
Programmable RNS Lattice-Based Parallel
Cryptographic Decryption

Paulo Martins†, Leonel Sousa†
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
Email: paulo.sergio@netcabo.pt; las@inesc-id.pt

Julien Eynard∗, Jean-Claude Bajard∗
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris

Email: {julien.eynard, jean-claude.bajard}@lip6.fr

Abstract—Should quantum computing become viable, current
public-key cryptographic schemes will no longer be valid. Since
cryptosystems take many years to mature, research on post-
quantum cryptography is now more important than ever. Herein,
lattice-based cryptography is focused on, as an alternative post-
quantum cryptosystem, to improve its efficiency. We put together
several theoretical developments so as to produce an efficient
implementation that solves the Closest Vector Problem (CVP) on
Goldreich-Goldwasser-Halevi (GGH)-like cryptosystems based on
the Residue Number System (RNS). We were able to produce
speed-ups of up to 5.9 and 11.2 on the GTX 780 Ti and i7
4770K devices, respectively, when compared to a single-core
optimized implementation. Finally, we show that the proposed
implementation is a competitive alternative to the Rivest-Shamir-
Adleman (RSA).

I. INTRODUCTION

Most public-key cryptosystems currently in use, such as
RSA, rely on the intractability of factoring and computing
discrete logarithms. However, in 1994, Shor proposed effi-
cient quantum algorithms to solve these problems [1]. Hence,
should quantum computing become viable, currently-in-use
cryptosystems will be broken. As such, research on efficient
post-quantum public-key cryptosystems is most valuable.

Lattice-Based Cryptosystems (LBCs) hold a great promise
for post-quantum computing since lattice-based problems are
thought to be hard even in a quantum computing setting. This
type of cryptography appeared during the 90s, with proposals
such as GGH [2] and NTRU [3]. In GGH-like approaches, a
plaintext is a small “error” added to a vector of a lattice. The
public key corresponds to a “bad basis” of the lattice, with
which solving the CVP is hard, and the private key is a “good
basis”, enabling to compute the closest vector for small errors.
The decryption just consists on solving the CVP.

The security of GGH and NTRU is assumed to rely on
the hardness of CVP, but none reduction proof exists yet. In
practice, the size of parameters depends on the complexity
of best known attacks such as lattice reductions. In their first

†This work was supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.
∗This work has been supported in part by the European Unions H2020

Programme under grant agreement number ICT-644209.

form, GGH signature and encryption schemes were severely
broken [4], [5] and thwarting these attacks is still a current
concern [6]–[8]. Recently, GGH has got many improvements
[9]–[11] to make it competitive under secure parameters. This
article deals with efficient implementation of GGH decryption
function, via an arithmetical approach as suggested in [12].

The RNS allows to split large integer arithmetic over many
small finite fields, enabling the exploitation of the integer-
arithmetic architectural optimizations of most programmable
platforms, while removing the overhead associated to work-
ing with multi-precision integers. Further, since each small
finite field operates independently, the RNS is prone to data
parallelism. Since both multi-core Central Processing Units
(CPUs) and Graphic Processing Units (GPUs) have become
widely available during the past decades [13], herein, the
aforementioned RNS lattice-based cryptographic approaches
are analyzed, further developed, and their performance is
evaluated for multi-core CPUs and GPUs.

The rest of this paper is organized as follows. In Section
II, lattice theory and the RNS are reviewed. In Section III,
GGH decryption is analyzed, with a focus on how RNS may
be exploited. This procedure is parallelized and implemented;
and evaluated and compared to related work in Sections IV,
and V, respectively. Then, its performance is compared to that
of RSA. Finally, conclusions are drawn.

II. BACKGROUND

A full-rank lattice L is defined as the set of all integral com-
binations of n-linearly independent vectors r0, . . . , rn−1 ∈
Rn. If the basis is represented as a matrix R, having the basis
vectors as rows, the lattice generated by R can be defined
as L(R) = {xR : x ∈ Zn}, where x is represented as a row-
vector, and xR denotes the usual vector-matrix multiplication.
Herein, vectors r0, . . . , rn−1 are restricted to Zn.

