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Abstract. The best algorithms for discrete logarithms in Jacobians of
algebraic curves of small genus are based on index calculus methods cou-
pled with large prime variations. For hyperelliptic curves, relations are
obtained by looking for reduced divisors with smooth Mumford repre-
sentation [4]; for non-hyperelliptic curves it is faster to obtain relations
using special linear systems of divisors [2, 3]. Recently, Sarkar and Singh
have proposed a sieving technique, inspired by an earlier work of Joux
and Vitse, to speed up the relation search in the hyperelliptic case. We
give a new description of this technique, and show that this new for-
mulation applies naturally to the non-hyperelliptic case with or without
large prime variations. In particular, we obtain a speed-up by a factor
approximately 3 for the relation search in Diem and Kochinke’s methods.

Keywords : discrete logarithm, index calculus, algebraic curves, curve-
based cryptography.

1 Introduction

Given a commutative group (G,+), and two elements g, h of G, the discrete
logarithm problem (DLP) consists in finding, if it exists, an integer x such that
x · g = h. It is considered as a major computational challenge and much work
has been done on the principal families of groups in the last decades. Jacobians
of algebraic curves defined over finite fields are of particular interest, largely be-
cause of their link with elliptic curves (which, as genus 1 curves, are their own
Jacobians). Indeed, transfer attacks as introduced in [5] can reduce certain dis-
crete logarithm instances on elliptic curves to instances on higher genus curves,
see for instance the record computations of [7]. Consequently, even though for
applications in cryptography only genus 1 (i.e. elliptic curves) or genus 2 curves
are currently considered, assessing the exact difficulty of the DLP in higher genus
is still very important from both the practical and the number-theoretical points
of view.

A popular approach to the discrete logarithm problem is given by the index
calculus family of algorithms, that rely heavily on the structures surrounding
the group. The general picture is always the same. We start by choosing a so-
called “factor base” B, i.e. a subset of the elements of the group. Then in a first



phase we search for relations involving elements of the factor base, yielding linear
equations between their discrete logarithms; we call this first phase “harvesting”
throughout this paper. In a second phase we basically solve the linear system of
equations given by the relation matrix and deduce the wanted discrete logarithm.
This linear algebra phase does not depend on the structure of the group, but its
complexity clearly depends on the cardinality N of the factor base, since it is
roughly the size of the relation matrix.

It is possible to simplify the linear algebra at the expense of the harvesting
phase by decreasing the size of the factor base. This must be done with added
care since less elements in the factor base means lower probability of obtaining
a relation. In the so-called “large prime” variants4 (see [2, 6, 8, 11]), we choose
or construct a subset Bs of the factor base B called the set of “small primes”,
of size O(Nα) with 0 < α < 1. The set B\Bs is the set of large primes. Then
we accept only relations involving elements in Bs and at most two large primes.
This decreases the probability of a relation, but it is shown in [2, 6] that finding
O(N) relations involving at most two large primes is enough to form O(Nα)
relations involving only small primes. The linear algebra phase over Bs then
runs in O(N2α) and it remains to choose α to balance both main phases of
index calculus. More details are given at the end of Sect 2.1.

In this work we focus on improving the known harvesting methods, ded-
icating to Jacobian varieties of algebraic curves defined over finite fields. We
emphasize that all the other aspects of the index calculus method (such as the
choice of the factor base, the processing of large prime relations and the linear
algebra phase) are not modified. Recently, Sarkar and Singh proposed in [10] to
use a sieving technique for harvesting relations in the hyperelliptic case, instead
of the standard approach of Gaudry [4] based on smooth reduced divisors. A
very similar sieve had actually been used before by Joux and Vitse in [7], but
in the different context of curves defined over extension fields and Weil restric-
tions. It turns out that Sarkar and Singh’s sieve has a simpler interpretation,
which allows to generalize it to the index calculus introduced by Diem [2] for
non-hyperelliptic curves, or more exactly small degree planar curves. In our ex-
periments, the new non-hyperelliptic sieve improves Diem’s original method, as
well as its development by Diem and Kochinke [3], by a factor approximately 3.

