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Mathematical Analysis and Calculation of Molecular Surfaces

Chaoyu Quan, Benjamin Stamm

September 25, 2015

Abstract

In this article we derive a complete characterization of the Solvent Excluded Surface (SES)
for molecular systems including a complete characterization of singularities of the surface. The
proofs are constructive so that the theory allows for efficient algorithms in order to compute
the area of the SES and the volume of the SES-cavity, or to visualize the surface. Further, we
propose to refine the notion of SAS and SES in order to take inner holes in a solute molecule
into account or not.

1 Introduction

The majority of chemically relevant reactions take place in the liquid phase and the effect of the
environment (solvent) is important and should be considered in various chemical computations. In
consequence, a continuum solvation model is a model in which the effect of the solvent molecules on
the solute are described by a continuous model [20]. In continuum solvation continuum models, the
notion of molecular cavity and molecular surface is a fundamental part of the model. The molecular
cavity occupies the space of the solute molecule where a solvent molecule cannot be present and
the molecular surface, the boundary of the corresponding cavity, builds the interface between the
solute and the solvent respectively between the continuum and the atomistic description of the
physical model. A precise understanding of the nature of the surface is therefore essential for
the coupled model and in consequence for running numerical computations. The Van der Waals
(VdW) surface, the Solvent Accessible Surface (SAS) and the Solvent Excluded Surface (SES) are
well-established concepts. The VdW surface is more generally used in chemical calculations, such
as in the recent developments [4, 13] for example, of numerical approximations to the COnductor-
like Screening MOdel (COSMO) due to the simplicity of the cavity. Since the VdW surface is
the topological boundary of the union of spheres, the geometric features are therefore easier to
understand. However, the SES, which is considered to be a more precise description of the cavity,
is more complicated and its analytical characterization remains unsatisfying despite a large number
of contributions in literature.

1.1 Previous Work

In quantum chemistry, atoms of a molecule can be represented by VdW-balls with VdW-radii
obtained from experiments [16]. The VdW surface of a solute molecule is consequently defined as
the topological boundary of the union of all VdW-balls. For a given solute molecule, its SAS and the
corresponding SES were first introduced by Lee & Richards in the 1970s [12, 17], where the solvent
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molecules surrounding a solute molecule are reduced to spherical probes [20]. The SES is also called
“the smooth molecular surface” or “the Connolly surface”, due to Connolly’s fundamental work [7].
He has divided the SES into three types of patches: convex spherical patches, saddle-shaped toroidal
patches and concave spherical triangles. But the self-intersection among different patches in this
division often causes singularities despite that the whole SES is smooth almost everywhere. This
singularity problem has led to difficulty in many associated works with the SES, for example,
failure of SES meshing algorithms and imprecise calculation of molecular areas or volumes, or has
been circumvented by approximate techniques [6]. In 1996, Michel Sanner treated some special
singularity cases in his MSMS (Michel Sanner’s Molecular Surface) software for meshing molecular
surfaces [19]. However, to our knowledge, the complete characterization of the singularities of the
SES remains unsolved.

1.2 Contribution

In this paper, we will characterize the above molecular surfaces with implicit functions, as
well as provide explicit formulas to compute analytically the area of molecular surfaces and the
volume of molecular cavities. We first propose a method to compute the signed distance function
to the SAS, based on three equivalence statements which also induce a new partition of R3. In
consequence, a computable implicit function of the corresponding SES is given from the relatively
simple relationship between the SES and the SAS. Furthermore, we will redefine different types of
SES patches mathematically so that the singularities will be characterized explicitly. Besides, by
applying the Gauss-Bonnet theorem [8] and the Gauss-Green theorem [10], we succeed to calculate
analytically all the molecular areas and volumes, in particular for the SES. These quantities are
thought to be useful in protein modeling, such as describing the hydration effects [18, 3].

In addition, we will refine the notion of SAS and SES by considering the possible inner holes in
the solute molecule yielding the notions of the complete SAS (cSAS) and the corresponding complete
SES (cSES). To distinguish them, we call respectively the previous SAS and the previous SES as the
exterior SAS (eSAS) and the exterior SES (eSES). A method with binary tree to construct all these
new molecular surfaces will also be proposed in this paper in order to provide a computationally
efficient method.

1.3 Outline

We first introduce the concepts of implicit surfaces in the second section and the implicit func-
tions of molecular surfaces are given in the third section. In the fourth section, we present two
more precise definitions about the SAS, either by taking the inner holes of the solute molecule con-
sidered into account or not. Then, based on three equivalence statements that are developed, we
propose a computable method to calculate the signed distance function from any point to the SAS
analytically. In this process, a new Voronoi-type diagram for the SAS-cavity is given which allows
us to calculate analytically the area of the SAS and the volume inside the SAS. In the fifth section,
a computable implicit function of the SES is deduced directly from the signed distance function to
the SAS and according to the new Voronoi-type diagram, all SES-singularities are characterized.
Still within this section, the formulas of calculating the area of the SES and the volume inside the
SES will be provided. In the sixth section, we explain how to construct the SAS (cSAS and eSAS)
and the SES (cSES and eSES) for a given solute molecule considering the possible inner holes. In
the last section, we provide some conclusions of this article.
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2 Introduction to Implicit Surfaces

We start with presenting the definition of implicit surfaces [21]. In a very general context, a
subset O ⊂ Rn is called an implicit object if there exists a real-valued function f : U → Rk with
O ⊂ U ⊂ Rn, and a subset V ⊂ Rk, such that O = f−1(V ). That is,

O = {p ∈ U : f(p) ∈ V }.

The above definition of an implicit object is broad enough to include a large family of subsets of the
space. In this paper, we consider the simple case where U = R3, V = {0} and f : R3 → R is a real-
valued function. In consequence, an implicit object is represented as a zero-level set O = f−1(0),
which is also called an implicit surface in R3, and the function f is called an implicit function
of the implicit surface. Notice that there are various implicit functions to represent one surface in
the form of a zero-level set.

The signed distance function fS of a closed bounded oriented surface S in R3, determines the
distance from a given point p ∈ Rn to the surface S, with the sign determined by whether p lies
inside S or not. That is to say,

fS(p) =

− inf
x∈S
‖p− x‖ if p lies inside S,

inf
x∈S
‖p− x‖ if p lies outside S.

(2.1)

This is naturally an implicit function of S.

3 Implicit Molecular Surfaces

In quantum chemistry, atoms of a molecule are represented by VdW-balls with VdW radii
which are experimentally fitted, given the underlying chemical element [16]. In consequence and
mathematically speaking, the VdW surface is defined as the topological boundary of the union of all
VdW-balls. Besides, the SAS of a solute molecule is defined by the center of an idealized spherical
probe rolling over the solute molecule, that is, the surface enclosing the region in which the center
of a spherical probe can not enter. Finally, the SES is defined by the same spherical probe rolling
over the solute VdW-cavity, that is, the surface enclosing the region in which a spherical probe can
access. In other words, the SES is the boundary of the union of all spherical probes that do not
intersect the VdW-balls of the solute molecule, see Figure 1 for a graphical illustration.

We denote by M the number of atoms in a solute molecule, by ci ∈ R3 and ri ∈ R+ the center
and the radius of the i-th VdW atom. The open ball with center ci and radius ri is called the
i-th VdW-ball. The Van der Waals surface can consequently be represented as an implicit surface
f−1vdw(0) with the following implicit function:

fvdw(p) = min
i=1,...,M

{‖p− ci‖2 − ri}, ∀p ∈ R3. (3.2)

Similarly, the open ball with center ci and radius ri + rp is called the i-th SAS-ball denoted by
Bi, where rp is the radius of the idealized spherical probe. Furthermore, we denote by Si the i-th
SAS-sphere corresponding to Bi, that is, Si = ∂Bi. Similar to the VdW surface, the SAS can be
represented as an implicit surface f̃−1sas(0) with the following implicit function:

f̃sas(p) = fvdw(p)− rp = min
i=1,...,M

{‖p− ci‖2 − ri − rp}, ∀p ∈ R3. (3.3)
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Figure 1: This is a 2-dimension (2D) schematics of the Solvent Accessible Surface and the Solvent
Excluded Surface, both defined by a spherical probe in orange rolling over the molecule atoms in
dark blue.

We notice that the above implicit function of the SAS is simple to compute. It seems nevertheless
hopeless to us to further obtain an implicit function of the SES if constructing upon this simple
implicit function f̃sas(p) which is not a distance function. On the other hand, having the signed
distance function, see (2.1), at hand would allow the construction of an implicit function for the
SES due to the geometrical relationship between the SAS and the SES.