If U is a unimodular matrix (i.e., an integer square matrix
with determinant ± 1), the basis R and UR generate the same
lattice. In fact, any lattice admits an infinite number of bases
as soon as n ≥ 2. Additionally, due to its periodicity, every
lattice L induces an equivalence relation over Zn defined as
follows: v ≡L w if and only if v−w ∈ L. Reducing a vector

1: Input: p ∈ Zn, B0 ∈ Zn

2: Output: c ∈ Z
3: c← p[0]
4: for i← n− 1 to 1 do
5: c← c− p[i]×B0[i]
6: end for
7: c← c mod B0[0]
8: return c

Fig. 1. Encryption Algorithm

1: Input: c ∈ Z, R−1
0 ∈ Qn, the

first row of R−1

2: Output: p ∈ Zn

3: p← (c, 0, . . . , 0)−
⌊
cR−1

0

⌉
R

4: return p

Fig. 2. Decryption Algorithm

v modulo a basis R corresponds to finding the unique point
w in {

∑n−1
i=0 xiri : 0 ≤ xi < 1} such that v − w ∈ L.

A. Lattice-Based Cryptography

A lattice-based encryption scheme will now be described,
using Rose’s approach [10]. The private basis, R, is produced
as a rotated nearly-orthogonal basis, such that Babai’s Round-
Off procedure [14] may be used to compute the closest vector.
Moreover, the public basis is of a Hermite Normal Form
(HNF). The HNF is a basis of L(R), B ∈ Zn×n, such that
Bi,j = 0 if i < j, Bi,j ≥ 1 if i = j, and Bi,j < Bj,j if
i > j. This unique form can be computed from any basis
of L. Therefore, it is the worst possible basis for L from a
cryptanalyst’s point of view. In particular, Rose’s cryptosystem
uses bases of an Optimal Hermite Normal Form (OHNF) as
the public-key. OHNFs form a subclass of HNFs, where all but
the first column are trivial. Concretely, B is an OHNF basis
of L if and only if B is an HNF basis and ∀0<i<n, Bi,i = 1.

Since the public-key is of an OHNF, it is representable by a
single column, denoted as B0. A plain-text is then represented
as a vector p ∈ Zn. To encrypt it, p is reduced modulo the
public basis, by applying the algorithm of Figure 1. Due to the
public basis structure, the cryptogram corresponds to a vector,
where all the entries but the first are zero. Thus, it suffices
a scalar c to store its value. In order to decipher c, Babai’s
Round-Off algorithm is applied. This procedure, represented
in Figure 2, gives an approximation to the CVP. If

p ∈
[
−
⌈√

n

2

⌉
+ 1,

⌈√
n

2

⌉
− 1

]n
(1)

then the algorithm produces the correct closest vector [10].

B. Residue Number System

The computation of multi-precision arithmetic may be split
among several channels by exploiting the RNS. Under this
system, numbers are represented as their remainders when di-
vided by the set of co-primes m0,m1, . . . ,ms−1 that form the
RNS basis. Additions, subtractions and multiplications modulo
M =

∏s−1
i=0 mi can then be performed independently for

each modulo of the set. Furthermore, the Chinese Remainder
Theorem (CRT) provides a formula to recover the value of A
from ai = A mod mi for 0 ≤ i < s, for 0 ≤ A < M :

A =
∑s−1

i=0 (ai

(
M
mi

)−1
mod mi)

M
mi

mod M

=
∑s−1

i=0 (ai

(
M
mi

)−1
mod mi)

M
mi
− kM

(2)

where
(

M
mi

)−1
is the multiplicative inverse of M

mi
modulo mi.

Modular reduction may be implemented using an adaptation
of Montgomery’s algorithm [15] to RNS [16]. The RNS
Montgomery algorithm replaces the modulo of the reduction
D, by another more suitable modulo M1. With that purpose, Q
is defined to be the value that satisfies A+QD ≡ 0(mod M1),
for M1 × D > A and M1 co-prime to D. The value
of Q may be computed using an RNS set M1 such that
M1 =

∏
m∈M1

m, and setting Q ← −AD−1(modM1).
Afterward, Q is extended to another basis M2, and Z ←
(A + QD)M−11 is computed. In the end Z satisfies the
following: Z ≡ AM−11 (modD) and Z < 2 × D. If a full
reduction is required, Z must be compared with D, so that
D is subtracted from Z when Z ≥ D. However, the RNS
is not of a positional nature, and therefore this comparison
cannot be directly and easily computed. Herein, numbers are
converted to the Mixed Radix System (MRS) to be compared.
If z̄0, z̄1, . . . , z̄s−1 corresponds to the MRS representation of
Z, with respect to the basis m0,m1, . . . ,ms−1, then Z takes
the value of Z = z̄0 + z̄1m0 + . . .+ z̄s−1m0 . . .ms−2.