The presentation follows these steps. We begin by the case of hyperelliptic
curves, recalling the classical approach of Gaudry based on smoothness check. We
present and analyze the sieving variant of Sarkar and Singh before introducing
its simpler reformulation. The next section deals with algebraic curves of genus g
admitting a plane model of degree d ≤ g+1. Again we start by the classical ideas
of using principal divisors associated to equations of lines to generate relations
[2]. We then give the adaptation of our sieve to small degree curves, and compare
it to Diem’s method. We also briefly present the singularity-based technique
of Diem and Kochinke and show that our sieve adapts again to this setting.
Experiments and timings are reported in the last section.

4 The terminology of index calculus stems from the context of integer factorization.
In our setting, “large primes” are arbitrary elements, and involve no notion of size.



2 Sieving for Hyperelliptic Curves

2.1 Gaudry’s Relation Search

Index calculus on hyperelliptic curves relies on the search of smooth Mumford
representations of divisors. Let H be a genus g imaginary hyperelliptic curve
defined over Fq, with equation y2 = h(x) (so that deg h = 2g + 1) and point
at infinity P∞. For simplicity we assume that we are in the odd characteristic
case, but everything can be easily adapted to the characteristic two case. We
recall that any element [D] in the Jacobian variety JacH(Fq) can be uniquely
represented by a couple [u(x), v(x)] of polynomials such that:

– u is monic and deg u ≤ g;
– deg v < deg u;
– u|(h− v2).

More precisely, this is the Mumford representation of the unique reduced divisor
D = (P1)+ · · ·+(Pdeg u)−deg u (P∞) in the class [D]. The roots of u are exactly
the x-coordinates of the points Pi ∈ H(Fq), and v satisfies v(xPi) = yPi . The
Mumford representation is actually defined for every semi-reduced divisor, i.e. of
the form (P1) + · · · + (Pw) − w(P∞) with Pi 6= ıPj if i 6= j, where ı stands for
the hyperelliptic involution (x, y) 7→ (x,−y). The integer w = deg u is called the
weight of the divisor, which is reduced if and only if w ≤ g.

With this setting we see that if the polynomial u splits over Fq, then for
each i the point Pi is Fq-rational so that the class of (Pi) − (P∞) defines an
element of JacH(Fq). Furthermore, we have D =

∑
i ((Pi)− (P∞)) (i.e. D is

1-smooth) and the same equality holds when taking linear equivalence classes.
Gaudry’s algorithm [4] stems from this observation, and its harvesting phase can
be summarized as follows.

– The factor base B is the set {(P ) − (P∞) : P ∈ H(Fq)}, or rather a set
of representatives of its quotient by the hyperelliptic involution, accounting
for the trivial relations (ıP ) − (P∞) ∼ − ((P )− (P∞)). It contains Θ(q)
elements.

– At each step, we compute (using a semi-random walk) the Mumford repre-
sentation [u, v] of a reduced divisor D ∼ aD0 + bD1, where D0 and D1 are
the entries of the DLP challenge.

– If u splits over Fq as
∏
i(x − xi) then a relation is found since we have

aD0 + bD1 ∼
∑
i ((Pi)− (P∞)) where Pi = (xi, v(xi)).

We see that each step of the harvesting phase requires a few operations in JacH
followed by the factorization of u, which is generically a degree g polynomial.
The probability that u actually splits over Fq is about 1/g!, so we need about g!
trials before finding a relation.

A precise analysis of the complexity is given by the author in [4]. However,
asymptotically when g is fixed and q grows to +∞, the cost of finding one relation
is in Õ(1), so the complexity of the harvesting phase is in Õ(q). By contrast, the
linear algebra phase costs Õ(q2) and dominates the complexity. Balancing the



two phases has first been proposed by Harley and improved by Thériault [11],
who introduced the large prime variants in this context. Asymptotically, the
best result5 is obtained by Gaudry, Thériault, Thomé and Diem [6] using the
double large prime variation with a factor base Bs of size ≈ q1−1/g, yielding a
complexity of Õ(q2−2/g) for both the harvesting and the linear algebra phase.
Giving a detailed description of the double large variant is outside the scope
of this paper, but we mention that there are two distinct approaches regarding
the construction of the small prime factor base. A first possibility is to define
directly Bs as a subset of B whose elements satisfy an easy to check condition,
so that membership testing and enumeration are very fast; alternately, the set
BS can be constructed progressively from the first relations in order to simplify
the future elimination of large primes (as done in by Laine and Lauter [8] in the
non-hyperelliptic case).

