} there exists
y ∈ Vk−1 such that S(y) = (O1, . . . , Ok−3, P ). Then, for P = Ok−1, using
the definition of Nk−1(x) based on the couple (Ok−2, Ok−1), we obtain that y ∈
Nk−1(x), and consequently, using the definition of Nk−1(x) based on the couple
(Ok−2(x), Ok−1(x)), we have Ok−1 ⊆ Ok−1(x). Similarly, for P = Ok−1(x) we
obtain Ok−1(x) ⊆ Ok−1, and it follows that Ok−1(x) = Ok−1. Analogously,
choosing P = Ok−2 and then P = Ok−2(x) shows that Ok−2(x) = Ok−2. Thus,
Hsur(k) is true.

Proof of HE(k).
Let k ≥ 4, and let y1, y2 ∈ Vk such that Nk−2(y1) = Nk−2(y2). We will show

that for all p ∈ J0, k − 2K \ {1}, Np(y1) = Np(y2). From HN (k) applied to y1
and y2, we get:
Nk−2(y1) = Wk−2(y1) = {t ∈ Vk−2 | (O1(t), . . . , Ok−4(t)) = (O1(y1), . . . , Ok−4(y1))
and Ok−3(y1) ⊆ Ok−3(t) ⊆ Ok−2(y1)}, and Nk−2(y2) = Wk−2(y2). Since
Nk−2(y1) = Nk−2(y2), then by considering a common element t of these two sets
(which are non empty since Ok−2(y1) ∈ O), we have (O1(y1), . . . , Ok−4(y1)) =
(O1(y2), . . . , Ok−4(y2)) (using the usual convention on empty sequences). We
now prove that Ok−3(y1) = Ok−3(y2). From recursion hypothesis Hsur(k), we
know that there exists t1 ∈ Vk−2 such that S(t1) = (O1(y1), . . . , Ok−3(y1)).
This element t1 is clearly an element of Nk−2(y1), and then is an element of
Nk−2(y2). Then, we have Ok−3(y2) ⊆ Ok−3(t1) = Ok−3(y1). Symmetrically, by
considering an element t2 ∈ Vk−2 such that S(t2) = (O1(y2), . . . , Ok−3(y2)), we
obtain Ok−3(y1) ⊆ Ok−3(y2). And finally, we have Ok−3(y1) = Ok−3(y2). Then,
regardless of the value of k ≥ 4, we have N0(y1) = O1(y1) = O1(y2) = N0(y2),
which is enough to prove HE(k) when k = 4. Let us complete the gen-
eral case where k ≥ 5 by considering some p ∈ J2, k − 3K and showing that
Np(y1) = Np(y2). From recursion hypothesis HN (k), we have Np(y1) = {t ∈
Vp | (O1(t), . . . , Op−2(t)) = (O1(y1), . . . , Op−2(y1)) and Op−1(y1) ⊆ Op−1(t) ⊆
Op(y1)}. And since p ≤ k − 3, (O1(y1), . . . , Op(y1)) = (O1(y2), . . . , Op(y2)),
which implies Np(y1) = Np(y2). Thus, for all p ∈ J0, k − 2K \ {1}, Np(y1) =
Np(y2).
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This shows that HE(k) is true, which ends the recursion step and the proof
of Theorem 1.

�

The termination of the series directly follows from the bijection theorem
(Theorem 1 above) between the vertices of the multipartite graph and the chains
of L.

Theorem 2 (Termination theorem). For any graph G, the clean-factor se-
ries (Gi)i≥1 generated by G terminates.

Proof: Theorem 1 states that the characterising sequence (O1(x), . . . , Ok−1(x))
of any node x at level k is such that O1(x) ( . . . ( Ok−1(x). The strict in-
clusions imply that the length of the characterising sequence, which is equal
to k − 1, cannot exceed h + 1, where h is the height of L. Since h ≤ n − 2,
necessarily Vn+1 is empty. It follows that the clean-factor series terminates and
that the multipartite graph on which it terminates has at most n+1 levels, that
is the upper level has index at most n. �

In our definition of the clean-factor series, the first bipartite graph of the
series is always the vertex-clique-incidence bipartite graph of some graph. It
is worth to note that our result of termination is actually more general: the
iteration of the clean-factor operator starting from an arbitrary bipartite graph
always terminates too.