III. RNS BABAI’S ROUND-OFF

Exploiting RNS to accelerate Babai’s Round-Off algorithm
requires the computation of Figure 2 to be converted to integer
arithmetic [12]. Hence R′ = det(R)R−1 (R′ ∈ Zn×n) is used
instead of R−1. Moreover

⌊
cR−10

⌉
is rewritten as:

⌊
cR−1

0

⌉
=

2cR′0 + det(R)v1 − [2cR′0 + det(R)v1 mod 2det(R)]

2det(R)
(3)

where v1 = (1, . . . , 1). Furthermore, since p is restricted as
stated in (1), if β > 2

⌈√
n
2

⌉
−1 then the computation of Figure

2 may be performed modulo β. In this work, the value β was
selected to be m2,0, that is, the value of the first element of
the second RNS Montgomery basis.

A description of the resulting algorithm can be found in
Figure 3. The value of v′1 corresponds to det(R), and is used
to compute a ← 2cR′0 + (v′1, . . . , v

′
1) mod m2,0. Afterward,

the value of a mod DR is determined, where DR = 2 ×
det(R), using RNS. In order to compute this value, R′′0 ←
2R′0M1m3 mod DR and v′′1 ← det(R)M1m3 mod DR are
precomputed. The value of M1 regards the first Montgomery
basis, and m3 is an extra modulo that is introduced to
simplify the reduction operation. The extra M1m3 term will
be eliminated during the Montgomery reduction.

The ReduceModDR function is described in Figure 4. First,
q1 is computed such that cR′′0 [i] + v′′1 + q1DR is divisible by
M1. Since cR′′0 [i] +v′′1 < det(R)DR +DR, M1 should satisfy
M1 > det(R) + 1. Afterward, q1 is extended to the second
basisM2, by evaluating (2) for each of the moduli ofM2. In
the figure, mj,i corresponds to the (i+ 1)th modulo of base j.
It should be noted that the value of k in (2) is set to zero, and
therefore there will be an extension error less than (s− 1)M1

[16]. As such, a′2 ← ((cR′′0 [i] + v′′1) + DR × q2) ×M−11 is
bounded by a′2 < (s+ 1)DR. Hence, a′2 should be reduced a
second time, by using an extra modulus m3. If m3 > (s+ 1)

1: Input: c ∈ Z, R′0 mod m2,0 ∈ Zn, R′′0 ∈ Zn, R mod m2,0 ∈
Zn×n, v′1 ∈ Z, v′′1 ∈ Z

2: Output: p ∈ Zn

3: a← 2cR′0 + (v′1, . . . , v
′
1) mod m2,0

4: a′ ← ReduceModDR(c,R′′0 , v′′1)
5: b← a−a′

2det(R)

6: p← (c, 0, . . . , 0)− bR mod m2,0

7: return p

Fig. 3. Improved Decryption Algorithm

1: Input: c ∈ Z, R′′0 ∈ Zn, v′′1 ∈ Z, RNS constants
2: Output: a′ ∈ Zn

3: for i← 0 to n− 1 do
4: q1 ← (−D−1

R)(cR′′0 [i] + v′′1) in M1

5: q2 ←
∑s−1

i=0 (q1,i
(

M1
m1,i

)−1

mod m1,i)× M1
m1,i

in M2

6: a′2 ← ((cR′′0 [i] + v′′1) +DR × q2)×M−1
1 in M2

7: q3 ←
∑s−1

i=0 (q1,i
(

M1
m1,i

)
mod m1,i)

M1
m1,i

mod m3

8: a′3 ← ((cR′′0 [i] + v′′1) +DR × q3)×M−1
1 mod m3

9: q̂ ← (D−1
R)a′3 mod m3

10: a′2 ← (a′2 −DR × q̂)×m−1
3 in M2

11: for j ← 0 to s− 1 do
12: for k ← j + 1 to s− 1 do
13: a′2,k ← (a′2,k − a′2,j)m

−1
2,j mod m2,k

14: end for
15: end for
16: if a′2,s−1 <

⌊m2,s−1

2

⌋
then

17: a′[i] = a′2,0
18: else
19: a′[i] = a′2,0 +DR mod m2,0

20: end if
21: end for
22: return a′

Fig. 4. RNS Modular Reduction (ReduceModDR)

(∀0≤i<s,m3 < m2,i), a′2 ← (a′2−DR×q̂)×m−13 is computed,
and −DR < a′2 < DR, where q̂ ← D−1R a′3 mod m3.