2.2 Sarkar and Singh’s Sieve

A recent result of Sarkar and Singh [10] proposes a sieving approach to the
relation search for hyperelliptic curves. In this method, with the same factor
base B as in Sect. 2.1, we start from a weight g reduced divisor written as
D = [u, v] =

∑g
i=1(Pi) − g(P∞), usually related to the challenge. We then

consider all the weight g+ 1 semi-reduced divisors D′ = [u′, v′] that are linearly
equivalent to −D; a relation is obtained each time u′ is split (the factor base B
is the same as in the previous version). The set of all the decompositions of −D
as

−D ∼
g+1∑
i=1

(Qi)− (g + 1)(P∞),

i.e. the set of all weight g+1 semi-reduced divisors linearly equivalent to −D, is in
one-to-one correspondence with the set of divisors of functions in the Riemann-
Roch space L(−D+ (g+ 1)(P∞)) = L(−

∑g
i=1(Pi) + (2g+ 1)(P∞)). This space

is equal to Span(u(x), y − v(x)) (since functions in this space have poles at P∞
only, of order at most 2g + 1, and vanish at the support of D), and thus the
decompositions of −D can be parametrized by an element λ ∈ Fq.

We begin with the non-large-prime, non-sieving version of the algorithm.
The relation search consists of two main loops, the outer one being simply a
semi-random walk iterating through reduced divisors D = [u, v] ∼ aD0 + bD1.
The inner loop iterates over the value of the parameter λ ∈ Fq. For each λ, we
consider the function fλ = y−v(x) +λu(x) and the corresponding semi-reduced
divisor Dλ = −D+ div(fλ). The Mumford representation [uλ, vλ] of Dλ is given
by the formulae {

uλ = c (λu−v)
2−h

u = c(λ2u− 2λv + v2−h
u )

vλ = v − λu mod uλ
,

5 This is only true asymptotically. For actual instances of the DLP many other factors
have to be taken into account, and large prime variations are not always appropriate.



where c ∈ Fq is the constant that makes uλ monic. We obtain a relation each
time Dλ is 1-smooth, i.e. when uλ is split over Fq; this happens heuristically
with probability 1/(g + 1)!.

The main advantage of this relation search is that it admits a sieving version,
in the spirit of [7]. The idea is to replace the inner loop in λ by an inner loop in
x ∈ Fq.

For each value of x, we compute the expression

S(x, λ) = λ2u(x)− 2λv(x) +
v(x)2 − h(x)

u(x)
,

which becomes a quadratic polynomial in λ, and find the corresponding roots
(for simplicity we can skip the values of x for which u(x) = 0). There are two
distinct roots λ0 and λ1 if and only if h(x) is a square in Fq, and those roots are
given by:

λ0 =
v(x) + h(x)1/2

u(x)
, λ1 =

v(x)− h(x)1/2

u(x)
.

As explained by the authors, this step is very fast if a table containing a square
root of h(x) (if it exists) for each x ∈ Fq has been precomputed. We then store
the corresponding couples (λ0, x) and (λ1, x). At the end of the inner loop,
we look for the values of λ that have appeared g + 1 times: this means that
the corresponding polynomial uλ has g + 1 distinct roots, so that Dλ yields a
relation, i.e. a decomposition of −D. In practice, we can either store each value
of x in an array L of lists indexed by λ; each time a value of λ is obtained as a
root of the quadratic expression, we append x to L[λ]. When #L[λ] = g+ 1, we
directly have the x-coordinates of the points in the support of div(fλ)−D, and
a last step is then to compute back the y-coordinates using fλ. Alternatively, we
can simply maintain a counter array Ctr indexed by λ and increment Ctr[λ] each
time λ is obtained as a root. When this counter reaches g + 1, we factorize the
corresponding split polynomial uλ. This variant has the merit of saving memory
at the expense of some duplicate computations, but is more interesting when g
increases since the proportion of λ’s yielding a relation becomes small.

The main speed-up is provided by the fact that at each iteration of the inner
loop, we replace the splitting test and the eventual factorization of either the
degree g polynomial u (in Gaudry’s version) or the degree g + 1 polynomial
S(λ, x) evaluated in λ, by the resolution of the degree 2 equation S(λ, x) = 0,
evaluated in x. This comes at the expense of a slightly lower decomposition
probability, namely 1/(g + 1)! instead of 1/g!, and higher memory requirement.