Indeed, according to the fact that any point on the SES has signed distance −rp to the SAS,
an implicit function of the SES is obtained directly as:

fses(p) = fsas(p) + rp, (3.4)

which motivates the choice of using the signed distance function to represent the SAS. From the
above formula, the SES can be represented by a level set f−1sas(−rp), associated with the signed
distance function fsas to the SAS. Therefore, the key point becomes how to compute the signed
distance fsas(p) from a point p ∈ R3 to the SAS. Generally speaking, given a general surface S ⊂ R3

and any arbitrary point p ∈ R3, it is difficult to compute the signed distance from p to S. However,
considering that the SAS is a special surface formed by the union of SAS-spheres, this computation
can be done analytically.

We state a remark about another implicit function to characterize the SES, proposed by Pomelli
and Tomasi [15]. In [14], this function can be written as:

f̃ses(p) = min
1≤i<j<k≤M

fijk(p), ∀p ∈ R3, (3.5)

where fijk represents the signed distance function to the SES of the i-th, j-th and k-th VdW atom.
However, this representation might fail sometimes, see two representative 2D examples in Figure 2.
Indeed, the formula (3.5) for each molecule in Figure 2 can be rewritten as:

f̃ses(p) = min
1≤i<j≤3

fi,j(p), ∀p ∈ R2, (3.6)

where fi,j represents the signed distance function to the SES of the i-th and the j-th VdW atom.

However, each molecular cavity defined by {p ∈ R2 : f̃ses(p) ≤ 0} has excluded the region in grey
inside the real SES.
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Figure 2: The above figures illustrate two SESs of two artificial molecules respectively containing
three atoms. In each of them, f1,2 denotes the signed distance function to the SES of the 1-th and
the 2-th atoms which is depicted with dashed red curves (f2,3 and f1,3 are similar).

Further, the region enclosed by the Van der Waals surface is called the VdW-cavity, that is,
any point p in the VdW-cavity satisfies fvdw(p) ≤ 0. More generally, we call the region enclosed
by a molecular surface as the corresponding molecular cavity. In consequence, the region enclosed
by the SAS is called the SAS-cavity, and the region enclosed by the SES is called the SES-cavity.
Similarly, any point p in the SAS-cavity satisfies fsas(p) ≤ 0, and any point p in the SES-cavity
satisfies fses(p) ≤ 0.

4 The Solvent Accessible Surface

In the framework of continuum solvation models, using the VdW-cavity as the solvent molecular
cavity has the characteristic that its definition does not depend in any way on characteristics of
the solvent. In other words, the above-mentioned VdW surface has ignored the size and shape of
the solvent molecules, while the definition of the Solvent Accessible Surface includes some of these
characteristics. In the following, we first provide two more precise mathematical definitions of the
SAS considering possible inner holes of a solute molecule. After that, we will provide a formula for
the signed distance function to the SAS, which is indeed based on three equivalence statements,
providing explicitly a closest point on the SAS to any point in R3. In this process, a new Voronoi-
type diagram will be proposed to make a partition of the space R3, which, in turn, will also be used
to calculate the exact volume of the SAS-cavity.

4.1 Mathematical Definitions

In [12], the Solvent Accessible Surface is defined by the set of the centers of the spherical probe
when rolling over the VdW surface of the molecule. At first glance, one could think that it can
equivalently be seen as the topological boundary of the union of all SAS-balls of the molecule.
However, we notice that there might exist some inner holes inside the molecules where a solvent
molecule can not be present. In consequence, the SAS may or may not be composed of several sep-
arate surfaces, see Figure 3 for a graphical illustration. This inspires us to propose two more precise
surfaces: the complete Solvent Accessible Surface (cSAS) defined simply as the boundary of
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Figure 3: The left figure shows the components of the eSAS of the protein 1B17 (the probe radius
rp = 1.2Å): open spherical patches in blue, open circular arcs in yellow and intersection points
in red. The right figure shows the exterior surface (transparent) and the interior surfaces of the
eSES of the protein 1B17. The boundary of an exterior spherical patch of the eSAS is composed
of circular arcs depicted in yellow, and the boundary of an interior spherical patch of the cSAS is
composed of circular arcs depicted in purple.

the union of the SAS-balls, and the exterior Solvent Accessible Surface (eSAS) defined as the
outmost surface obtained when a probe rolls over the exterior of the molecule, see Figure 4. In the
case where there are no interior holes inside the molecule, the cSAS and the eSAS will coincide.
We make a convention that the SAS refers to both the cSAS and the eSAS in a general context.

Since both the cSAS and the eSAS are two closed sets, there exists a closest point on the SAS
to any given point p ∈ R3, which is denoted by xpsas. Thus, the signed distance function fsas can
be written as:

fsas(p) =

®
−‖p− xpsas‖ if p lies inside the SAS,

‖p− xpsas‖ if p lies outside the SAS.
(4.7)

In the above formula, xpsas depends on p. When p lies on the SAS, p coincides with xpsas and
fsas(p) = 0. It remains therefore to find a closest point xpsas on the SAS to the given point p ∈ R3.
Note that there might exist more than one closest point on the SAS to the point p and xpsas is
chosen as one of them. In the context, this is not an easy task. In the following, for the particular
case of the SAS, we propose a way to calculate analytically a closest point on the SAS to a given
point p, based on three equivalence statements.

4.2 Equivalence Statements

According to the definitions of the cSAS and the eSAS, these two molecular surfaces are both
composed of three types of parts: open spherical patches, open circular arcs and intersection points
(formed by the intersection of at least three SAS-spheres), see Figure 3. Note that an SAS intersec-
tion point can in theory be formed by the intersection of more than three SAS-spheres. However,
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Figure 4: This is a 2D schematic of different molecular surfaces, including the VdW surface, the
cSAS, the eSAS, the cSES and the eSES. The yellow discs denote the probes, representing solvent
molecules, while the blue discs denote the VdW-balls. SAS1 is the trace of the probe center when
a probe rolls over the exterior of the VdW-balls, while SAS2 is the trace of the probe center
when a probe rolls over the inner holes of the VdW-balls. SES1 and SES2 respectively denote the
corresponding solvent excluded surfaces to SAS1 and SAS2. The cSAS is the union of SAS1 and
SAS2, while the eSAS is just SAS1. Similarly, the cSES is the union of SES1 and SES2, while the
eSES is just SES1. Finally, xi0 is a closest point on the SAS to a given point p.

these cases can be divided into multiple triplets of SAS-spheres for simplicity as mentioned in [11].
In this spirit, we make an assumption that all SAS intersection points are formed by the intersec-
tion of three SAS-spheres. Furthermore, we assume that any SAS-ball is not included by any other
(otherwise, the inner SAS-ball can be ignored) In the following analysis.

For an SAS, denote by m1 the number of the SAS spherical patches, by m2 the number of the
SAS circular arcs, and by m3 the number of the SAS intersection points. Then, denote by Pm the
m-th SAS spherical patch on the SAS where m = 1, . . . ,m1. Denote by lm the m-th SAS circular
arc on the SAS where m = 1, . . . ,m2. Denote by xm the m-th SAS intersection point on the SAS
where m = 1, . . . ,m3. Furthermore, denote by I the set of all SAS intersection points written as:

I = {xm : m = 1, . . . ,m3} = {x ∈ SAS : ∃ 1 ≤ i < j < k ≤M, s.t. x ∈ Si ∩ Sj ∩ Sk}.

With the above notations, we consider to calculate a closest point on the SAS to a given point p in
the case when p lies outside the SAS (the cSAS or the eSAS).

Lemma 4.1. Let the point p lie outside the SAS (the cSAS or the eSAS), i.e. ‖p−ci‖ ≥ ri+rp, ∀1 ≤
i ≤M . Further, let i0 ∈ {1, . . . ,M} be such that

‖p− ci0‖ − (ri0 + rp) = min1≤i≤M{‖p− ci‖ − (ri + rp)}. (4.8)

Then, the point

xi0 = ci0 + (ri0 + rp)
p− ci0
‖p− ci0‖

, (4.9)
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is the closest point to p on the SAS and

fsas(p) = ‖p− xi0‖ = min
1≤i≤M

{‖p− ci‖ − (ri + rp)}. (4.10)

Proof. The proof involves basis geometric manipulations and is left to the reader.