If a′2 < 0, DR must be addded so that the result is fully
reduced. When a′2 < 0, its RNS representation corresponds to
M2 +a′2. If M2 is chosen such that DR <

⌊m2,s−1

2

⌋
M2

m2,s−1
<

M2 − DR, checking if a′2 < 0 is equivalent to testing if
ā′2,s−1 ≥

⌊m2,s−1

2

⌋
, where ā′2,s−1 denotes the sth MRS digit

of a′2. In the algorithm, the RNS digits are overwritten with the
MRS digits, and computed in the most inner loop. Afterward,
DR is added to the result modulo m2,0 if a′2 < 0. Subsequent
to the addition, the returned value from the function in figure
4 corresponds to a′ ← a mod DR mod m2,0. The plain-text
p is then evaluated as p← (c, 0, . . . , 0)− a−a′

2det(R)R mod m2,0.

IV. PARALLELIZATION AND IMPLEMENTATION DETAILS

In this section, parallelism is exploited to speed up the
execution of the presented algorithms. Several Application
Programming Interfaces (APIs) were used in this work to
exploit different levels of data parallelism, namely OpenCL
[17] for GPU programming, OpenMP [18] for exploiting
multi-threaded CPU parallelism, and AVX2 [19] for Single
Instruction Multiple Data (SIMD) parallelism.

1: Input: z ∈ Z,mi ∈ Z; Output: z ∈ Z
2: while z ≥ 2l do
3: zL = z&(2l − 1); zH = z >> l; z = zL + (2l −mi)zH
4: end while
5: return z ← min(z, z −mi)

Fig. 5. GPU Modular Reduction

A. GPU Approach

As a first approach to the implementation of Babai’s
Round-Off algorithm, a CPU offloaded the execution of the
ReduceModDR function to the GPU, transferring the required
data. During the GPU execution of line 4 of the algorithm
in Figure 3, the CPU executes line 3 simultaneously. After a
synchronizing the CPU and the GPU operations, which assures
that the ReduceModDR results were fully transferred to the
CPU, the computation of lines 5 and 6 takes place on the CPU.

The computation of a ← 2cR′0 + (v′1, . . . , v
′
1) mod m2,0

was split among the cores of the CPU. Each core computed a
subset of the result.

Modular reductions of z in channel mi on the GPU were
performed using the algorithm in Figure 5. Further, the values
of the moduli were selected such that 2l−1 < mi < 2l;
the operation min(z, z − ri) was performed using unsigned
arithmetic; and the while therein was unrolled.

The ReduceModDR function was implemented as an
OpenCL kernel. Each work-group was associated with a
single dimension, and each work-item with a modulo of M1

and another modulo of M2. The resulting kernel only
requires 3 barriers: after lines 4, 9 and 14 of Figure 4.
Moreover, lines 7 up to 9, and 16 up to 20 are executed on
a single thread. Lastly, since the considered GPUs operated
on a maximum of 32-bits, the value l of Figure 5 was set to
l = 16, so that multiplications did not overflow the result.

After the reduction result is transferred to the CPU, b ←
a−a′

2det(R) mod m2,0 is co-jointly computed by multiple threads
in the multiple available CPU cores. Then the vector-matrix
multiplication bR mod m2,0 takes place: each core multiplied
a set of entries of b by the corresponding lines of R,
and afterward the partial results of each core were added
to produce the multiplication result. Finally, the value of
p ← (c, 0, . . . , 0) − bR mod m2,0 is determined, and each
core computes a subset of the final result.

B. CPU Approach

The second approach herein presented is similar to the
one for the GPU, except that all computation takes place
on the CPU. The steps that were executed on the CPU in
Section IV-A take place in a similar way. Additionally, the
ReduceModDR function, which still made use of the RNS,
was enhanced with multi-threading, with each core computing
part of the loop iterations in line 3 of Figure 4.