As already noticed in [7], a second advantage of this sieve is its compatibility
with the double large prime variation. Indeed, once the “small prime” factor
base Bs is constructed, it is sufficient to sieve among the values of x ∈ Fq
corresponding to abscissae of its elements (the full sieving as described above can
still be used in the construction steps of Bs if necessary). Since the cardinality of
Bs is in Θ(qα) with α = 1− 1/g, this shortened sieving only costs Õ(qα) instead
of Õ(q). We then look for the values of λ that have been obtained at least g− 1
times. The corresponding polynomials uλ have at least g−1 roots corresponding



to small primes, and it just remains to test if it is indeed split, which happens
with heuristic probability 1/2 (in the case where λ has been obtained exactly
g − 1 times). Note that we cannot simply scan the array L or Ctr, as it would
cost Õ(q) (even with a very small hidden constant) and defeat our purpose. So
additional care must be taken in the implementation in order to recover the
interesting values of λ in only Õ(qα), for instance using associative arrays, see
[10] for details. Although it is not specified in the original paper, one can show
that the asymptotic complexity of this variant is still in Õ(q2−2/g) for fixed g, as
in the work of Gaudry, Thomé, Thériault and Diem [6], but it is more efficient
in practice, and the authors report a significant speed-up.

2.3 Sarkar and Singh’s Sieve Revisited

As mentioned above, precomputing a table containing an eventual square root
of h(x) for each x ∈ Fq can significantly speed up the sieving phase (for a Õ(q)
overhead). But this table is actually nothing more than a list of the rational
points of H. Indeed, if y is a square root of h(x) then (x, y) and (x,−y) are
exactly the two points in H(Fq) with abscissa x, and this precomputation is
actually performed when the factor base B = {(P ) − (P∞) : P ∈ H(Fq)} is
enumerated.

This means that we can modify Sarkar and Singh’s sieve as follows. Recall
that we are looking for functions fλ = y− v(x)− λu(x) such that −D+ div(fλ)
is 1-smooth. Instead of sieving over the value of x ∈ Fq, or in a small subset
corresponding to small primes, we directly sieve over P = (xP , yP ) ∈ B or Bs,
and the corresponding value of λ is simply recovered as yP−v(xP )

u(xP ) . We give a

pseudo-code of this sieve in Alg. 1.

This pseudo-code corresponds to the non-large-prime version. Details like
the management of the list or associative array L and the update of M are
omitted. As mentioned above, a simple counter array Ctr can be used instead of
L, requiring the factorization of S(x, λ) for the update of M . If the double large
prime variation is used, then the first inner loop iterates only over the elements
of the small factor base Bs, and in the second we test if #L[λ] ≥ g − 1 and
subsequently if the remaining factor of S(x, λ) splits.

An easy improvement, not included in the pseudo-code for the sake of clarity,
is to use the action of the hyperelliptic involution to divide by two the size of the
factor base. We can then compute simultaneously the values of λ corresponding
to P = (xP , yP ) and ıP = (xP ,−yP ). This saves one evaluation of u and of v
at xP , and one inversion of u(xP ), although it is also possible to precompute
all inverses. It is clear that this is basically a rewriting of Sarkar and Singh’s
original sieve, so that the performances of both should be similar. However, we
will now see that it is easier to adapt to the non-hyperelliptic case.



Algorithm 1 Sieving in the hyperelliptic case

Input: the set of rational points B of H.
Output: the relation matrix M .
nrel = 0.
repeat

Choose a random reduced divisor D = [u, v] ∼ aD0 + bD1.
Initialize an array of lists L.
for P = (xP , yP ) ∈ B do

Compute u(xP ) and v(xP ).
if u(xP ) 6= 0 then

Compute λ = (yP − v(xP ))/u(xP ).
Append P to L[λ].

end if
end for
for λ ∈ Fq do

if #(L[λ]) = g + 1 then
Update M .
Increment nrel.

end if
end for

until nrel > #B
return the matrix M .

3 Sieving for Small Degree Curves

3.1 Diem’s Relation Search

Gaudry’s algorithm can be adapted to non-hyperelliptic curves. Most divisors
can still be represented by Mumford coordinates, but computations in the Jaco-
bian variety are not as tractable and checking for 1-smoothness is less obvious.
However, all these operations are in Õ(1) when g is fixed, so that the asymptotic
complexity is still in Õ(q2−2/g), albeit with a larger hidden constant than in the
hyperelliptic case.

