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Introduction

Glioblastoma (GBM, World Health Organization grade IV astrocytoma) is the most common and aggressive primary malignant brain tumor in adults. GBM accounts for ~50% of primary brain malignancies with an annual incidence of 3.19 per 100,000 in the United States [START_REF] Ostrom | CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011[END_REF]. Despite intensive multimodal therapy comprising surgery, concomitant radio-chemotherapy and adjuvant chemotherapy [START_REF] Weller | EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma[END_REF], patients with GBM continue to have a dismal prognosis with a median survival between 10 and 15 months [START_REF] Stupp | Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[END_REF][START_REF] Stupp | Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial[END_REF][START_REF] Rønning | A population-based study on the effect of temozolomide in the treatment of glioblastoma multiforme[END_REF], resulting in approximately 175,000 GBM-related deaths each year worldwide [START_REF] Ferlay | Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008[END_REF]. Therefore, efforts are urgently needed to accelerate progress in neurooncology and improve the outcome of patients with GBM.

The past decade has seen remarkable strides forward in the molecular characterization of GBM. These advancesachieved through collaborative works of international research groups [START_REF] Phillips | Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis[END_REF][START_REF] Parsons | An integrated genomic analysis of human glioblastoma multiforme[END_REF][START_REF] Network | Comprehensive genomic characterization defines human glioblastoma genes and core pathways[END_REF][START_REF] Verhaak | Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[END_REF][START_REF] Noushmehr | Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma[END_REF][START_REF] Brennan | The somatic genomic landscape of glioblastoma[END_REF][START_REF] Frattini | The integrated landscape of driver genomic alterations in glioblastoma[END_REF] have provided a tremendous opportunity to improve the management of GBM patients [START_REF] Preusser | Current concepts and management of glioblastoma[END_REF][START_REF] Weller | Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice[END_REF][START_REF] Olar | Using the molecular classification of glioblastoma to inform personalized treatment[END_REF][START_REF] Prados | Toward precision medicine in glioblastoma: the promise and the challenges[END_REF]. Several molecular alterations such as the IDH1 mutation and MGMT promoter methylation have been associated with diagnostic, prognostic and predictive values [START_REF] Hegi | MGMT gene silencing and benefit from temozolomide in glioblastoma[END_REF][START_REF] Hegi | Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity[END_REF][START_REF] Sanson | Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas[END_REF][START_REF] Wick | Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation[END_REF], suggesting that such biomarkers could be used to improve the diagnosis and enhance the effectiveness of cancer care, by allowing physicians to tailor therapy to individual molecular profiles. With the rapid advances in this field, and the recent progress that has occurred during the past few years in non-invasive tests that detect circulating tumor cells (CTCs) and tumor DNA fragments [START_REF] Leary | Development of personalized tumor biomarkers using massively parallel sequencing[END_REF][START_REF] Leary | Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing[END_REF][START_REF] Forshew | Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[END_REF][START_REF] Chan | Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing[END_REF][START_REF] Kristensen | Principles and methods of integrative genomic analyses in cancer[END_REF], a growing body of research indicates that circulating biomarkers would facilitate the clinical management of GBM patients [START_REF] Holdhoff | Blood-based biomarkers for malignant gliomas[END_REF][START_REF] Ilhan-Mutlu | Circulating biomarkers of CNS tumors: an update[END_REF][START_REF] Kros | Circulating glioma biomarkers[END_REF][START_REF] Best | Liquid biopsies in patients with diffuse glioma[END_REF].

Main molecular features of glioblastoma

GBM is a highly heterogeneous and invasive malignant tumor. The definitive diagnosis requires the histological analysis of tumor tissueobtained through surgical resection or biopsy -, and typically shows poorly differentiated glial tumor cells with increased density and mitotic activity, hyperplastic vasculature, and areas of necrosis [START_REF] Louis | International Society Of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading[END_REF]. Several studies have described the genomic landscape of GBM, using integrated analysis from multi-omics datasets including epigenome, genome, transcriptome, metabolome and proteome of large cohorts of GBM [START_REF] Phillips | Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis[END_REF][START_REF] Parsons | An integrated genomic analysis of human glioblastoma multiforme[END_REF][START_REF] Network | Comprehensive genomic characterization defines human glioblastoma genes and core pathways[END_REF][START_REF] Verhaak | Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[END_REF][START_REF] Noushmehr | Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma[END_REF][START_REF] Brennan | The somatic genomic landscape of glioblastoma[END_REF][START_REF] Frattini | The integrated landscape of driver genomic alterations in glioblastoma[END_REF]. In most cases, genomic alterations act in concert to disrupt several fundamental cellular processes simultaneously: retinoblastoma and p53 tumor-suppressor pathways, receptor tyrosine kinasemitogen-activated protein kinasephosphoinositide 3-kinase signaling pathways, chromatin remodeling, and telomere maintenance mechanisms. Several types of molecular aberrations are found, including copy number variations, mutations, deletions, translocations, dysregulated gene expression, and epigenetic reprogramming. Gene expression analysis has allowed GBM to be subclassified into at least four distinct molecular subtypes (proneural, classical, neural and mesenchymal), with better survival for the proneural subtype [START_REF] Phillips | Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis[END_REF][START_REF] Verhaak | Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[END_REF][START_REF] Noushmehr | Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma[END_REF][START_REF] Brennan | The somatic genomic landscape of glioblastoma[END_REF]. Moreover, several molecular alterations have been associated with a significant prognostic and/or predictive value. The best described and known is the methylation of the MGMT promoter, which encodes a DNA repair protein that counteracts the cytotoxic effect of temozolomide, the main chemotherapeutic agent used to treat newly diagnosed GBM [START_REF] Weller | EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma[END_REF][START_REF] Stupp | Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[END_REF]. Methylation of the MGMT promoter results in silencing of MGMT protein expression and is associated with sensitivity to temozolomide [START_REF] Hegi | MGMT gene silencing and benefit from temozolomide in glioblastoma[END_REF][START_REF] Hegi | Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity[END_REF].