The OpenMP #pragma omp for directive was used
to split the multi-dimensional computation of a ←
2cR′0 + (v′1, . . . , v

′
1) mod m2,0, b ← a−a′

2det(R) mod m2,0

and p ← (c, 0, . . . , 0) − bR mod m2,0 among the cores.

The vector-matrix multiplication bM required not only the
use of #pragma omp for but also of #pragma omp
critical for the sum of the threads partial results. For exe-
cuting the ReduceModDR function on the CPU, a #pragma
omp for directive was applied to the line 3 of Figure 4. It
should be noted that, since the targeted CPUs featured data-
paths of 64-bits, the moduli bit-width was changed to 32-bits.

1) SIMD Parallelism: SIMD parallelism was used to en-
hance the execution on the CPU. Another method was imple-
mented, similar to the previous one, but the ReduceModDR
was modified to exploit SIMD extensions. First, it was possible
to process multiple channels at a time for the steps in lines 4,
6, 10 and 13 of Figure 4. Second, it was possible to accelerate
all the summations by splitting their computation over multiple
summations and perform those in parallel.

In order to perform multiple operations in parallel, data was
loaded to the AVX2 registers using the vmovdqu instruction,
which loads 256 bits from memory to a register. Then, words
were rearranged using vpshufd so that the 32 most signifi-
cant bits of each 64-bit word was set to zero. Multiplications
and additions may afterward take place without overflowing
the result lanes. Modular reductions after multiplications were
performed using the algorithm of Figure 5. Finally, when
the desired result is obtained, registers are rearranged using
vpshufd and vpunpckldq, and stored with vmovdqu.

V. EXPERIMENTAL RESULTS

The proposed methods were implemented and thoroughly
tested. Also, the sequential method of Figure 2, which does
not make use of RNS, was implemented using the NTL 6.2.1
library [20] for comparison purposes. They were tested on
three systems: i) an i7 3930K with 32GB of RAM and 4
cores, operating at 3.2GHz, and a GeForce GTX 680 with
2GB of main memory with 1536 Shader Processing Units
(SPUs), operating at 1GHz; ii) an i7 4770K with 32GB of
RAM and 4 cores, operating at 3.5GHz, and a Tesla K40c
with 12GB of main memory and 2888 SPUs, operating at
0.7GHz; iii) an i7 4770K with 32GB of RAM and 4 cores,
operating at 3.5GHz, and a GeForce GTX 780 Ti with 3GB
and 2880 SPUs, operating at 0.9GHz. All code was compiled
with gcc 4.7, with the -O3 flag, and times were measured
using the readtsc instruction. 512 random messages were
encrypted, and the average decryption time was measured, for
n ∈ {400, 600, 800, 1000}. The performance is reported in
Tables I and II. The RNS-GPU label is used for the approach
that implements ReduceModDR on the GPU, whereas for the
4-core RNS-CPU label this function runs on the CPU.

The results show that it is possible to similarly enhance the
performance on all platforms, when SIMD extensions are not
used. Further, since when using RNS it is possible to choose
channels whose bit-width is smaller than the word-length of
the machine, it is expected that the presented techniques work
for a wide range of general-purpose platforms.

The graphics show that there is a direct link between
the GPU performance and their memory bandwidth, since
the GTX 780 Ti has outperformed the remainder GPUs.

Execution Times [×106 clock cycles]
Method n = 500 n = 800
[21] 294.42 1323

TABLE III
DECRYPTION PERFORMANCE FOR THE INTEL CORE 2 DUO PLATFORM.

This results from the low arithmetic intensity of the kernels.
Moreover, the K40c and the GTX 680 were outperformed by
the i7 platforms. There are two aspects that contribute to this
behavior. One is related to the memory transfers between the
CPU and the GPU, that must take place when the GPU is
used. Even though it is possible to hide part of this overhead
by executing line 3 of Figure 3 in parallel on the CPU, this
step has a small arithmetic complexity. The other is concerned
with the different moduli that are used. Since it is possible
to work with moduli whose bit-width is twice as large when
only using the CPU, the number of arithmetic operations to
be performed is approximately halved.

Finally, AVX2 extensions greatly boosted the performance
of the decryption operation. This was only possible due to the
use of the RNS which, due to its carry-free nature, is very
well suited to speed up computation with SIMD extensions.