In [2], Diem devised a different harvesting technique for plane curves whose
degree is really close to the genus. More precisely, if a curve of genus g ≥ 3 is gen-
eral enough (which rules out hyperelliptic curves), we can find in polynomial time
a plane model of expected degree d ≤ g+ 1 using a probabilistic algorithm. This
means that Diem’s algorithm applies to almost all non-hyperelliptic curves, with
the (then unexpected) consequence that the DLP is easier on non-hyperelliptic
curves than on hyperelliptic ones.

Harvesting is done by considering relations coming from principal divisors
corresponding to equations of lines. For any couple of rational points P1 and P2

on the curve C, we consider the affine function f = ax+ by+ c ∈ Fq(C) such that
the equation of the line L passing through P1 and P2 is f = 0. The intersection
of L and the affine part of C contains up to d rational points, of which we already
know two; determining the remaining d − 2 amounts to finding the roots of a
degree d − 2 polynomial. If there are exactly d − 2 other rational intersection



points P3, . . . , Pd then we obtain a relation of the form

div(f) = (P1) + · · ·+ (Pd)−D∞ ∼ 0,

where D∞ is the divisor corresponding to the intersection of C with the line at
infinity. This happens with probability 1/(d− 2)!, which is better than the 1/g!
probability for hyperelliptic curves as soon as d ≤ g + 1.

We can summarize Diem’s harvesting technique as follows. The curve C is
defined by the equation F (x, y) = 0, and we denote by C0 its affine, non-singular
part. We no longer consider only (classes of) degree 0 divisors, so technically we
are working in the full divisor class group and not only its degree 0 part, but in
practice it makes no difference.

– The factor base is B = {(P ) : P ∈ C0(Fq)} ∪ {D∞}.
– We choose two points P1 = (x1, y1) and P2 = (x2, y2) in B such that x1 6= x2

(for simplicity) and compute λ = (y2 − y1)/(x2 − x1) and µ = y1 − λx1.

– We test if the degree d − 2 polynomial F (x,λx+µ)
(x−x1)(x−x2)

splits over Fq. If it is

the case, we compute its roots x3, . . . , xd and the associated y-coordinates
y3 = λx3 + µ, . . . , and we store the relation

(P1) + (P2) + (P3) + · · ·+ (Pd)−D∞ ∼ 0

where Pi = (xi, yi), provided these points are non-singular.
– We go back to the second step until enough relations are found.

Note that a descent phase is needed to express the entries of the DLP chal-
lenge in terms of elements of the factor base, see [2].

The whole routine is particularly well-suited to a two large prime variation
(see also [8] for another version differing mainly on the construction of the factor
base and the large prime graph). Instead of selecting two points in B, we pick
them in the small factor base Bs and keep only relations involving at most two
large primes. The main advantage (as compared to the hyperelliptic case) is
that we ensure in this way that each potential relation contains already two
small primes; this greatly increases the probability of finding relations with only
two large primes. In particular if d = 4, every relation found by the above method
automatically satisfies the two large prime condition.

A precise complexity analysis is given in [2] and, if C admits a plane model
of degree g + 1, gives an asymptotic running time of Õ(q2−2/(d−2)), for a small
factor base Bs of size Θ(q1−1/(d−2)). If d = g + 1 this is Õ(q2−2/(g−1)), which
improves over the Õ(q2−2/g) complexity of the hyperelliptic case. Note however
that the size of the small factor base is such that in order to find enough relations,
almost all lines going through pairs of points of Bs have to be considered. This
is troublesome because each line, and thus each relation, can be obtained several
times, namely n(n− 1)/2 times if it contains n small factor base points. This is
not really an issue if d = 4, but for higher d some extra care has to be taken in
order to prevent duplicate relations.



3.2 The Sieving Technique

We can easily adapt our sieving formulation to Diem’s setting. The factor base
remains the same set of points. Basically, in a first loop we iterate over points
P1 = (x1, y1) ∈ C0(Fq). The equation of a non-vertical line passing through P1

is given by (y− y1)−λ(x−x1) = 0. The task is now to find the values of λ such
that the line has d rational points of intersection with C without checking for
smoothness. For this we then loop in P2 = (x2, y2) ∈ C0(Fq) and compute the
corresponding λ = (y2−y1)/(x2−x1). But instead of looking for the intersection
of the line with C, we just append P2 to the list L[λ], where L is an array of lists;
alternatively, we can simply increment a counter Ctr[λ]. If this counter reaches
d− 1, or if L[λ] contains d− 1 elements, we know that the line contains enough
points and yields a relation. This is made precise in the pseudo-code of Alg. 2.