So far, we have discussed the case when p lies outside the SAS (both the cSAS and the eSAS),
which is not too difficult to deal with. Next, we need to consider the case where p lies inside the
(complete or exterior) SAS-cavity, to obtain the signed distance function fsas(p) from any point
p ∈ R3 to the SAS. The following analysis can be applied to both the cSAS and the eSAS. This
problem is handled inversely, in the sense that we will determine the region in the molecular cavity
for an arbitrary given point xsas ∈ SAS, such that xsas is a closest point to any point in this region.
To do this, we first define a mapping R : X 7→ Y , where X is a subset of the SAS, and Y = R(X)
is the region in the SAS-cavity, such that there exists a closest point in X on the SAS to any point
in Y . That is,

Y = {y : y lies in the SAS-cavity and ∃ xysas ∈ X s.t. xysas is a closest point to y}.

In the following, we propose three equivalence statements between a point xsas on the SAS and
the corresponding region R(xsas) for three cases where xsas lies respectively on the three different
types of the SAS. We recall first, however, a useful inequality between two signed distance functions
to two surfaces.

Proposition 4.1. Consider two bounded, closed and oriented surfaces S ⊂ R3 and S′ ⊂ R3 with
two corresponding signed distance functions fS(p) and fS′(p). If the cavity inside S is contained in
the cavity inside S′, then we have fS′(p) ≤ fS(p), ∀p ∈ R3.

With the above proposition, we propose first a result which connects a point on an SAS spherical
patch with a closed line segment in the SAS-cavity.

Theorem 4.1. Assume that p ∈ R3 is a point in the SAS-cavity and xsas is a point on the SAS.
If xsas is on an SAS spherical patch Pm on the i-th SAS-ball Si, then xsas is a closest point on
the SAS to p if and only if p lies on the closed line segment [ci, xsas]. That is, R(xsas) = [ci, xsas].
Further, the closest point xsas on the SAS is unique if and only if p 6= ci. If p = ci, then any point
on Pm is a closest point to p.

Proof. First suppose that xsas is a closest point to p with xsas ∈ Pm ⊂ Si. Since Pm is an open
set, take a small enough neighborhood V of xsas such that V ⊂ Pm, see Figure 5, and since xsas is
a closest point on the SAS to p, we have

‖p− xsas‖ ≤ ‖p− x‖, ∀x ∈ V, (4.11)

which yields that the vector from xsas to p is perpendicular to any vector in the tangent plane of
Si at xsas, thus the vector from p to xsas is the normal vector at xsas of Si. In consequence, p
must lie on the line passing through xsas and the center ci of Si. Furthermore, from the convexity
of Pm, p has to lie on the closed line segment [ci, xsas].

On the other hand, suppose that xsas ∈ Pm ⊂ Si, and p ∈ [ci, xsas]. In consequence, xsas
is obviously a closest point on the sphere Si to p, see Figure 5. The signed distance function
fSi(p) is equal to −‖p − xsas‖. Notice that the cavity inside Si, i.e. Bi, is contained in the
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Figure 5: Illustration when the point xsas lies on an SAS spherical patch Pm which is part of an
SAS-sphere Si, and p lies on the segment [ci, xsas]. V represents a neighborhood of xsas on the
spherical patch. αs is the angle variation at the vertex vs between two neighboring circular arcs
es−1 and es on the boundary of this spherical patch.

SAS-cavity. We can then use Proposition 4.1 by taking S as Si and S′ as the SAS, to obtain
fsas(p) ≤ fSi

(p) = −‖p− xsas‖. Therefore, we have

−‖p− x‖ ≤ fsas(p) ≤ −‖p− xsas‖, ∀x ∈ SAS. (4.12)

That is, ‖p−x‖ ≥ ‖p−xsas‖, ∀x ∈ SAS, which means that xsas is a closest point on the SAS to p.
Finally, assume that p ∈ [ci, xsas]. If p = ci, then any point on Pm is a closest point to p

because the distance is uniformly ‖ci − xsas‖ = ri + rp. If p 6= ci, then the open ball Br(p) with
r = ‖p− xsas‖ < ri + rp is included in Bi and ∂Br(p)∩ Si = {xsas}, which implies that xsas is the
unique closest point to p.

Next, we propose another equivalence statement, which connects a point on an SAS circular arc
with a closed triangle in the SAS-cavity.

Theorem 4.2. Assume that p ∈ R3 is a point in the SAS-cavity and xsas is a point on the SAS.
If xsas is on an SAS circular arc lm associated with Si and Sj, then xsas is a closest point on the
SAS to p if and only if p lies in the closed triangle 4xsascicj defined by three vertices xsas, ci and
cj. That is, R(xsas) = 4xsascicj. Further, the closest point xsas on the SAS is unique if and only
if p does not belong to the edge [ci, cj ]. If p ∈ [ci, cj ], any point on lm is a closest point to p.

Proof. First suppose that xsas is a closest point to p with xsas ∈ lm ⊂ Si ∩ Sj . Since lm is an open
circle arc on the circle Si ∩ Sj , take a small enough neighboring curve γ0 of xsas with γ0 ⊂ lm, see
Figure 6. Since xsas is a closest point to p, we have

‖p− xsas‖ ≤ ‖p− x‖, ∀x ∈ γ0. (4.13)

Denote by p′ the projection of p onto the plane where lm lies. By substituting ‖p − xsas‖2 =
‖p− p′‖2 + ‖p′ − xsas‖2 and ‖p− x‖2 = ‖p− p′‖2 + ‖p′ − x‖2 into the inequality (4.13), we obtain
that

‖p′ − xsas‖ ≤ ‖p′ − x‖, ∀x ∈ γ0, (4.14)

which yields that the vector from xsas to p′ is perpendicular to the tangent vector of γ0 at xsas.
In consequence, p′ has to lie on the ray Oxsas starting from O and passing through xsas, where
O is the center of the circular arc lm. Thus, p must lie on the closed half plane Π defined by the
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Figure 6: Illustration when lm is an SAS circular arc associated with two SAS-spheres Si and Sj .
The point xsas on lm is a closest point on the SAS to p. γ0 is a small neighborhood of xsas on the
circular arc lm, whereas γ1 and γ2 represent two small neighboring curves of xsas on the SAS, with
xsas as the endpoints, γ1 ⊂ Π ∩ Si ∩ SAS, and γ2 ⊂ Π ∩ Sj ∩ SAS.

three points xsas, ci and cj and whose boarder is the line passing through ci and cj . The closed
half plane Π contains the ray Oxsas and is perpendicular to the plane where lm lies. We then take
another two neighboring curves γ1 and γ2 of xsas, with γ1 ⊂ Π ∩ Si ∩ SAS and γ2 ⊂ Π ∩ Sj ∩ SAS,
see Figure 6. In this case, γ1 has one closest endpoint xsas and is open at the other end, which is
the same for γ2. From the assumption that xsas is a closest point on the SAS to p, we have the
following inequality

‖p− xsas‖ ≤ ‖p− x‖, ∀x ∈ γ1 ∪ γ2. (4.15)

This yields that p ∈ 4xsascicj , where 4xsascicj is the closed triangle on Π with three vertices xsas,
ci and cj . Otherwise, we can find a point x ∈ (γ1 ∪ γ2)\xsas strictly closer to p than xsas, which
contradicts the assumption.

On the other hand, suppose that p ∈ 4xsascicj . In consequence, it is not difficult to obtain
that xsas is the closest point to p on ∂(Bi ∪ Bj), where Bi and Bj are the corresponding SAS-
balls corresponding to Si and Sj as mentioned above. Similarly, we know that the signed distance
function f∂(Bi∪Bj)(p) is equal to −‖p − xsas‖, and notice that Bi ∪ Bj is contained in the SAS-
cavity. We can use again Proposition 4.1, by taking S as ∂(Bi ∪Bj) and S′ as the SAS, to obtain
fsas(p) ≤ f∂(Bi∪Bj)(p) = −‖p− xsas‖. Therefore, we have

−‖p− x‖ ≤ fsas(p) ≤ −‖p− xsas‖, ∀x ∈ SAS. (4.16)

That is, ‖p− x‖ ≥ ‖p− xsas‖, ∀x ∈ SAS, which means that xsas is a closest point on the SAS to p.
If p ∈ [ci, cj ], then any point on lm is a closest point to p since the distance from any point on

lm to p is constant. If p ∈ 4xsascicj\[ci, cj ], then the open ball Br(p) with r = ‖p−xsas‖ < ri + rp
is included in Bi ∪ Bj and ∂Br(p) ∩ ∂(Bi ∪ Bj) = {xsas}, which implies that xsas is the unique
closest point to p.