Other recurrent cancer genome aberrationsincluding IDH1, PIK3CA, EGFRvIII, BRAF and FGFR oncogenic alterationsare currently investigated as theranostic biomarkers for molecular targeted therapies in clinical trials [START_REF] Prados | Toward precision medicine in glioblastoma: the promise and the challenges[END_REF][START_REF] Babu | Rindopepimut: an evidence-based review of its therapeutic potential in the treatment of EGFRvIII-positive glioblastoma[END_REF][START_REF] Rohle | An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells[END_REF][START_REF] Reardon | Targeted molecular therapies against epidermal growth factor receptor: past experiences and challenges[END_REF][START_REF] Thomas | Emerging therapies for glioblastoma[END_REF][START_REF] Gallego | Efficacy of erlotinib in patients with relapsed gliobastoma multiforme who expressed EGFRVIII and PTEN determined by immunohistochemistry[END_REF][START_REF] Stefano | Detection, characterization and inhibition of FGFR-TACC fusions in IDH wild type glioma[END_REF][START_REF] Touat | Adapting the drivers to the road: a new strategy for cancer evolution?[END_REF][START_REF] Meyer | Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity[END_REF].

It is important to underline here that GBM typically displays a great degree of spatial and temporal intratumor heterogeneity (i.e. extensive genetic diversity both between different regions of the tumor and tumor subpopulations over time) [START_REF] Brennan | The somatic genomic landscape of glioblastoma[END_REF][START_REF] Prados | Toward precision medicine in glioblastoma: the promise and the challenges[END_REF][START_REF] Snuderl | Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma[END_REF][START_REF] Lass | Clonal analysis in recurrent astrocytic, oligoastrocytic and oligodendroglial tumors implicates IDH1mutation as common tumor initiating event[END_REF][START_REF] Little | Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity[END_REF][START_REF] Sottoriva | Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics[END_REF][START_REF] Johnson | Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma[END_REF][START_REF] Patel | Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[END_REF][START_REF] Francis | EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing[END_REF]. This tumor heterogeneity has important implications for the mechanisms of cancer progression and resistance to therapy and represents a major challenge to personalized cancer medicine [START_REF] Yap | Intratumor heterogeneity: seeing the wood for the trees[END_REF][START_REF] Burrell | The causes and consequences of genetic heterogeneity in cancer evolution[END_REF][START_REF] Mcgranahan | Clonal status of actionable driver events and the timing of mutational processes in cancer evolution[END_REF]. Indeed, this intrinsic feature of GBM may affect the ability of molecular signatures to predict therapeutic response and clinical outcome, and may explainat least partiallythe inefficacy of targeted therapies despite the use of robust biomarkers as inclusion criteria in clinical trials [START_REF] Prados | Toward precision medicine in glioblastoma: the promise and the challenges[END_REF][START_REF] Reardon | Targeted molecular therapies against epidermal growth factor receptor: past experiences and challenges[END_REF][START_REF] Lassman | Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01[END_REF][START_REF] Nathanson | Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA[END_REF]. Non-invasive longitudinal tumor sampling approaches using circulating biomarkers (e.g. CTCs or cell-free circulating tumor nucleic acids) have the potential to provide real-time information on tumor heterogeneity and changes in the tumor subclonal architecture along the disease course, allowing clinicians to predict and circumvent tumor adaptation and drug resistance [START_REF] Yap | Intratumor heterogeneity: seeing the wood for the trees[END_REF][START_REF] Burrell | The causes and consequences of genetic heterogeneity in cancer evolution[END_REF].

General concepts related to circulating biomarkers

Circulating biomarkers refer to "measurable biological molecules found in the blood, or other body fluids that provide information on a normal or abnormal process, or of a condition or disease, such as cancer" [START_REF] Group | Biomarkers and surrogate endpoints: preferred definitions and conceptual framework[END_REF]. In oncology, circulating biomarkers display several potential clinical applications [START_REF] Ludwig | Biomarkers in cancer staging, prognosis and treatment selection[END_REF][START_REF] Schwarzenbach | Cell-free nucleic acids as biomarkers in cancer patients[END_REF][START_REF] Crowley | Liquid biopsy: monitoring cancer-genetics in the blood[END_REF]. The diagnostic value lies in the abilities of the test to: (i) estimate a risk, (ii) facilitate early and differential diagnosis, (iii) assess the prognosis, (iv) follow the tumor evolution longitudinally and (v) monitor specific treatment [START_REF] Burrell | The causes and consequences of genetic heterogeneity in cancer evolution[END_REF][START_REF] Diehl | Circulating mutant DNA to assess tumor dynamics[END_REF][START_REF] Dawson | Analysis of circulating tumor DNA to monitor metastatic breast cancer[END_REF]. In addition, several circulating biomarkers -often referred as liquid biopsies (e.g. CTCs or cell-free circulating tumor nucleic acids)can provide specific cytologic and/or molecular information on the tumor itself, and allow non-invasive tracking of the cancer genome. Finally, biomarkers can have predictive value, when the result of the test gives an indication of the probable effect of a treatment on the patient [START_REF] Rubin | Developing precision medicine in a global world[END_REF]. Such biomarkers are referred as companion diagnostics.