Algorithm 2 Sieving for small degree curves

Input: the list of rational non-singular affine points B = C0(Fq).
Output: the relation matrix M .
nrel = 0.
for i = 1 to #B do

(x1, y1)← B[i]
Initialize an array of lists L.
for j = i+ 1 to #B do

(x2, y2)← B[j].
if x2 6= x1 then

Compute λ = (y2 − y1)/(x2 − x1).
Append (x2, y2) to L[λ].

end if
end for
for λ ∈ Fq do

if #L[λ] = d− 1 then
Update M .
Increment nrel.

end if
if nrel > #B then

return the matrix M .
end if

end for
end for

Note that in the inner loop we do not iterate over the elements of B that
have already been considered in the outer loop. Indeed, after an iteration of the
outer loop all the lines passing through the given point P1 = B[i] have been
surveyed, so there is no reason to scan this point again. In this way no line
can be considered twice, and we avoid completely having to check for duplicate
relations.



In Diem’s version, each step requires the computation and factorization of
F (x,λx+µ)

(x−x1)(x−x2)
. The probability of finding a relation is 1/(d − 2)!, so that after q

steps about q/(d − 2)! relations are harvested. By comparison, in our sieving
each step requires a single division (or multiplication if the inverses are pretab-
ulated). The inner loop ends after about #B ≈ q steps, and yields q/(d − 1)!
relations approximately: all the lines through P1 = (x1, y1) have been explored,
and contain d− 1 other points with probability 1/(d− 1)!. Thus we need d− 1
times as many steps to obtain the same number of relations, but each step is
much simpler, and the experiments of the next section confirm the important
speed-up.

This sieve can be adapted straightforwardly to the double large prime vari-
ation : we just have to restrict both loops to the small factor base Bs (once it
is constructed, if the version of [8] is followed), then we recover the values of λ
such that #L[λ] ≥ d − 3. When #L[λ] = d − 3, we still have to check if the
remaining two points on the line are rational, which amounts to factorizing a
degree 2 polynomial. If d = 4, in Diem’s version there are at most two remaining
points on any line anyway; our new sieve is thus basically equivalent and does
not provide a significant speed-up when using double large primes. However as
soon as d ≥ 5 it outperforms Diem’s version, but the asymptotic complexity
remains in Õ(q2−2/(d−2)).

3.3 Sieving with Singularities

An article of Diem and Kochinke [3] tries to improve on the asymptotic complex-
ity of the above method. The basic idea is to consider singular small degree plane
models, and use a singular point as one of the points defining the lines cutting
out the curve. Indeed, a singular point appears with a multiplicity greater than
one in any line passing through it, so that there are fewer remaining points of
intersection with C, and the degree of the polynomial to test for smoothness is
less than when two regular points are used. Unfortunately in general there are
not enough singular points on a given planar curve to obtain sufficiently many
relations. Thus an important part of Diem and Kochinke’s work is to find a way
to compute new singular plane models of degree d ≤ g + 1 for a given genus g
curve, but this is outside of the scope of the present article; furthermore, the
computation of the maps between the different models is not asymptotically rel-
evant. Using Brill-Noether theory and considerations on special linear systems,
they show that this method works for “general enough” non-hyperelliptic curves,
of genus g ≥ 5.

So we assume that we are given a degree d curve C, of equation F (x, y) = 0,
with a rational singular point P1 of multiplicity m ≥ 2 (in most cases m = 2).
The factor base is given by the rational points of the desingularization C̃ of C,
i.e. B = {(P ) : P ∈ C̃(Fq)}. In the original version, for each other point P2

in B or in the small factor base Bs, the intersection of C with the line passing
through P1 and P2 is computed as before. This amounts to finding the roots of



the polynomial
F (x, λx+ µ)

(x− x1)m(x− x2)
,

which has degree d −m − 1. If it splits, which happens with probability about
1/(d −m − 1)!, we compute the intersection points P3, . . . , Pd−m−1 and obtain
a relation that we can write as

D ∼ (P2) + (P3) + · · ·+ (Pd−m−1),

where D involves the singularity and the points at infinity. In the double large
prime variation we keep this relation only if it involves no more than two large
primes. To get rid of the divisor D on the left-hand side we would like to subtract
one such relation from all the other ones. But in order to do this (using large
primes) we need one relation involving only small primes ; if it does not exist a
solution is then to add some points to Bs. Since there are less points on the right-
hand side than in Diem’s first algorithm, the probability of finding a relation
increases, and one can show that the overall complexity becomes Õ(q2−2/(g−2)).
Note that here again, some care must be taken to avoid duplicate relations, and
in particular not all points P2 but only a fraction of the factor base should be
considered.