In [21], a similar cryptosystem to the herein presented was
implemented using the NTL 5.5.2 library on an Intel Core 2
Duo platform, running at 2.1 GHz, with a 4 Gb RAM. Even
though different platforms were used, the number of clock
cycles reported in Table III are in the same order of magnitude
to those of Table I for the sequential method. As such, one may
conclude that is most beneficial not only to employ RNS for
the whole Babai’s Round-Off procedure, but also that LBCs
are greatly enhanced with data parallelism.

VI. PERFORMANCE COMPARISON WITH THE RSA
CRYPTOSYSTEM

Whereas some related art states that safe implementations
of GGH-like cryptosystems should be of dimension at least
400 [5], more pessimistic approximations propose dimensions
of at least 800 [22]. We compared the performance of the
decryption operation for dimensions of this order of magnitude
with the performance of the equivalent RSA operation, for
typical security parameters. The RSA cryptosystem was tested
using OpenSSL 1.1.0-dev [23] on the i7 4770K platform, and
its performance, as well as the performance of the AVX2
implementation of the GGH-like decryption is reported in
Figure 6. Notably, OpenSSL makes use of the 128-bits SIMD
technology SSE2, in order to accelerate multi-precision integer
arithmetic. One concludes that the GGH decryption operation
takes approximately the same time to execute for dimensions
of 400 and 1000, as the equivalent RSA operations for 3072
and 7680 bits, respectively. Taking into account that the
proposed implementation has the advantage of post-quantum
security, it presents itself as a competitive alternative to RSA.

VII. CONCLUSIONS AND FUTURE WORK

In this work, the proposals [11], [12] for using RNS to
enhance the decryption procedure of GGH-like cryptosystems

Execution Times [×106 clock cycles] (Speed-up)
Method n = 400 n = 600 n = 800 n = 1000
Sequential (i7
3930K)

104.4 350.2 748.4 1350

RNS-GPU
(GTX 680)

22.02 (4.7) 79.68 (4.4) 262.5 (2.9) 348.4 (3.9)

4-core RNS-
CPU (i7
3930K)

18.87 (5.5) 68.42 (5.1) 169.9 (4.4) 384.4 (3.5)

TABLE I
DECRYPTION PERFORMANCE FOR THE i) I7 3930K AND GTX 680

PLATFORM.

Execution Times [×106 clock cycles] (Speed-up)
Method n = 400 n = 600 n = 800 n = 1000
Sequential (i7 4770K) 97.51 283.8 619.4 1222
RNS-GPU (K40c) 22.97 (4.2) 79.87 (3.6) 248.9 (2.5) 512.4 (2.4)
RNS-GPU (GTX 780 Ti) 16.55 (5.9) 59.73 (4.8) 148.2 (4.2) 349.6 (3.5)
4-core RNS-CPU (i7
4770K)

21.05 (4.6) 75.48 (3.8) 189.9 (3.3) 369.7 (3.3)

4-core RNS-CPU (with
AVX2) (i7 4770K)

8.668 (11.2) 29.05 (9.8) 74.78 (8.3) 148.5 (8.2)

TABLE II
DECRYPTION PERFORMANCE FOR THE ii) I7 4770K AND K40C AND iii) I7

4770K AND GTX 780 TI PLATFORMS.

300 400 500 600 700 800 900 1,000 1,100

0

20

40

60

80

100

120

140

160

Lattice (Dimension)

E
xe

cu
tio

n
Ti

m
es

[×
10

6
cl

oc
k

cy
cl

es
]

2,000 3,000 4,000 5,000 6,000 7,000 8,000

RSA (Number Of Bits)

Fig. 6. Execution times for RSA and LBC decryption on the i7 4770K
Platform.

were considered and concretized. They were applied not only
to GPU accelerators, but also to CPU devices. Maximum
speed-ups of 5.9 and 11.2 were obtained for the GTX 780
Ti and i7 4770K devices, respectively, in comparison with a
sequential multi-precision floating point approach.

One concludes that due to the burdensome memory transfers
between the CPU and the GPU, it is often best to execute the
whole decryption procedure on the CPU. Furthermore, since
the RNS lends itself to SIMD parallelism, it was possible
to greatly boost the performance using the AVX2 extensions.
Moreover, it was concluded that LBCs present a competitive
post-quantum alternative to RSA.

Future works should focus on arithmetically optimized im-
plementations of alternative cryptographic primitives relying
on ideal lattices and Learning With Error problems, which are
core components of current homomorphic schemes [24], [25].