10



Figure 7: This figure illustrates the closed region T of three SAS-spheres with the centers (ci, cj , ck),
where the tetrahedron T has five vertices (xsas, ci, cj , ck, xI). Here, xsas is one SAS intersection
point in I, and xI is the other SAS intersection point.

By mapping with R a whole SAS spherical patch Pm to the SAS-cavity, we obtain a spherical
sector R(Pm) in the SAS-cavity with cap Pm, center ci and radius ri + rp, see Figure 5. Similarly,
by mapping with R a whole SAS circular arc lm to the SAS-cavity, we obtain a double-cone region
R(lm) in the SAS-cavity with the circular sector corresponding to lm as base, ci and cj as vertices,
see Figure 6.

Removing now the above-mentioned spherical sectors and double-cone regions from the SAS-
cavity, the closed hull of the remaining region, denoted by T , is consequently a collection of closed
separate polyhedrons, see an example of three atoms in Figure 7. Each polyhedron is denoted by Tn
with index n and thus T =

⋃
Tn. Considering now the last case where xsas is an SAS intersection

point xm, we have a third equivalence statement as a corollary of the previous two equivalence
statements.

Corollary 4.1. If xsas is an SAS intersection point xm ∈ I associated with Si, Sj and Sk, then
xsas is a closest point on the SAS to p if and only if p lies in the closed region T and xsas is a
closest point in I to p.

In other words, for an arbitrary intersection point xm ∈ I, we have the formula of its corre-
sponding region in the SAS-cavity as following:

R(xm) = T ∩ {p : ‖p− xm‖ ≤ ‖p− x‖, ∀x 6= xm, x ∈ I}. (4.17)

It is not difficult to find that R(xm) is a closed polyhedron. At the same time, mapping I into the
SAS-cavity with R, we obtain R(I) = T .

With the three equivalence statements as well as the above-defined map R, we obtain in fact a
non-overlapping decomposition of the SAS-cavity, including spherical sectors, double-cone regions
and polyhedrons. It should be emphasized that given a point p ∈ R3 contained in the SAS-cavity
and known the region where p lies, we can then calculate a closest point xpsas on the SAS to p
according to this decomposition. The signed distance function fsas(p) can therefore be calculated
analytically by the formula 4.7, which, in turn, will ultimately provide an implicit function of the
SES. In the next subsection, we will investigate further in the partition of the SAS-cavity based
on the above equivalence statements, in order to compute efficiently the area of the SAS and the
volume of the SAS-cavity.
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4.3 New Voronoi-type Diagram

The above non-overlapping decomposition of the SAS-cavity can also be seen as a new Voronoi-
type diagram, which will be presented comparing with the well-known Voronoi Diagram and the
Power Diagram recalled in the following.

a. Voronoi Diagram

The Voronoi diagram [9] was initially a partition of a 2D plane into regions based on the distance
to points in a specific subset of the plane. In the general case, for an Euclidean subspace X ⊂ Rn
endowed with a distance function d and a tuple of nonempty subsets (Ai)i∈K in X, the Voronoi
region Ri associated with Ai is the set of all points in X whose distance to Ai is not greater than
their distance to any other set Aj for j 6= i. In other words, with the distance function between a
point x and a set Ai defined as

dV (x,Ai) = inf
y∈X

{d(x, y) | y ∈ Ai},

the formula of the Voronoi region Ri is then given by:

Ri = {x ∈ X | dV (x,Ai) ≤ dV (x,Aj) ,∀ j 6= i}. (4.18)

Most commonly, each subset Ai is taken as a point and its corresponding Voronoi region Ri is
consequently a polyhedron, see an example of three points in R2 in Figure 8.

b. Power Diagram

In computational geometry, the power diagram [1], also called the Laguerre-Voronoi diagram, is
another partition of a 2D plane into polygonal cells defined from a set of circles in R2. In the general
case, for a set of circles (Ci)i∈K (or spheres) in Rn with n ≥ 2, the power region Ri associated with
Ci consists of all points whose power distance to Ci is not greater than their power distance to any
other circle Cj , for j 6= i. The the power distance from a point x to a circle Ci with center ci and
radius ri is defined as

dP (x,Ck) = ‖x− ck‖2 − r2k,

the formula of the Power region Ri is then given by:

Ri = {x ∈ Rn | dP (x,Ci) ≤ dP (x,Cj) ,∀ j 6= i}.

The power diagram is a form of generalized Voronoi diagram, in the sense that you can take the
circles Ci instead of the centers ci and simply replace the distance function dV in the Voronoi
diagram with the power distance function dP , to obtain the power diagram, see an example of
three circles in R2 in Figure 8. Notice that the power distance is not a real distance function. By
summing up the volume of each power region inside the SAS-cavity, one can calculate the exact
volume of the cSAS-cavity, which is equivalent to calculate the volume of the union of balls, see
[2, 5].
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c. New Voronoi-Type Diagram

In this paper, we propose a new Voronoi-type diagram for a set of spheres in R3 (or circles
in R2), which is inspired by the non-overlapping decomposition of the SAS-cavity. We will see
that this new diagram allows to calculate exactly not only the volume of the (complete or exterior)
SAS-cavity, but also the (complete or exterior) SES-cavity which will be defined in the next section.

We first look at the new Voronoi-type diagram for a set of discs in the case of 2D. Notice
that the boundary γ of the union of these discs can be classified into two types: open circular
arcs {l1, l2, . . . , ln} and intersection points {x1, x2, . . . , xn}, with the number of circular arcs equal
to the number of intersection points. Take A1 = l1, . . . , An = ln, An+1 = {x1, x2, . . . , xn} in
the Voronoi diagram. In consequence, we obtain n + 1 corresponding new Voronoi-type regions
{R1, . . . , Rn, Rn+1}, where Ri is given by (4.18).

From a similar mapping R and similar equivalence theorems, we know that the part of Ri inside
γ is a circular sector when 1 ≤ i ≤ n, and Rn+1 is the remaining region composed of polygons, see
an example of three circles in Figure 8. For any point x ∈ R2, we have x ∈ Ri if and only if there
exists a point in Ai such that it is a closet point to x on γ.

In the 3D case, the SAS consists of three types of geometrical quantities: open spherical
patches, open circular arcs and intersection points. Similarly to the case in 2D, we take A1 =
P1, . . . , Am1 = Pm1 , Am1+1 = l1, . . . , Am1+m2 = lm2 and Am1+m2+1 = {x1, . . . , xm3} with the
above-mentioned notations. In consequence, we obtain m1+m2+1 corresponding new Voronoi-type
regions {R1, . . . , Rm1

, Rm1+1, . . . , Rm1+m2
, Rm1+m2+1}.

With the mapping R defined in the last section, we know that the spherical sector R(Pm)
corresponds to Rm in the SAS-cavity, the double-cone region R(lm) corresponds to Rm1+m in the
SAS-cavity, and the closed region R(I) coincides with Rm1+m2+1. For any point x ∈ R3, we have
x ∈ Ri if and only if there exists a point in Ai such that it is a closet point on the SAS to x. The new
Voronoi-type diagram is a powerful tool for calculating analytically the molecular area and volume,
which is a direct consequence of the three equivalence statements. Given the components of the
SAS, the new Voronoi-type diagram can be obtained directly according to the three equivalence
statements, while the power diagram needs more complicated computations.

4.4 SAS-Area and SAS-Volume

In this paper, the area of the SAS is called the SAS-area and the volume of the SAS-cavity is
called the SAS-volume. Similarly, the area of the SES is called the SES-area and the volume of the
SES-cavity is called the SES-volume. Next, we will use the Gauss-Bonnet theorem of differential
geometry to calculate the SAS-area, and then will use the new Voronoi-type diagram to calculate
the SAS-volume.

a. SAS-Area

To calculate analytically the solvent accessible area, the Gauss-Bonnet theorem has already been
applied in the 1980s [7], which allows one to calculate the area of each SAS spherical patch with the
information along its boundary, and then sum them up. We introduce briefly the key formula used
in this calculation to keep the article complete. The area of a spherical patch P can be obtained
from the Gauss-Bonnet theorem as following (see Figure 5):∑

i

αi +
∑
i

kei |ei|+
1

r2
AP = 2πχ, (4.19)
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Figure 8: The left figure gives the Voronoi diagram of three points {a1, a2, a3} in R2. R1 is the
Voronoi region associated with a1, while R2 associated with a2 and R3 associated with a3. The
middle figure gives the power diagram of three circles {C1, C2, C3} in R2, with three corresponding
power regions R1, R2 and R3. The right figure gives the new Voronoi-type diagram of three circles
in R2, with four regions R1, R2, R3 and R4 respectively corresponding to l1, l2, l3 and {x1, x2, x3}.

where αi is the angle at the vertex vi on the boundary between two neighboring circular arcs ei−1
and ei, kei is the geodesic curvature of the edge ei, |ei| is the length of this edge ei and AP is
the area of the patch P . Finally, χ is the Euler characteristic of P , which is equal to 2 minus the
number of loops forming the boundary of P . Through the above formula, we calculate the area of
each SAS spherical patch APm

and sum them up to get the SAS-area Asas:

Asas =

m1∑
m=1

APm . (4.20)

b. SAS-Volume

In the new Voronoi-type diagram, the SAS-cavity is decomposed into three types of region:
spherical sectors, double-cone regions and polyhedrons. For a spherical patch Pm on Si with center
ci and radius ri+ rp, the volume of the corresponding spherical sector R(Pm), denoted by VPm , can
be calculated as following:

VPm
=

1

3
APm

(ri + rp).