For brain tumors, circulating biomarkers have the undeniable advantage of providing useful information via a minimally invasive procedure. Such tests would be clinically useful, especially in cases in which surgery is contraindicated or when biopsy results are inconclusive [START_REF] Yabroff | Patterns of care and survival for patients with glioblastoma multiforme diagnosed during 2006[END_REF]. Furthermore, at recurrencewhich is virtually inevitable in GBMless than 30% of patients are candidates for second surgery [START_REF] Weller | EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma[END_REF]. For the remaining inoperable patients, circulating biomarkers could be the source of a molecular profile of the relapsed tumor, allowing clinicians to identify potentially druggable molecular alterations driving recurrence.

The development and validation of circulating biomarkers is a long process that involves multiple steps from their discovery to approval for use. These steps (Figure )   aim to ensure the robustness and usefulness of the test for making decisions about effective treatments or preventive strategies, and to demonstrate its added value compared to available tools [START_REF] Teutsch | The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group[END_REF]. No validated circulating biomarkers have yet been integrated into clinical practice for GBM. Current standard monitoring and follow-up procedures include clinical evaluation and brain imaging (magnetic resonance imaging [MRI], when feasible) [START_REF] Weller | EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma[END_REF][START_REF] Wen | Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group[END_REF]. They are valuable for evaluating disease evolution (i.e. stable, progression or response), but have several limitations: (i) they provide no or very limited molecular information [START_REF] Choi | 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas[END_REF][START_REF] Baldock | Invasion and proliferation kinetics in enhancing gliomas predict IDH1 mutation status[END_REF][START_REF] Tykocinski | Use of magnetic perfusionweighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma[END_REF], (ii) they offer scant prognostic and/or predictive information, (iii) they are frequently challenged when differentiating between true tumor progression and treatment-related necrosis (pseudo-progression) in case of apparent tumor regrowth [START_REF] Wen | Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group[END_REF][START_REF] Brandsma | Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas[END_REF] as well as between true tumor response and a pseudo-response when antiangiogenic agents are used [START_REF] Raizer | Economics of Malignant Gliomas: A Critical Review[END_REF].

The validation of clinically useful circulating biomarkers from blood, urine, or cerebrospinal fluid (CSF) would be a major advance in neuro-oncology, since they may improve the management of patients through multimodal diagnosis and followup procedures.

Sources of circulating biomarkers in patients with glioblastoma

Circulating biomarkers can be collected from several sources in patients with GBM.

Blood-based biomarker testing is the fastest and easier approach. The most extensively studied circulating biomarkers are proteins, which are actively or passively secreted by tumor cells and/or their microenvironment, and can be detected in blood, urine and CSF [START_REF] Holdhoff | Blood-based biomarkers for malignant gliomas[END_REF][START_REF] Ilhan-Mutlu | Circulating biomarkers of CNS tumors: an update[END_REF][START_REF] Kros | Circulating glioma biomarkers[END_REF][START_REF] Best | Liquid biopsies in patients with diffuse glioma[END_REF][START_REF] Schuhmann | Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme[END_REF]. In addition, tumor cells can release small pieces of their DNA and/or RNA into the bloodstream and/or CSF [START_REF] Liu | Quantitative detection of multiple gene promoter hypermethylation in tumor tissue, serum, and cerebrospinal fluid predicts prognosis of malignant gliomas[END_REF][START_REF] Baraniskin | Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma[END_REF][START_REF] Teplyuk | MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity[END_REF][START_REF] Tumilson | Circulating microRNA biomarkers for glioma and predicting response to therapy[END_REF][START_REF] Pan | Brain tumor mutations detected in cerebral spinal fluid[END_REF], due to cell death or active secretion [START_REF] Stroun | About the possible origin and mechanism of circulating DNA apoptosis and active DNA release[END_REF]. These pieces of tumor nucleic acidscalled cell-free circulating tumor DNA (ctDNA) and circulating microRNA (miRNA)are relatively stable in plasma and serum [START_REF] Schwarzenbach | Cell-free nucleic acids as biomarkers in cancer patients[END_REF]. Conversely, cell-free messenger RNA (mRNA) is rapidly degraded in blood (see below for analysis of mRNA). In the case of biomarkers analyzed from CSF, it is important noteworthy that although CSF collection is safe in most cases, it is a more invasive procedure than blood sampling, and may be contraindicated due to the risk of brain herniation in patients with tumorinduced increased intracranial pressure. However, CSF analysis may be more sensitive than a blood analysis to detect ctDNA, at least for a subset of patients, as demonstrated with the IDH1 mutation [START_REF] Chen | Microfluidic isolation and transcriptome analysis of serum microvesicles[END_REF][START_REF] Chen | BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles[END_REF].