Corollary 1. For any bipartite graph H, the series of multipartite graphs ob-
tained by iteratively applying the clean-factor operator starting from H termi-
nates.

Proof: Let H = (V0, V1, E) be an arbitrary bipartite graph. Now, consider
the vertex-clique-incidence bipartite graph H ′ = (V ′0 , V1, E

′) built from H in
the following way: for each vertex y ∈ V1, add a particularising vertex x ∈ V ′0
linked only to y. Then, in H ′, the sets of neighbours on V ′0 of vertices of V1
are not pairwise included and it follows that H ′ is the vertex-clique-incidence
bipartite graph of some graph4 G′. Moreover, since the vertices we added on
level V ′0 are included in only one maximal clique of G′, then the vertices at
level V2 in the clean-factor graph of H and H ′ are the same and have the same
neighbourhoods. And this holds for all other levels of the series as well: from
level V1 and above, the series of H ′ is identical to the one of H. And since from
Theorem 2, the series of H ′ terminates, so does the series of H. �

4Graph G′ is simply the graph whose vertex set is V ′0 and whose maximal cliques are the
neighbourhoods in H′ of the vertices of V1.
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4. Practical utility of the model

In addition to the theoretic questions we addressed, our work was motivated
by designing a model of complex networks that, while remaining very general,
encompass both the local density and the heterogeneous degree distribution of
those graphs encountered in practice. In this section, we emphasise on the fact
that our modelling object, the multipartite graph on which the clean factor
series terminates, which we call the clean-factor decomposition, is suitable for
practical use, with regard to size and time of computation. This allowed us to
compute the clean-factor decomposition of very large graphs having hundreds
of thousands of vertices and millions of edges. These practical results are not
presented here since they are far beyond the scope of this work. But, in the
following, we give theoretic evidence of why the clean-factor decomposition is
a suitable model to manipulate large real-world instances of graphs, based on
common properties of those graphs.

The size of the multipartite graph M obtained at termination of the clean-
factor series can be exponential in theory, as the number of maximal cliques
itself may be exponential. But in practice, its size is quite reasonable and it
can be computed efficiently. Indeed, the size of M mainly depends on the
complexity of imbrication of maximal cliques, namely on the number of chains
of L (Theorem 1). Theorem 3 below shows that under reasonable hypotheses,
this number is linearly bounded and the size of M only linearly depends on the
number of vertices of G.

It must be clear that our hypotheses imply that the number of maximal
cliques of G is linearly bounded, as the vertices on level V1 of M are precisely
the maximal cliques of G. But on the other hand, note that this bound on the
number of maximal cliques is not sufficient to guarantee a polynomial bound
on the number of vertices of M : there may still be an exponential number of
vertices on the upper levels of M . Theorem 3 below shows that this does not
happen under our hypotheses.

Theorem 3. If every vertex of G is involved in at most k maximal cliques and
if every maximal clique of G contains at most c vertices, then we have

|V (M)| ≤ min(k 2c c! , 2k k! + 1)× n

Proof: Thanks to Theorem 1, we obtain an upper bound on |V (M)| by bound-
ing the number of strictly increasing sequences of the form (O1, . . . , Oi) such
that O1, . . . , Oi−1 ∈ O.

First, we use the fact that all such sequences are sub-sequences of those
obtained starting from a clique Oi and recursively removing one vertex at each
step until one obtains a pair O1. The number of such sequences starting with
a fixed clique is at most the number of orders on the c vertices of the clique,
that is c!. And the number of sub-sequences of a sequence of length c is 2c.
Finally, since each vertex is included in at most k maximal cliques, the number
of maximal cliques is at most k n. Then, there are at most k 2c c!n increasing
sequences made of elements of O, which are in bijection with the vertices of M
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of level at least 2. Moreover, note that our counting also includes the sequences
made of one single maximal clique of G and the sequences made of one single
set O which is a singleton. Those particular sequences are in bijection with the
vertices of M at level 1 and 0 respectively. Then, we obtain |V (M)| ≤ k 2c c!n.