For a circular arc lm associated with Si and Sj (see Figure 6), the volume of the corresponding
double-cone region R(lm), denoted by Vlm , can be calculated as following:

Vlm =
1

6
rlm |lm| ‖ci − cj‖.

where rlm is the radius of this circular arc and |lm| is the length of lm. Finally, the volume of the
closed region T = R(I) can be calculated according the Gauss-Green theorem [10]:

VT =
∑
t

At (nt · n0),
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where t denotes a triangle on the boundary of T , At is the area of the triangle t, nt is the outward
pointing normal vector of t and n0 is an arbitrary given unit direction vector in R3, for example,
n0 = (1, 0, 0).

From the above three formulas, we sum up the volume of each spherical sector, each double-cone
region and the polyhedron T , to get the solvent accessible volume Vsas as below:

Vsas =
1

3

m1∑
m=1

APm
(ri + rp) +

1

6

m2∑
m=1

rlm |lm| ‖ci − cj‖+
∑
t

At (nt · n0).

5 The Solvent Excluded Surface

The Solvent Excluded Surface was first proposed by Lee & Richards in the 1970s [17]. Although
the SES is believed to give a more accurate description of the molecular cavity, it is more complicated
than the other two molecular surfaces. We first give two more precise definitions of the SES
considering inner holes of a molecule. After that, we define mathematically different types of patches
on the SES, which helps us to characterize and calculate analytically singularities on the SES.
Finally, combining the above-proposed new Voronoi-type diagram and the upcoming singularity
analysis, we calculate the exact SES-area and the SES-volume.

5.1 Mathematical Definitions

In previous works [12, 17], the SES is defined as the topological boundary of the union of all
possible spherical probes that do not intersect any VdW atom of the molecule. In other words,
the SES is the boundary of the cavity where a spherical probe can never be present. However,
there might exist inner holes inside the solute molecule. Similar to the definitions of the cSAS and
the eSAS, the complete Solvent Excluded Surface (cSES) is defined as the set of all points
with signed distance −rp to the cSAS, while the exterior Solvent Excluded Surface (eSES) is
defined as the set of all points with signed distance −rp to the eSAS. We make a similar convention
as before that the SES refers to both the cSES and the eSES. From the geometrical relationship
between the SAS and the SES, i.e. SES = f−1sas(rp), we propose an implicit function of the SES:

fses(p) =

®
−‖p− xpsas‖+ rp if fsas(p) ≤ 0,

‖p− xpsas‖+ rp if fsas(p) ≥ 0,
(5.21)

where xpsas is a closest point on the SAS to p, which depends on p and can be obtained directly
from the equivalence statements.

In Connolly’s work [7], the SES is divided into three types of patches: convex spherical patches,
saddle-shaped toroidal patches and concave spherical triangles, see Figure 9. The convex spherical
patches are the remainders of VdW-spheres, which occur when the probe is rolling over the surface
of an atom and touches no other atom. The toroidal patches are formed when the probe is in contact
with two atoms at the same time and rotates around the axis connecting the centers of these two
atoms. While rolling, the probe traces out small circular arcs on each of the two VdW-spheres,
which build the boundaries between the convex spherical patches and the toroidal patches. The
concave spherical triangles occur if the probe is simultaneously in contact with more than or equal
to three VdW-spheres. Here, the probe is in a fixed position, meaning that it is centered at an SAS
intersection point and cannot roll without losing contact to at least one of the atoms.
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Figure 9: The above figures show both the SAS and the SES of the caffeine molecule (the probe
radius rp = 1.2Å). On the left, the SAS is composed of spherical patches in blue, circular arcs in
yellow and intersection points in red. On the right, the patches in red (resp. in yellow or in blue)
are the corresponding convex spherical patches (resp. toroidal patches or concave spherical patches)
on the SES.

The intersection between different SES patches might occur which leads to singularities on the
SES, referred to as SES-singularities, see Figure 10. Despite some particular cases which have been
studied by Sanner [19], a characterization of these singularities is not known. We will provide a
complete characterization, using the above equivalence statements as well as the following analysis
of the SES-singularities. To start with, we give three new definitions of different SES patches from
the mathematical point of view:

1) Convex Spherical Patch: A convex spherical patch on the SES, denoted by P+, is defined
as the set of the points on the SES such that there exists a closest point on the SAS belonging
to a common SAS spherical patch Pm, where 1 ≤ m ≤ m1.

2) Toroidal Patch: A toroidal patch on the SES, denoted by Pt, is defined as the set of the
points on the SES such that there exists a closest point on the SAS belonging to a common
SAS circular arc lm, where 1 ≤ m ≤ m2.

3) Concave Spherical Patch: A concave spherical patch on the SES, denoted by P−, is defined
as the set of the points on the SES such that there exists a common SAS intersection point
xm which is a closest point on the SAS to each point on P−, where 1 ≤ m ≤ m3.

According to these new definitions, the three types of patches can be rewritten mathematically as
follows: 

P+ = {p : fses(p) = 0, p ∈ R(Pm)}, 1 ≤ m ≤ m1

Pt = {p : fses(p) = 0, p ∈ R(lm)}, 1 ≤ m ≤ m2

P− = {p : fses(p) = 0, p ∈ R(xm)}, 1 ≤ m ≤ m3

(5.22)

where fses is the implicit function of the SES and R is the mapping defined in the previous section.
Actually, a convex spherical patch and a toroidal patch are defined in the same way as Connolly,
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Figure 10: The above figures show two kinds of singularities respectively on a toroidal patch Pt
and on a concave spherical patch P−. On the left, each of the two point-singularities (cusps) on the
toroidal patch Pt has an infinite number of closest points on the corresponding SAS circle in orange.
On the right, the SES-singularities on the concave spherical patch P− form a singular circle. The
two spherical spheres in green center at two SAS intersection points in red.

while a new-defined concave patch might not be triangle-shaped because its new definition takes
into account the intersection among different SES patches. The above new definitions of the SES
patches ensure that different SES patches will not intersect with each other, for the reason that
different patches belong to different new Voronoi-type regions in the new Voronoi-type diagram.

5.2 SES-Singularities

Before characterizing the singularities on the SES, it is necessary to recall the properties of the
signed distance function fS to a surface S in Rn (n ≥ 1) as below:

1) fS is differentiable almost everywhere, and it satisfies the Eikonal Equation: |∇fS | = 1.

2) If fS is differentiable at a point p ∈ Rn, then there exists a small neighborhood V of p such
that fS is differentiable in V .

3) For any point p ∈ Rn, fS is non-differentiable at p if and only if the number of the closest
points on S to p is greater than or equal to 2.

We call a point xses ∈ SES a singularity if the SES is not smooth at xses, which means that its
implicit function fses(p) = fsas(p) + rp is non-differentiable at xses in R3. If xses ∈ SES is a
singularity, we obtain consequently that fsas is non-differentiable at xses. From the last property
above, we therefore can characterize the SES-singularities by the following equivalence.

Corollary 5.1. A point xses ∈ SES is a singularity if and only if the number of the closest points
on the SAS to xses is greater than or equal to 2.

We now investigate the different types of singularities that can appear on each of the three patch
types. From the definitions of different SES patches, it is relatively easy to calculate the convex
spherical patches and the toroidal patches given the components of the SAS. In the following, we
illustrate how to calculate P− exactly, which provides therefore a complete characterization of the
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Figure 11: This is the schematic of the concave spherical triangle P0 corresponding to an intersection
point xm, with the boundary composed of three circular arcs in blue (ā1a2, ā2a3 and ā3a1) on the
spherical probe. This spherical triangle touches at the same time three VdW-balls at vertices
(a1, a2, a3).