Extracellular vesicles (EVs) are nanometer size membrane-enclosed particles that are released from GBM living tumor cells either from the fusion of an endosome with the plasma membrane ("exosomes"), or directly from the cell membrane ("microvesicles") [START_REF] Redzic | Glioblastoma extracellular vesicles: reservoirs of potential biomarkers[END_REF][START_REF] Shao | Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma[END_REF]. EVs are vehicles of communication between different tumor compartments and its microenvironment, as other tumor cells and normal cells take them up [START_REF] Skog | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[END_REF][START_REF] Al-Nedawi | Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells[END_REF][START_REF] Bronisz | Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1[END_REF][START_REF] Godlewski | Belonging to a network-microRNAs, extracellular vesicles, and the glioblastoma microenvironment[END_REF]. Importantly, EVswhich can be isolated from both blood and CSF [START_REF] Chen | BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles[END_REF][START_REF] Skog | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[END_REF][START_REF] Al-Nedawi | Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells[END_REF][START_REF] Noerholm | RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls[END_REF][START_REF] Akers | MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development[END_REF][START_REF] Qu | Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles[END_REF] are a rich source of tumor-derived molecules such as DNA, microRNA, mRNA, proteins, lipids and metabolites, because the structure of EVs protect them from nucleases and proteases [START_REF] Redzic | Glioblastoma extracellular vesicles: reservoirs of potential biomarkers[END_REF]. Accordingly, isolation of RNA (including mRNA) from EVs can yield a greater concentration of RNA compared to circulating mRNA from whole blood, plasma or serum [START_REF] Chen | Microfluidic isolation and transcriptome analysis of serum microvesicles[END_REF]. Platelets can sequester the content of EVs, and it has been demonstrated that tumor-specific nucleic acids can be isolated in platelets extracted from patients with GBM [START_REF] Nilsson | Blood platelets contain tumor-derived RNA biomarkers[END_REF]. These additional sources of tumor RNA could be useful for mRNA-based analysis (e.g. gene expression profiling and gene rearrangements detection).

Finally, recent works demonstrated the presence of CTCs in a subset of patients with GBM [START_REF] Macarthur | Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay[END_REF][START_REF] Müller | Hematogenous dissemination of glioblastoma multiforme[END_REF][START_REF] Sullivan | Brain tumor cells in circulation are enriched for mesenchymal gene expression[END_REF].

Circulating Tumor Cells

CTCs are cells that have shed from a tumor into the vessels and circulate in the bloodstream. CTCs are tumor-specific, and can potentially constitute seeds for subsequent growth of additional tumors (metastasis) in distant organs. CTCs are a widely studied biomarker with potential to inform on the prognosis and therapeutic response in a variety of solid malignancies including lung, breast, and prostate cancers [START_REF] Krebs | Molecular analysis of circulating tumour cells-biology and biomarkers[END_REF]. Furthermore, CTC analysis provides crucial diagnostic information on tumor cells, including morphology, immunocytochemical phenotype and molecular profile [START_REF] Maheswaran | Detection of mutations in EGFR in circulating lung-cancer cells[END_REF][START_REF] Pantel | Detection, clinical relevance and specific biological properties of disseminating tumour cells[END_REF][START_REF] Heitzer | Circulating tumor cells and DNA as liquid biopsies[END_REF]. Finally, CTC isolation offers the ability to perform in vivo functional testing thereby providing opportunities to study the biology of metastasis, and to test drug sensitivity in ex vivo preclinical models [START_REF] Baccelli | Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[END_REF][START_REF] Yu | Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility[END_REF].

Various technologies have been developed to detect and characterize CTCs including flow-cytometry based systems, immunomagnetic cell enrichment, and automated microscopy systems [START_REF] Krebs | Molecular analysis of circulating tumour cells-biology and biomarkers[END_REF][START_REF] Yu | Circulating tumor cells: approaches to isolation and characterization[END_REF][START_REF] Pantel | Circulating tumor cells: liquid biopsy of cancer[END_REF], but only one, CellSearch® (Janssen Diagnostics), based on clinical trials in patients with metastatic breast, prostate and colorectal cancers, has been approved by the US Food and Drug Administration (FDA) for detecting the presence of CTCs and monitoring disease evolution through CTC levels.

As CellSearch® is mainly based on the detection of epithelial cell adhesion molecule (EpCAM), it is probably ineffective for the detection of primary brain tumor cells, which do not express such surface markers [START_REF] Macarthur | Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay[END_REF].

The presence of CTCs in GBM has fuelled debate for many years [START_REF] Böhm | No evidence of tumour cells in blood of patients with glioma[END_REF]. Although GBM is a highly aggressive and invasive tumor, it is mostly restricted to the brain. Unlike the case in other solid malignancies, the incidence of extracranial metastases is extremely low in patients with GBM with only 0.5%-2% of patients developing secondary lesions in the bone, lymph nodes, or liver [START_REF] Subramanian | Metastasis to and from the central nervous system--the 'relatively protected site[END_REF][START_REF] Fonkem | Rare phenomenon of extracranial metastasis of glioblastoma[END_REF][100]. Conversely, cases of GBM transmission have been reported in patients who received organ transplants from donors with GBM [101]. These rare observations have provided indirect evidence that GBM tumor cells may acquire the ability to disseminate via the bloodstream, in particular circumstances such as systemic immunosuppression.