REFERENCES

[1] P.W. Shor. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. In IEEE Symp. on Found. of Comp. Sci., p.124-134,
1994.

[2] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems
from lattice reduction problems. In Proc. of the 17th Annual Int.
Cryptology Conf. on Adv. in Cryptology, pages 112–131, London, 1997.

[3] J. Hoffstein, J. Pipher, and J.H. Silverman. NTRU: A ring-based public
key cryptosystem. In JoeP. Buhler, editor, Algorithmic Number Theory,
volume 1423 of Lecture Notes in Comput. Sci. p.267-288, 1998.

[4] P. Nguyen and O. Regev. Learning a Parallelepiped: Cryptanalysis of
GGH and NTRU Signatures. In Advances in Cryptology - EUROCRYPT
06, volume 4004 of Lecture Notes in Comput. Sci. p.271-288, 2006.

[5] P. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryp-
tosystem from crypto 97. In In Proc. of Crypto ’99, volume 1666 of
LNCS, pages 288–304. Springer-Verlag, 1999.

[6] C.A. Melchor, X. Boyen, J.-C. Deneuville, and P. Gaborit. Sealing the
Leak on Classical NTRU Signatures. In Post-Quantum Cryptography,
volume 8772 of Lecture Notes in Computer Science. p.1-21, 2014.

[7] M. Yoshino and N. Kunihiro. Improving GGH cryptosystem for large
error vector. In Information Theory and its Applications (ISITA), 2012
Int. Symp. on, pages 416–420, Oct 2012.

[8] C. F. de Barros and L. Menasché Schechter. GGH may not be dead after
all. In Anais do XXXV Congresso Nacional de Matemática Aplicada e
Computacional, CNMAC 2014, 2014.

[9] D. Micciancio. Improving lattice based cryptosystems using the Hermite
normal form. In Cryptography and Lattices, volume 2146 of Lecture
Notes in Comput. Sci. p.126-145, 2001.

[10] M. Rose, T. Plantard, and W. Susilo. Improving BDD cryptosystems in
general lattices. In F. Bao and J. Weng, editors, ISPEC, volume 6672
of Lecture Notes in Comput. Sci., pages 152–167. Springer, 2011.

[11] T. Plantard, M. Rose, and W. Susilo. Improvement of lattice-based
cryptography using CRT. In QuantumComm’09, pages 275–282, 2009.

[12] J.-C. Bajard, J. Eynard, N. Merkiche, and T. Plantard. Babai round-
off CVP method in RNS: Application to lattice based cryptographic
protocols. In Integrated Circuits (ISIC), 2014 14th Int. Symp. on.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011.

[14] L. Babai. On Lovász’ lattice reduction and the nearest lattice point
problem (shortened version). In Proc. of the 2Nd Symp. of Theoretical
Aspects of Comput. Sci., STACS ’85, pages 13–20, London, UK, 1985.

[15] P. L. Montgomery. Modular Multiplication Without Trial Division.
Mathematics of Computation, 44:519–519, 1985.

[16] J.-C. Bajard and L. Imbert. A full RNS implementation of RSA.
Computers, IEEE Transactions on, 53(6):769–774, June 2004.

[17] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. IEEE Des. Test,
12(3):66–73, May 2010.

[18] The OpenMP specification for parallel programming. http://www.
openmp.org, 2014.

[19] Intel Corporation. Intel intrinsics guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/.

[20] V. Shoup. NTL 6.6.1: A library for doing number theory. www.shoup.
net/ntl, 2014.

[21] M.l Rose. Lattice-based cryptography: a practical implementation.
Master’s thesis, School of Computer Science and Software Engineering,
University of Wollongong, 2011.

[22] C. Ludwig. The security and efficiency of Micciancio’s cryptosystem.
IACR Cryptology ePrint Archive, 2004:209, 2004.

[23] The OpenSSL Project. OpenSSL: Cryptography and SSL/TLS toolkit.
www.openssl.org, March 2015.

[24] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
Proc. of the Forty-first Annual ACM Symp. on Theory of Computing,
STOC ’09, pages 169–178.

[25] Z. Brakerski and V. Vaikuntanathan. Efficient Fully Homomorphic
Encryption from (Standard) LWE. In Proc. of the 2011 IEEE 52nd
Annu. Symp. on Found. of Comput. Sci., pages 97–106.