SES-singularities later. Denote by P0 the concave spherical triangle (P− ⊂ P0) corresponding to
an SAS intersection point xm showed in Figure 11 and by K the set of all intersection points in I
with distances less than 2rp to xm, that is,

K = {x ∈ I : ‖x− xm‖ < 2rp, x 6= xm},

so that K collects all SAS intersection points ”near” xm. According to the definition of P− corre-
sponding to xm and the equation (4.17), we have the following formula:

P− = P0 ∩R(xm) = P0 ∩ T ∩ {p : ‖p− xm‖ ≤ ‖p− x‖, ∀x 6= xm, x ∈ I}. (5.23)

The above formula can be used to calculate P− directly, in which R(xm) is a polyhedron. However,
this formula is not convenient to calculate, since one has to calculate T as well as the union of
P0 and R(xm). This motivates us to look deep into the relationship between P− and P0. In the
following lemma, we present will a simpler formula of P−, which allows us to calculate it analytically
and more efficiently.

Lemma 5.1. P−=P0\
⋃
x∈K Brp(x) where Brp(x) denotes the open ball (or disc in R2) centered at

x with radius rp.

The proof of Lemma 5.1 is given in the Appendix. From the definition of P−, it is not surprising
to have the inclusion P− ⊂ P0\

⋃
x∈K Brp(x). However, the above theorem gives a stronger result

that P− and P0\
⋃
x∈K Brp(x) are identical. This means that the concave spherical patch can be

obtained from P0 by removing the parts intersecting other ”nearby” spherical probes centered at
SAS intersection points. This lemma also allows us to characterize the singular circular arcs on the
concave spherical patch P−. We propose a theorem of the SES-singularities as following.

Theorem 5.1. The following statements hold

[1] There can not exist any singularity on a convex spherical SES patch P+.
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[2] On a toroidal patch Pt, two point-singularities occur when the corresponding SAS circular arc
has a radius smaller than rp and they can be computed following the sketch in Figure Figure
13.

[3] On a concave spherical SES patch P−, singular arcs occur when P− does not coincide with the
corresponding concave spherical triangle P0. Further, these singular arcs form the boundary
of P− that does not belong to the boundary of P0.

Proof. First, if xses is a point on a convex spherical SES patch, then it has a closest point xsas on
an spherical SAS patch. Moreover, xsas is the unique closest point to xses from Theorem 4.1. This,
in turn, implies by Corollary 5.1 that xses can not be a singularity. In consequence, there can not
exist any singularity on a convex spherical SES patch P+.

Second, if xses is a point on a toroidal SES patch, then it has a closest point xsas on an SAS
circular arc lm associated with two SAS-spheres Si and Sj . Moreover, xsas is not unique if and only
if xses belongs to [ci, cj ] by Theorem 4.2, which happens only when the radius of lm is smaller than
rp and xses is one of two cusps on the toroidal SES patch as showed in Figure 13. By Corollary
5.1, two point-singularities on the toroidal patch Pt can only occur when the corresponding SAS
circular arc has a radius smaller than rp.

Third, if xses is a point on a concave spherical SES patch P− corresponding to an SAS inter-
section point xm, then xsas = xm is a closest point to xses. If xses belongs to the boundary of P−
but not to the boundary of P0, then by the formula characterizing P− in Lemma 5.1 we know that
xses lies on another nearby probe ∂Brp(x) where x ∈ K (and thus x 6= xm). In consequence, x is
another closest point to xses implying that xses is singularity by Corollary 4.1. On the other hand,
if xses ∈ P− but does not belong to

⋃
x∈K Brp(x), then xses does not lie on any nearby probe and

xsas is the unique closest point among all SAS intersection points. Assume by contradiction that
there exist another closest point x to xses on some SAS spherical patch Pm. Since now by Theorem
4.1 the closest point to any point on (ci, x] on the SAS is unique, this implies that xses = ci (because
xm is another closest point). This is however a contradiction since xses can not coincide with the
center of any SAS-sphere as all the VdW-radii are assumed to be positive. Further, assume by
contradiction that there exist a closest point x to xses on some SAS circular arc lm. Consequently,
xses lies on the corresponding toroidal patch. According to Theorem 4.2, xses belongs to [ci, cj ]. If
rp < rlm , then xses can not belong to the SES which is a contradiction. If rp ≥ rlm , then xses has
to be one of the two cusps. In this case, the two ending points of lm are both closest points to xses
which are also SAS intersection points. This conflicts with the fact that xsas = xm is the unique
closest point among all SAS intersection points.

Remark 5.1. In the third case of Theorem 5.1, P− can be calculated according to Lemma 5.1. It
is obvious that P− does not coincide with P0 if and only if P0

⋂(⋃
x∈K Brp(x)

)
is nonempty.

Finally, we state a corollary about classifying all points on the SES into four classes according
to the number of its closest points on the SAS.

Corollary 5.2. For any point xses ∈ SES, assume that the number of its closest points on the SAS
is N (denoting N =∞ for an infinite number of closest points). Then, there exists four cases:

[1] N = 1: xses is not a singularity on the SES, and xses has an unique closest point {x1sas} on
the SAS.

[2] 2 ≤ N < ∞: xses is a singularity on a concave spherical SES patch, and its closest points
{x1sas, . . . , xNsas} are among the SAS intersection points.
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[3] N =∞: xses is a singularity on a toroidal patch corresponding to an SAS circular arc (or a
complete circle) on which any point is a closest point on the SAS.

5.3 SES-Area and SES-Volume

With the new Voronoi-type diagram as well as the above singularity analysis we can calculate
the SES-area and the SES-volume analytically, which shall be explained in the following.

a. SES-Area

In Connolly’s paper [7], the presence of singularities on the SES concave spherical patches made
it infeasible to calculate the SES-area exactly. The characterization of the singularities carried out
earlier in this paper allows us to calculate the area of each SES patch and sum them up to obtain
the exact area of the whole SES. To calculate the area of a convex spherical patch P+, we use a
similar Gauss-Bonnet formula as (4.19):∑

v

αv +
∑
e

ke|e|+
1

r2i
AP+

= 2πχ, (5.24)

where αv denotes the angle at a vertex v between neighboring circular arcs on the boundary of P+,
ke the geodesic curvature of an edge e on the boundary of P+, AP+ is the area of P+ and χ is the
Euler characteristic of P+.

To calculate the area of a toroidal patch Pt analytically, we consider two cases, and suppose
that Pt corresponds to an SAS circular arc lm with radius rlm . In the case where rlm > rp, there
will be no singularity on Pt. With the notations introduced in Figure 12, we therefore have the
following formula for calculating the area of Pt:

APt
= rpβm [rlm(θ1 + θ2)− rp(sin θ1 + sin θ2)] . (5.25)

In the case where rlm ≤ rp, there are two singular points on Pt. With the notations introduced in
Figure 13, we have the following formula for calculating the area of Pt:

APt
= rpβm [rlm(θ1 + θ2 − 2θ0)− rp(sin θ1 + sin θ2 − 2 sin θ0)] . (5.26)

To calculate analytically the area of a concave spherical patch P−, we use the Gauss-Bonnet
theorem on the spherical probe again, see Figure 14. In the previous section, we have obtained that
P−=P0\

⋃
x∈K Brp(x), which implies that all information about the boundary of P− is known. It

allows us to apply the Gauss-Bonnet theorem on the spherical probe, to obtain:∑
v

αv +
∑
e

ke|e|+
1

r2p
AP− = 2πχ, (5.27)

where αv denotes the angle at a vertex v on the boundary of P−, ke the geodesic curvature of an
edge e on the boundary of P−, AP+ is the area of P− and χ is the Euler characteristic of P−.

In summary, the area of each SES patch can be calculated independently and analytically, and
we can then sum them up to obtain the exact SES-area Ases.

20



Figure 12: The yellow patch is a toroidal patch Pt on the SES corresponding to an SAS circular arc
lm with the radius rlm > rp and the radian βm. θ1 denotes the angle between the line connecting
ci with a point on lm and the disc where lm lies. Similarly, θ2 denotes the angle between the line
connecting cj with the same point on lm and the disc where lm lies.

Figure 13: The two yellow parts form a toroidal patch Pt on the SES corresponding to an SAS
circular arc lm with the radius rlm < rp and the radian βm. θ0 denotes the angle between the line
connecting a singularity on Pt with a point on lm and the disc where lm lies and θ1, θ2 are defined
as in Fig. 12.