Recently, three research groups reported on the isolation of CTCs in the blood of 20-the evaluation of telomerase activity in a cohort of glioma patients undergoing radiotherapy [START_REF] Macarthur | Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay[END_REF]. Telomerase is a DNA polymerase required to replicate the ends of the chromosomes, and is aberrantly expressed through TERT promoter mutation in 75.7 percent of primary GBM [102]. The detection assay used was an adenoviral probe allowing GFP expression in cells with elevated telomerase activity. Initial experiments demonstrated the specificity of the probe for accurately isolating glioma cells while leaving normal cellsincluding normal brain and white blood cellsunaffected. In this pilot study, CTCs were detectable in 72 percent (8/11) of preradiotherapy patients, compared with 12 percent (1/8) of post-radiotherapy patients [START_REF] Macarthur | Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay[END_REF]. Interestingly, in a small subset of patients with available serial measurements, the variation of CTC levels during the disease course was correlated with tumor progression, suggesting that CTC levels may reflect the status of the tumor after resection and/or radiation therapy. In a recent study by Sullivan et al [START_REF] Sullivan | Brain tumor cells in circulation are enriched for mesenchymal gene expression[END_REF], CTCs were identified in 39 percent (13/33) of patients with GBM, using both immunomagnetic and immunofluorescence-based cell selection. First, blood specimens were enriched for CTCs using a microfluidic device developed by the authors, the CTC-iChip platform, which combines size-based removal of red blood cells and platelets, and immunomagnetic depletion of leukocytes using antibodies against leukocyte markers (CD45 and CD16). Subsequently, GBM CTCs were isolated from purified samples using immunofluorescence staining based on a panel of markers commonly expressed in GBM tumor cells (SOX2, Tubulin β-3, EGFR, A2B5, and c-MET). The analysis of CTCs isolated from both patient-derived xenografts (PDX) models and patients revealed enrichment for mesenchymal over neural subtype, suggesting that the mesenchymal subtype of GBM may harbor a greater potential to proliferate outside the brain. Finally, Müller et al [START_REF] Müller | Hematogenous dissemination of glioblastoma multiforme[END_REF] identified CTCs in blood collected from 20.6 percent of patients (29/141), using tumor cell enrichment and screening methods based on glial fibrillary acidic protein (GFAP). The tumor-specificity of GFAPpositive and CD45-negative cells was demonstrated by the absence of such cells in healthy volunteers. GFAP-positive CTCs were further characterized with comparative genomic hybridization (CGH array) and/or next generation deep sequencing, which allowed the detection of tumor-specific aberrations such as gains of chromosome 7 regions, losses of chromosome 10 regions and EGFR amplification. Interestingly, there was no correlation between the presence of CTCs and survival or GBM dissemination.

Using assays based on different technologies, these independent studies established the proof of concept of the feasibility of isolating and characterizing CTCs in GBM (Table 1). The question is what is the more accurate and useful technology for identifying CTCs originating from brain tissue, especially given the heterogeneity of GBM? Larger-scale prospective studies are needed to address this question, and to demonstrate the clinical utility of characterizing CTCs in GBM. Further research is needed in this field to determine whether CTCs are: (i) relevant for understanding the clinical behavior of GBM and its mechanisms of extracranial dissemination, (ii) representative of the majority of tumor cells, and (iii) informative for the characterization of somatic genomic aberrations and the dynamics of tumor genomic diversity during the disease course.

Cell-free circulating tumor DNA

ctDNA can be easily extracted from blood plasma, using commercially available kits, and is found at varying levels in the blood of patients with diverse solid tumor types [103]. Extensive research is ongoing to develop and implement ctDNA-based biomarkers [START_REF] Schwarzenbach | Cell-free nucleic acids as biomarkers in cancer patients[END_REF][START_REF] Crowley | Liquid biopsy: monitoring cancer-genetics in the blood[END_REF]104]. Multiple approaches are now available, from PCR-based methods that allow the detection of known point mutations to next-generation exome or whole genome sequencing that allow characterization of mutations, copy-number changes and chromosomal rearrangements [START_REF] Leary | Development of personalized tumor biomarkers using massively parallel sequencing[END_REF][START_REF] Leary | Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing[END_REF][START_REF] Forshew | Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[END_REF][START_REF] Chan | Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing[END_REF]104]. Thus, ctDNA analysis has the potential to provide similar molecular information as that obtained from invasive tumor biopsies [START_REF] Schwarzenbach | Cell-free nucleic acids as biomarkers in cancer patients[END_REF][START_REF] Crowley | Liquid biopsy: monitoring cancer-genetics in the blood[END_REF][START_REF] Diehl | Circulating mutant DNA to assess tumor dynamics[END_REF]. However, isolating and characterizing ctDNA pose a number of challenges, especially for diseases confined to the brain, since ctDNA levels correlate with both cancer type and stage. To illustrate this point, Bettegowda et al indicating that an intact BBB prevents ctDNA from entering the circulation. Until now, the clinical utility of candidate ctDNAs as biomarkers for patients with GBM has not been demonstrated, and larger-scale prospective studies are needed before their implementation in routine clinical practice.