Now it is clear that our sieve can be naturally adapted to this new setting.
Indeed, we can keep the inner loops of Alg. 2 ; the point (x1, y1) is now the
singular point P1, and we look for the values of λ that have been obtained d−m
times, or d−m− 2 times in the double large prime variation. Once again, this
replaces the factorization of a degree d−m− 1 polynomial by a single division,
and avoids checking for duplicate relations.

4 Experiments

We have experimented the harvesting techniques presented in this article for
several curves of different genera, defined over different finite fields. All com-
putations have been done using the computer algebra system Magma [1] on an

AMD Opteron
TM

6176 SE@2.3GHz processor. We only implemented the non-
large-prime version of the algorithms, the main reason being that we wanted the
tests to be as simple as possible6. The curves have been generated with the com-
mand RandomCurveByGenus, which always returned a degree g curve (instead of
g + 1) for g ≥ 6; for this reason the results in genus 6 are very close to those
in genus 5 and we did not report them. For the non-sieving versions, we used
associative arrays and sets to automate the check for duplicate relations, but
this is more and more costly as the number of relations grows.

We give in Table 1 the comparison between Diem’s method and our sieve;
the values are the timings in seconds (on an Intel c© Core i5@2.00Ghz processor)
to obtain p ≈ #F relations, averaged over several curves.

6 More fundamentally, large prime variations are interesting for the asymptotic com-
plexity analysis, but are not always well-suited in practice ; other methods such as
the Gaussian structured elimination [9] can be more efficient.



Table 1. Comparisons of the new sieve with Diem’s classical method

p 78137 177167 823547 1594331

Genus 3, degree 4
Diem 11.57 27.54 135.1 266.1

Diem + sieving 3.65 9.38 46.96 94.60
Ratio 3.16 2.95 2.88 2.81

Genus 4, degree 5
Diem 51.85 122.4 595.8 1174

Diem + sieving 15.58 40.01 195.1 387.6
Ratio 3.33 3.06 3.05 3.03

Genus 5, degree 6
Diem 229.4 535.8 2581 5062

Diem + sieving 75.66 199.0 969.3 1909
Ratio 3.03 2.69 2.66 2.65

Genus 7, degree 7
Diem 1382 3173 14990 29280

Diem + sieving 458.5 1199 5859 11510
Ratio 3.02 2.65 2.56 2.54

In Table 2 we give timings comparing the new sieve with Diem and Kochinke’s
method. We did not implement the change of plane models; instead, we simply
chose random curves possessing rational singular points, and used one of them
as the base point for the relation search. In the sieving version all the relations
involving lines passing through the singularity were computed, whereas in the
non-sieving case we only iterated through half of the basis, as suggested in [3].
For this reason the values correspond to the timings in seconds needed to obtain
1000 relations, again averaged over several curves.

Table 2. Comparisons of the new sieve with Diem and Kochinke’s method

p 78137 177167 823547 1594331

Genus 5, degree 6
Diem & Kochinke 1.58 1.60 1.69 1.76

DK + sieving 0.43 0.45 0.52 0.61
Ratio 3.67 3.60 3.23 2.90

Genus 7, degree 7
Diem & Kochinke 8.59 8.68 8.97 9.20

DK + sieving 1.21 1.25 1.56 1.93
Ratio 7.13 6.96 5.74 4.77

5 Conclusion

We have shown in this work that a reformulation of Sarkar and Singh’s sieve
[10], namely sieving over points instead of x-coordinates, gives a simpler presen-
tation of the harvesting phase of the index calculus algorithm on hyperelliptic
curves. More importantly, it can be naturally adapted to Diem and Kochinke’s
index calculus for non-hyperelliptic curves [2, 3]. Our experiments show that the
new sieve clearly outperforms the relation search of the other methods in all
circumstances and should always be preferred.
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