21



b. SES-Volume

According to the new Voronoi-type diagram, we can calculate the exact SES-volume. We propose
to subtract the volume of the region between the SAS and the SES from the SAS-volume to obtain
the SES-volume. This region that needs to be subtracted and which is denoted by Rs can be
characterized as below

Rs = {p : −rp ≤ fsas(p) ≤ 0}.

From the new Voronoi-type diagram, we decompose Rs into small regions, each of which corresponds
to a spherical patch Pm, a circular arc lm or an intersection point xm: Rs ∩ R(Pm), Rs ∩ R(lm)
and Rs ∩R(xm). The volume of the region Rs ∩R(Pm) is given by

VRs∩R(Pm) =
1

3
APm

(ri + rp)

Å
1− r3i

(ri + rp)3

ã
, (5.28)

where APm
is the area of the SAS spherical patch Pm, ri + rp is the radius of the corresponding

SAS-sphere Si on which Pm lies. For Rs ∩ R(lm), denote by rlm the radius of lm and by βm the
radian of lm. In the case where rlm > rp, using the notations of Figure 12, the volume of the region
Rs
⋂
R(lm) is given by

VRs∩R(lm) = βmr
2
p

[rlm
2

(θ1 + θ2)− rp
3

(sin θ1 + sin θ2)
]
. (5.29)

In the case where rlm ≤ rp, using the notations of Figure 13, it is given by

VRs∩R(lm) = βmr
2
p

[rlm
2

(θ1 + θ2 − 2θ0)− rp
3

(sin θ1 + sin θ2 − 2 sin θ0)
]

+
1

3
βmr

2
lm

»
r2p − r2lm .

(5.30)
Consider now Rs ∩R(xm) corresponding to a concave spherical patch P−. Notice that there might
be some flat regions on the boundary of Rs∩R(xm), caused by the intersection of the probe Brp(xm)
and its nearby probes, see Figure 14 (right). Denote by Di the i-th flat region with the boundary
composed of line segments and circular arcs. Furthermore, denote by di the distance from xm to
the plane where Di lies, and by ADi the area of Di. Then, the volume of the region Rs ∩ R(xm)
can be formulated as:

VRs∩R(xm) =
1

3
AP−rp +

∑
i

1

3
ADi

di, (5.31)

where, AP− is the area of the concave spherical SES patch P−. Finally, by summing up the volume
of each subtracted region, we obtain the subtracted volume as following:

VRs
=

∑
ξ=Pm, lm, xm

VRs∩R(ξ). (5.32)

Therefore, the SES-volume denoted by Vses is equal to Vsas − VRs
.

6 Construction of Molecular Surfaces

In the above sections, we have defined and analyzed the cSAS and the eSAS, as well as the
cSES and the eSES. However, all work is based on the explicit knowledge of the components of
these molecular surfaces. In this section, we will present a method of constructing the cSAS and
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Figure 14: On the left, the concave spherical triangle P0 with vertices (a1, a2, a3) corresponds to
an intersection point xm. In the case where P− coincide with P0, there will be no singularity
on the concave spherical patch. On the right, the concave spherical patch P− does not coincide
with P0 and there are singular circular arcs as parts of its boundary. The vertices of P− are
(a1, a2, a3, a4, b1, b2, a5). The two flat grey regions D1 and D2 are formed by the intersection of P0

with two other nearby spherical probes. These two regions have the boundaries composed of line
segments and circular arcs.

Molecule Acses Aeses
∆Ases
Aeses

Acsas Aesas
∆Asas
Aesas

1ETN 9.422583e+02 9.422583e+02 1.206536e-16 1.382551e+03 1.382551e+03 0

1B17 3.399840e+03 3.358776e+03 -1.222581e-02 4.296868e+03 4.296137e+03 -1.701293e-04

101M 7.858419e+03 7.186689e+03 -9.346864e-02 8.625944e+03 8.573658e+03 -6.098466e-03

Molecule Vcses Veses
∆Vses
Veses

Vcsas Vesas
∆Vsas
Vesas

1ETN 1.510239e+03 1.510239e+03 -1.505548e-16 3.249583e+03 3.249583e+03 0

1B17 8.090117e+03 8.117766e+03 3.405988e-03 1.394413e+04 1.394415e+04 1.620417e-06

101M 2.319527e+04 2.379511e+04 2.520849e-02 3.581084e+04 3.581810e+04 2.027866e-04

Table 1: Different molecular areas (in Å
2
, top) and volumes (in Å

3
, bottom) for three molecules

(1ETN, 1B17, 101M from the protein data bank http://www.rcsb.org/pdb/home/home.do) where
we use the notation ∆Ases = Aeses−Acses and ∆Asas = Aesas−Acsas resp. ∆Vses = Veses−Vcses
and ∆Vsas = Vesas − Vcsas. The probe radius rp is fixed to be 1.5Å.
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the eSAS using a binary tree to construct its spherical patches. After that, we will give a brief
construction strategy of the cSES and eSES based on the construction of the cSAS and the eSAS.
The construction of molecular surfaces ensures that our previous analysis is feasible.

6.1 Construction of the cSAS and the eSAS

To start the construction, we need some quantities for representing different components of
the SAS. First, an intersection point will be represented by its coordinate in R3 and an identifier.
Second, to represent a circular arc, we use its starting and ending intersection points (resp. the
identifiers), its radius, center and radian as well as an identifier. Finally, to represent a spherical
patch, we use the SAS-sphere on which it lies on and the identifiers of all circular arcs forming its
boundary. Then, we propose to construct the SAS in five basic steps as below:

1) Compute the set of all intersection points {x1, · · · , xm1
}, denoted by I.

2) Calculate each SAS circular arc or circle lm associated with some Si and Sj . For each SAS
circular arc or circle, we record the information, including the center, the radius, the radian,
the corresponding two SAS spheres, the identifiers of the starting and ending intersection
points. Notice that each circular arc connects two intersection points.

3) Construct all loops on each SAS sphere Si, which also form the boundaries of SAS spherical
patches on Si. Notice that each loop is composed of circular arcs, or a complete circle. We
start from a circular arc on Si, find another arc connecting this arc, add it into the loop, and
repeat this until we finally obtain a complete loop. The k-th loop on the i-th SAS sphere is
denoted by Lik.

4) Construct all spherical patches on each SAS sphere Si. Since the boundary of a spherical
patch on Si is composed by one or several loops on Si, we can use the identifiers of these
loops to represent a spherical patch. Denote by P ik the k-th spherical patch on Si. The
difficulty lies on determining whether two loops on Si belong to the boundary of a common
spherical patch or not. This final question will be discussed in the next section.

5) Finally, we should distinguish the cSAS and the eSAS. The cSAS is just the set of all above-
constructed SAS spherical patches. To construct the eSAS, we say that two spherical patches
P ik and P jl are neighbors if they have a common circular arc or circle on their boundaries.
Then, we start our construction of the eSAS, by mapping a faraway point p∞ onto an SAS
spherical patch, which is the initial patch on the eSAS. Then, we add the neighboring spherical
patches into the eSAS one by one, to finally obtain the whole eSAS.

6.2 Binary Tree to Construct Spherical Patches

In the above construction process, there remains a problem of classifying the loops on an SAS-
sphere into several parts, such that each part forms the boundary of a spherical patch. To do this,
we need to determine whether two loops on the SAS-sphere belong to the boundary of a same
spherical patch or not. Note that two different loops won’t cross each other but can have common
vertices. We propose to construct a binary tree whose leaves are the different spherical patches.

Given a loop L on a fixed SAS-sphere Si, L divides the sphere into two open parts and it is
composed of circular arcs formed by the intersection of Si and other SAS-spheres. We call the open
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Figure 15: On the left is is a brief schematic of an SAS-sphere and the loops on it. There are six
loops on the SAS-sphere {L1,L2,L3,L5,L6,L6}, and three spherical patches with the boundaries
formed by two loops in green {L4,L5}, three loops in red {L1,L3,L6} and one loop (circle) in
blue {L2} respectively. The tree on the right illustrates the corresponding binary tree whose leaves
identify the boundaries of three different spherical patches.

part of Si which is not hidden by those other SAS-spheres as the interior of L, denoted by L◦, while
the other open part as the exterior of L, denoted by Lc. We say that another loop L′ on Si is inside
L if L′ ∈ L◦, where L◦ = L ∪L◦ is the closed hull of L◦ on Si. Notice that each loop L being part
of the boundary of a spherical patch contains all the other loops that belong to the boundary of
the same patch. By testing if a loop L′ on Si is inside the loop L, we can classify all loops on Si
into two parts: the loops inside L (including L itself) and the remaining loops outside L. We do
this division repeatedly until each loop is tested which results in a binary tree.