Cell-free circulating miRNA and extracellular vesicles carrying tumor-derived

RNA

Tumor cells can release small pieces of their RNA into the bloodstream and/or CSF [START_REF] Liu | Quantitative detection of multiple gene promoter hypermethylation in tumor tissue, serum, and cerebrospinal fluid predicts prognosis of malignant gliomas[END_REF][START_REF] Baraniskin | Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma[END_REF][START_REF] Teplyuk | MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity[END_REF][START_REF] Tumilson | Circulating microRNA biomarkers for glioma and predicting response to therapy[END_REF][START_REF] Pan | Brain tumor mutations detected in cerebral spinal fluid[END_REF], as the result of cell death or active secretion [START_REF] Stroun | About the possible origin and mechanism of circulating DNA apoptosis and active DNA release[END_REF]. Circulating miRNA can be collected as cell-free circulating entities, as these nucleic acids are relatively stable in plasma and serum [START_REF] Schwarzenbach | Cell-free nucleic acids as biomarkers in cancer patients[END_REF]. Conversely cell-free mRNAs are prone to rapid digestion due to the presence of RNA degrading enzymes which are elevated in the serum. Tumor-derived mRNA can be efficiently isolated and analyzed after extraction from EVs.

EVs are highly stable nanometer size membrane-enclosed particles that are released from both normal and tumor cells in blood, urine and CSF [START_REF] Chen | BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles[END_REF][START_REF] Skog | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[END_REF][START_REF] Al-Nedawi | Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells[END_REF][START_REF] Noerholm | RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls[END_REF][START_REF] Akers | MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development[END_REF][START_REF] Qu | Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles[END_REF], carrying a rich source of nucleic acids (including DNA, miRNA and mRNA), proteins, lipids and metabolites from the host cells. Importantly, isolation of RNA (including mRNA) from EVs can yield a greater concentration of RNA compared to circulating RNA from whole blood, plasma or serum [START_REF] Chen | Microfluidic isolation and transcriptome analysis of serum microvesicles[END_REF], as the structure of EVs protect RNA from circulating nucleases [START_REF] Redzic | Glioblastoma extracellular vesicles: reservoirs of potential biomarkers[END_REF]. miRNAs are small (~ 22 nucleotides) non-coding RNAs that can be detected as cellfree entities or as the content of circulating EVs in blood and/or CSF. miRNAs are regulatory nucleic acids that modulate the epigenetic state and gene expression of cells from both the tumor and its microenvironment, thereby exerting an impact on Tumor-specific mRNAsincluding EGFRvIII and MGMTcan be isolated from EVs and/or platelets from GBM patients [START_REF] Shao | Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma[END_REF][START_REF] Noerholm | RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls[END_REF][START_REF] Nilsson | Blood platelets contain tumor-derived RNA biomarkers[END_REF], allowing analysis using technologies such as NGS and RT-qPCR. Several pilot studies [START_REF] Shao | Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma[END_REF][START_REF] Noerholm | RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls[END_REF][START_REF] Nilsson | Blood platelets contain tumor-derived RNA biomarkers[END_REF] have demonstrated that tumor-derived EVs isolation is feasible in GBM, providing the opportunity for mRNA-based molecular profiling (e.g. gene expression profiling and characterization of tumor-specific molecular alterations such as mutations and translocations).

Overall, these studies established the feasibility of noninvasive tumor-derived RNAs analysis in patients with GBM. Such tests have several potential applications from differential to molecular diagnosis. Like ctDNAs, circulating RNAs, have not been evaluated in large-scale prospective studies. Further validation of these biomarkers is needed before their integration into clinical practice.

Circulating Tumor-associated Oncometabolite and Protein Biomarkers

Circulating Oncometabolites

Mutations of the isocitrate dehydrogenase genes (IDH1 and IDH2) are found in 6 percent of primary GBM and more than 70 percent of secondary GBM [START_REF] Brennan | The somatic genomic landscape of glioblastoma[END_REF]127].

IDH1/2 mutations are independent prognostic factors [START_REF] Verhaak | Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[END_REF][START_REF] Noushmehr | Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma[END_REF][START_REF] Brennan | The somatic genomic landscape of glioblastoma[END_REF]128,129] Further validation of these biomarkers is warranted, and several ongoing prospective studies are examining the clinical utility of candidate circulating proteins in patients with GBM.

Conclusion

Circulating biomarkers represent an exciting area of research that holds promise for better management of patients with GBM. They have the potential to expand our knowledge of GBM biology, to improve the diagnosis of this entity and to identify novel therapeutic targets, which should ultimately help improve the outcome of GBM patients. Circulating biomarkers can be studied from several types of biofluids such as blood, CSF and urine. Current research is at an exploratory stage and shows that the potential applications for circulating biomarkers encompass early diagnosis, molecular stratification, prognosis assessment, prediction of treatment response, and disease course monitoring. Several promising circulating biomarkers identified in small studies require further evaluation and validation in larger-scale prospective studies before their implementation in routine clinical practice. Compared to tissue analysis which is the 'gold-standard', CTCs, tumor-derived circulating EVs and nucleic acids, and oncometabolites have the advantages of being tumor-specific and of providing genomic information that will help physicians to tailor treatment to individual molecular profiles along the disease course. The translation of circulating biomarkers into a routine clinical test is hampered by the relatively low sensitivity of some candidate biomarkers for disease confined to the brain. The advent of such a test is in the offing, since novel ultrasensitive methods for detecting circulating biomarkers are under development.