Clearly, since O ⊆ O′, the number of strictly increasing sequences made of
elements of O is at most the number of strictly increasing sequences made of
elements of O′. Another way to count those latter sequences is to count those
starting with a fixed minimal set Omin ∈ O′ \ {∅}. Since O′ is closed under
intersection, minimal elements of O′ \ {∅} are pairwise disjoint and therefore
their number is at most n. The sequences having Omin as first set can be formed
by starting from a clique containing Omin and iteratively intersecting it with
another clique containing Omin. By hypothesis, there are at most k cliques
containing a given Omin, and therefore k! orders on these k cliques. Each order
gives rise to a sequence of elements of O′, which contains 2k sub-sequences.
Thus, there are at most k! 2k strictly decreasing sequences of elements of O′
having Omin as first element. Note that the counting we made actually also
comprises the sequences made of one single maximal clique of G. Consequently,
the number of vertices in M at level at least 1 is at most k! 2k n, and adding the
n vertices at level 0 to this count we obtain the bound |V (M)| ≤ (2k k!+ 1)×n,
which completes the proof. �

In practice, parameters k and c are quite small, as they are often constrained
by the context where the graphs come from (e.g. social networks, computer
networks, citation networks) independently from the size of the graph. Then,
the size of M is reasonable in practice, namely O(n) for class of graphs where
k and c are bounded. An important consequence is that for those graphs it
is possible to compute M in low polynomial time. For example, under those
hypotheses, the algorithm of [29] enumerates all maximal cliques of graph G in
linear time with regard to the number of maximal cliques, that is O(n) time
in this case. Moreover, [10] shows that, for general bipartite graphs on |B|
vertices, it is possible to enumerate their maximal bicliques in O(|B|2) time
per biclique (see also [2] for a survey on maximal bicliques enumeration). In
the computation of M , at any stage we have to compute the maximal bicliques
of the bipartite graph between the uppermost level and the rest of the levels.
Since, from Theorem 3, under our hypotheses, the size of M is O(n), then the
time needed to compute one maximal biclique is O(n2). And as we need to
compute at most O(n) bicliques along the algorithm, it follows that the total
time spent by the algorithm for computing the maximal bicliques involved in
the construction of M is O(n3). Finally, as the rest of the treatments needed
for the construction of M can be achieved in polynomial time, it turns out that,
under the hypotheses of Theorem 3, M can be computed in polynomial time.

These facts explain that, in practice, using as black boxes the implementation
[26] of [25]’s algorithm for enumeration of maximal cliques and the implemen-
tation [27] of [28]’s algorithm for enumeration of maximal bicliques, we could
compute the clean-factor decomposition of graphs with thousands and even hun-
dred of thousands of nodes. Indeed, we did so for a protein interaction network
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of 1 458 vertices and 1 948 edges, a movie actors network of 392 340 vertices and
15 038 083 edges, and a piece of the world-wide-web graph of 325 740 nodes and
1 090 108 edges (all can be found at [3]).

This shows that, even though the problem of computing the maximal cliques
and bicliques is NP-hard for arbitrary graphs, for graphs encountered in prac-
tice, since this computation can be done in polynomial time (under the hypothe-
ses of Theorem 3), it is possible to efficiently compute the clean-factor series.
This makes the clean-factor model a very promising tool for modelling complex
networks.

5. Conclusion

In this paper, we studied the termination of the weak-factor operator, which
is a multipartite graph operator appeared in the context of complex network
modelling. One key issue in this context is that the series obtained by iteratively
applying the operator terminates, as this is mandatory in order to obtain an
object suitable for modelling. Since the weak-factor series does not always
terminate, we designed a refinement of this operator, called the clean-factor
graph, whose series terminates for all input graphs. And we showed that this
modelling approach is practically efficient in the sense that the clean-factor series
can be computed even for large graphs, under reasonable assumptions on their
structure.

The first question arising from our work is to find minimal restrictions of
the weak-factor operator that guarantee termination for all graphs. Indeed, it
is crucial in practice to introduce constraints as light as possible, since those
constraints, that have to be respected during the random generation process,
makes this process more intricate to design and less efficient. In particular
we ask whether the condition requiring equality of the neighbourhoods at level
Vk−3 in the definition of the clean-factor graph can be replaced by a condition
requiring only that these neighbourhoods share at least two common vertices.

Moreover, the use of multipartite graphs as models of complex networks, in
the spirit of the bipartite decomposition [13, 14], asks for some other important
questions. In this context, the key issue is to generate a random multipartite
graph while preserving the properties of the original graph. To do so, one has to
express the properties to preserve as functions of basic multipartite properties
(like degrees, for instance) and to generate random multipartite graphs satis-
fying these properties. This is a very promising direction for complex network
modelling, but much remains to be done.
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