To better understand this process, let’s see the example of Figure 15. On an SAS-sphere Si,
there are six loops {L1,L2,L3,L5,L6,L6} forming three spherical patches {P1, P2, P3} with green,
red and blue boundaries. The leaves of the binary tree in Figure 15 represent the boundary of the
three spherical patches. To construct the tree, consider all loops {L1,L2,L3,L5,L6,L6} and test
with L1, to divide into the set of loops inside L1 ({L1,L2,L3,L6}) and the set of the remaining
loops outside L ({L4,L5}). Then, we test with L2, to find that L2 is inside itself, while {L1,L3,L6}
are outside, which implies that L2 itself forms the boundary of a spherical patch. Afterwards, we
find that {L1,L6} are both inside L3 by testing with L3 and that {L1,L3} are inside L6 by testing
with L6. This implies that {L1,L3,L6} form the boundary of the second spherical patch, as these
three loops are inside each other. Finally, we test respectively with L4 and L5 to find that they are
inside each other and they form the boundary of the last spherical patch.

6.3 Interior of a Loop

Let L′ and L be two loops on Si. It is left to explain how to test whether L′ is inside L or not.
We assume that L is composed by n circular arcs which are formed by the intersection of Si and
other SAS-spheres S′1, . . . , S

′
n. Denote all intersection circles by C1, . . . , Cn, where Cj = Si ∩ S′j .

The corresponding SAS-balls to S′1, . . . , S
′
n are denoted by B′1, . . . , B

′
n. Since L′ and L do not cross

each other, we can determine if the loop L′ is inside L or not by testing whether a particular point
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x ∈ L′ is inside L or not. We denote by xk (1 ≤ k ≤ n) the closest point on Ck to x, which can be
analytically given. Notice that xk has the smallest Euclidean distance in R3 from x to any point
on Ck, which is equivalent to that the shortest path on Si from x to Ck which ends at xk. For all
circles Ck, k = 1, . . . , n, we can then find the circle Ck0

with the minimum path length on Si from
x to Ck. The closest point on Ck0

to x is thus denoted by xk0
. With these notations, the following

lemma is proposed to test whether x is inside L or not, note that L′ ∩
⋃n
j=1B

′
j = ∅.

Lemma 6.1. Given an arbitrary point x ∈ Si\
⋃n
j=1Bj, x is inside L if and only if xk0

∈ L.

Proof. We first prove the sufficiency. Assume that x is inside L, i.e. x ∈ L◦ = L◦ ∪ L. Assume
by contradiction that xk0

∈ Ck0
does not belong to L. Then, since Ck0

⊂ L ∪ Lc it follows that
xk0
∈ Lc. Then, the shortest path on Si from x ∈ L◦ to xk0

∈ Lc must cross L. In consequence,
the intersection point between L and the shortest path on Si has a smaller path length to x than
xk0 does, which is a contradiction. Therefore there holds that xk0 ∈ L.

Second, we prove the necessity. Assume that xk0
∈ L. By contradiction again, we assume that

x is not inside L, i.e. x ∈ Lc, which yields that x ∈ Ω := Lc\
⋃n
j=1Bj from the lemma’s condition.

Then, the shortest path on Si between x ∈ Ω and xk0
/∈ Ω must cross Γ = ∂Ω. In consequence, the

intersection point between Γ and the shortest path on Si has a smaller path length to x than xk0

does, which is a contradiction. Therefore, x lies inside L.

6.4 Construction of the cSES and the eSES

The SES (both the cSES and the eSES) has been divided into three types of patches: convex
spherical patches, toroidal patches and concave spherical patches. With the construction of the
cSAS and the eSAS, the patches of the cSES and the eSES can be distinguished since each patch
corresponds to a component of the SAS. Furthermore, a patch on the SES will be represented
by its boundary composed of circular arcs, where a circular arc is represented by its starting and
ending points, its radius, center and radian. Consequently, a convex spherical patch on the SES can
be obtained directly by shrinking its corresponding SAS-patch from the SAS-sphere to the VdW-
sphere. A toroidal patch on the SES can also be given considering two cases respectively showed in
Figure 12 and Figure 13 (see the paper [7]). Finally, we can compute every concave toroidal patch
from the formula in Lemma 5.1, using a binary three for its corresponding spherical probe similar
to the one for an SAS-sphere Si.

7 Conclusion

In this paper, based on three equivalence statements and a new Voronoi-type diagram, an
analytical and also computable implicit function of the SES has been provided. Furthermore, all SES
patches including SES-singularities can be characterized and computed according to Lemma 5.1 and
Theorem 5.1. Consequently, different molecular areas and volumes can be calculated analytically
with explicit formulas. In addition, we have also proposed the concept of the cSAS and the eSAS
(as well as the cSES and the eSES), considering the possible inner holes inside a solute molecule or
not. Finally, a corresponding method to construct (or distinguish) the cSAS and the eSAS has been
given, with the use of a binary tree. In summary, the molecular surfaces have been analytically
characterized (especially the SES), which allows to do more accurate calculation in solvation models
associated with different molecular cavities.
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Figure 16: A 2D schematics of the two different polygons in the eSAS-cavity of an artificial molecule
for the proof of Lemma A.1. Txm

is the triangle with three vertices (xm, ci, cj) and the polygon in
green is the reduced polygon T0.
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Appendix: Proof of Lemma 5.1

First, we provide a lemma about the geometric relationship between P0 and T = R(I) as
following.

Lemma A.1. There holds that P0\
⋃
x∈K Brp(x) ⊂ T , where T = R(I) is the closed region com-

posed of polyhedrons in the SAS-cavity.

Proof. We first recall an equivalence relationship for three sets A, B and C:

A\B ⊂ C ⇐⇒ A ⊂ B ∪ C ⇐⇒ A\C ⊂ B.

In consequence, to prove the lemma is equivalent to prove that P0\T ⊂
⋃
x∈K Brp(x). For simplicity,

we only give the proof for the case of the eSAS in R2. There is no essential additional difficulty
for the proof in R3. We define another polygon called the reduced polygon T0 contained in T (see
Figure 16), which is obtained by removing from T those vertices which are SAS intersection points,
so that only the centers of the SAS-balls are left as vertices. In consequence, we have a simple
relationship T =

(⋃
xm∈I Txm

)
∪ T0, in which Txm is the triangle with the three vertices xm, ci and

cj . Each edge of T0 is associated with an SAS intersection point.
With the above notations, three cases will be discussed as following:

a) P0 ⊂ Txm
: Since Txm

⊂ T implies that P0\T = ∅, this is a trivial case.

b) P0 ⊂ Txm ∪ T0: Since Txm ∪ T0 ⊂ T implies that P0\T = ∅, this is also a trivial case.
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Figure 17: 2D schematics of two cases where P0∩Txm′ 6= ∅ with xm′ being an SAS intersection point
different from xm. The green segment [c′i, c

′
j ] is an edge of T0 and a and b are the two intersection

points between the circle ∂Brp(xm′) and the segment [c′i, c
′
j ]. The grey region is the region where P0

can possibly appear outside T0 that may be included in the triangle 4xm′c′ic′j (left) or not (right).

c) ∃ xm′ 6= xm s.t. P0 ∩ Txm′ 6= ∅: Figure 17 gives the schematics of the region (in grey) where
P0 can possibly appear outside T0. If this region is included in Txm′ , the proof is again trivial.
If parts of this region lies outside Txm′ , then this region is include by the probe Brp(xm′) by
symmetry. In consequence, all such regions can be covered by the corresponding spherical
probes, implying that P0\T ⊂

⋃
x∈K Brp(x).

With the above lemma, we can now prove Lemma 5.1. According to the definition of K, it
accounts for all SAS intersection points that might intersect Brp(xm) and thus P0\

⋃
x∈K Brp(x) =

P0\
⋃
x∈I Brp(x). We first observe that

P0\Brp(x) = P0 ∩
(
Brp(x)

)c
= P0 ∩ {p : ‖p− xm‖ ≤ ‖p− x‖}, ∀x 6= xm, (A.33)

and therefore we obtain that

P0\
⋃
x∈K

Brp(x) =

(
P0\

⋃
x∈K

Brp(x)

)⋂
T

=
⋂
x∈I

(
P0\Brp(x)

)⋂
T

= P0 ∩ T ∩ {p : ‖p− xm‖ ≤ ‖p− x‖, ∀x 6= xm, x ∈ I}
= P−.

(A.34)

In the above, the first equality results from Lemma A.1, the third one from equation (A.33) and
the last one from (5.23).
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