Expert commentary

Despite numerous attempts to improve the outcome of patients with GBM, overall survival remains stagnant. Translating progress achieved in our understanding of the biology of GBM into a clinical benefit is an unmet need, since recent clinical trials evaluating targeted therapies have failed to demonstrate efficacy in overall population of enrolled GBM patients. Several particularities of neuro-oncology may explain these failures. First, GBM has an extremely complex biology that thwarts our ability to: (i) identify and prioritize actionable alterations, (ii) understand intratumor heterogeneity and the dynamics of clonal and subclonal tumor architecture during disease progression, and (iii) prevent tumor adaptation and drug resistance. Second, we lack the noninvasive tools to more accurately monitor disease progression. Third, GBM is a unique challenge with regard to difficulties in drug delivery due to the BBB. Circulating biomarkersespecially tumor-specific biomarkersmay help clinicians overcome some of the above-mentioned challenges. From the viewpoint of a neuro-oncologist, circulating biomarkers have the major advantage of providing real-time molecular information without recourse to brain surgery, particularly when tumor recurrence occurs. Key issues in this field of research must be addressed in order to maximize the potential of circulating biomarker-based profiling for treatment selection and monitoring. Ensuring that the process and technologies implemented will exhibit greater sensitivity in patients with GBM is one of the most pressing issues.

Specifically regarding antiangiogenic agents such as bevacizumabone of the main agents used to treat progressive GBM -, studies are needed to better determine the impact of therapies "normalizing" the BBB on our ability to detect circulating biomarkers. As normalization of tumor vasculature may be associated with decreased levels of circulating biomarkers, some of these may not be adequate for monitoring patients treated with antiangiogenics. Finally, combining several approaches of noninvasive tumor profiling (e.g. concomitant analysis of tumor-derived RNA and DNA) may enhance our ability to characterize tumor genome at diagnosis and during disease progression, which may help to match patients to targeted therapies. The integration of data collected from noninvasive diagnostics tests with clinical and radiological evaluation will be undoubtedly pivotal in upcoming years to characterize specific tumor processes (e.g. discriminate between tumor progression and pseudoprogression) within the setting of clinical trials or daily routine medical management of patients.

The sensitivity, accuracy and prognostic and predictive value of the technologies remain to be evaluated, and larger-scale prospective studies are required before these novel methods can be integrated into routine clinical practice. Collaborative research efforts worldwide are needed to this end.

Five year view

Two scenarios can be expected. In the first scenario, with continued research, the clinical utility of more informative circulating biomarkers will be demonstrated, resulting in their use in routine clinical practice as liquid biopsies to: (i) perform noninvasive molecular stratification, (ii) improve patient treatment stratification based on genomic characterization, (iii) offer assistance for real-time disease monitoring, and (iv) identify changes in the tumor genomic architecture and mechanisms of drug resistance. Liquid biopsiesintegrated with sequential analysis of advanced imaging -, will provide a noninvasive and relatively easy way to sample tumors in real-time.

This will lead to earlier diagnosis of cancer or recurrence, and will ultimately improve the survival of GBM patients. Due to their lack of specificity and their limited value to inform on molecular profiles and tumor heterogeneity, it is less likely that circulating proteins will demonstrate clinical utility in the coming years.

In the second scenario, circulating biomarkers will fail to demonstrate clinical utility, due to their low sensitivity for diagnosis and inefficient prediction of disease progression or response to therapies. Tissue-based analysis will remain the standard strategy at diagnosis. Clinicians will need to obtain multiple tissue samples from patients during surgery, in order to maximize the chances of identifying the most relevant and/or actionable target among clonal and subclonal molecular alterations.

Whenever possible, the same strategy will be repeated at relapse, in order to address resistance mechanisms and to adapt the therapeutic strategy. As multiple tumor sampling will not be feasible for all patients during the disease course, progress in noninvasive advanced imaging procedures [START_REF] Choi | 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas[END_REF][START_REF] Baldock | Invasion and proliferation kinetics in enhancing gliomas predict IDH1 mutation status[END_REF][START_REF] Tykocinski | Use of magnetic perfusionweighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma[END_REF] will contribute to therapeutic decision-making. 
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CTCs shared genomic alterations with the primary tumor.

[88]

Telomerase-based assay Quantitative, longitudinal analysis 72 Detection rate was higher before treatment with radiation therapy.

Evolution of CTCs levels correlated with treatment response in a small subset of patients with available longitudinal sampling.

[86] 

[

  103] reported a very low rate of glioma patients with detectable ctDNA as compared with patients with other solid tumors. This is probably mainly due to the biophysical obstacle represented by the blood-brain barrier (BBB). Indeed, although being partially disrupted in virtually all GBM, the BBB may prevent the efficient passage of DNA molecules into the peripheral circulation [105]. However, with the development of ultrasensitive ctDNA detection methods [106], as well as that of novel methods to overcome the BBB [107], more sensitive ctDNA detection assays are expected in the coming years.Several small retrospective studies have addressed the feasibility and utility of ctDNA detection in patients with primary brain tumor (Table2). Using Polymerase Chain Reaction (PCR)-based assays, ctDNAs were successfully detected in GBM patients, and multiple molecular alterations were characterized including loss of heterozygosity (LOH) in chromosome arms 1p, 19q and 10q, IDH1 and EGFRvIII mutations, as well as methylation status of promoters of MGMT, PTEN, and CDKN2A [105,108-113]. In addition, a recent study reported on the value of a ctDNA-based NGS panel of 54 genes using the Guardant360® assay in a prospective cohort of patients with primary brain tumors, including 34 GBM. Overall, 43 percent of GBM patients had at least one somatic alteration detected among 21 genes [114], with most common mutations affecting TP53 (n=12). These studies indicated the potential diagnostic value of ctDNA and provided several other insights. MGMT promoter methylation status assessed from ctDNA exhibited both prognostic[115,116] and predictive values[111]. However concordance between tissue and serum methylation status was limited[115], with several false-negative results when status was assessed from blood.Nevertheless, compared with the analysis performed on respective tumors samples, ctDNA-based mutation testing showed an excellent specificity (100 percent in most studies), and sensitivity was between 50 and 90 percent in most studies. As expected, the sensitivity was correlated with the tumor volume and contrast enhancement [105],

  tumor behavior[117]. Indeed, several functional studies have demonstrated that miRNAs may act as oncogenes or tumor suppressor genes and influence tumor cell proliferation, differentiation, survival, and invasion[118,119]. miRNAs are the most extensively studied circulating nucleic acids in GBM. Several groups have studied the expression patterns of circulating miRNAs, and have reported that miRNA differential expression can distinguish patients with GBM from healthy patients[START_REF] Baraniskin | Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma[END_REF][START_REF] Shao | Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma[END_REF][START_REF] Qu | Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles[END_REF][120][121][122][123][124][125]. Altered levels of several miRNAs have been associated with GBM, and miRNA-21, miRNA-128 and miRNA-342-3p plasma levels have been associated with both prognostic and monitoring values[120,121,123,124].

  , and assessment of the IDH1/2 status has been implemented in routine clinical practice for patients with gliomas. IDH1 and IDH2 encode enzymes that catalyze the oxidation of isocitrate to alpha-ketoglutarate in the tricarboxylic acid cycle [130]. Mutant IDH enzymes acquire neomorphic enzymatic activity, thereby catalyzing the production of D-2-hydroxyglutarate (D2HG), an oncometabolite that accumulates at high levels and inhibits several enzymes notably involved in histones and DNA demethylation [131]. Elevated circulating D2HG levels have been reported in patients with D-2hydroxyglutaric aciduria (an extremely rare neurometabolic inborn disease), and with IDH1/2-mutant cancers, including acute myeloid leukemias (AML), and cholangiocarcinomas [132,133]. Importantly, D2HG levels have been demonstrated to be of interest for both the diagnosis and monitoring of patients with IDH1/2-mutant malignancies [132-135]. However, in most patients with IDH1/2-mutant gliomas, plasmatic D2HG values are in the normal range [136], suggesting that the BBB prevents D2HG from entering the circulation. A recent study showed that the plasma/urine ratio of 2HG may increase the sensitivity and specificity for IDH1/2 mutation detection in glioma [137]. However, in the latter study, the authors explored the value of the total 2HG levelwhich include both enantiomers L-2hydroxyglutarate and D2HGalthough previous studies have demonstrated that only D2HG level is predictive for IDH1/2 status. Whereas the clinical value of noninvasive detection and monitoring of D2HG levels has been well established in AML [132], the feasibility in glioma remains unclear. Brain imaging-based methods [62] are currently under investigation. To our knowledge, the diagnostic value of the D2HG level in the CSF has not been evaluated. Non-tumor specific proteins Whereas CTCs, tumor EVs, circulating tumor nucleic acids, and oncometabolites are tumor-specific, most of the circulating proteins that have been studied as putative GBM biomarkers are not tumor-specific because they are also closely associated with diverse types of brain parenchymal injury [138-142], suggesting that these proteins are released into the bloodstream in case of disruption of the BBB, whatever the mechanism of disruption. Indeed, when BBB disruption occurs due to tumor development, these circulating proteins could originate either from tumor cells or other cells in the tumor microenvironment, such as endothelial, inflammatory and stromal cells. That circulating GFAP levels are reported to be significantly increased in patients with glioma compared with healthy controls is a case in point, as GFAP values were also elevated in several other conditions such as head trauma, intracerebral hemorrhage, brain infarction and multiple sclerosis [138-142]. Several circulating proteins have been evaluated, and include proteins associated with: (i) cell lineage such as GFAP [143-147], NCAM [148] and S100B [145,147,149], (ii) matricellular proteins and matrix metalloproteinases such as YKL-40 [150-153], MMP2 [154-159], MMP9 [151,154-156,159-161], TIMP-1 [78,157,158,162-164] and osteopontin (OPN) [164,165], and (iii) cytokines/growth factors and growth factors receptors such as VEGF [159,160,166-173], FGF-2 [157,158,162,171,174], PIGF [147], IGFBP-5 [175], epidermal growth factor receptor (EGFR) [176], VEGFR1 [161,162,171], and TGFβ-1 [177].
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 2 Summary of clinical studies evaluating cell-free circulating tumor DNA (ctDNA) in glioblastoma. : PCR, Polymerase Chain Reaction; RT-PCT, Real-Time Polymerase Chain Reaction; COLD-PCR, co-amplification at lower denaturation temperature-PCR; LOH, Loss of Heterozygosity;
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 3 Summary of main clinical studies evaluating circulating proteins in glioblastoma.

	Protein	Methodology	Potential values for clinical application	Reference
	YKL-40	ELISA	Diagnostic, prognostic, and monitoring	[150-153]
	MMP-9	ELISA	Diagnostic, prognostic, and monitoring	[151,154-156,159-161]
	MMP-2	ELISA	Diagnostic, prognostic, predictive, and monitoring	[154-159]
	TIMP-1	ELISA	Diagnostic	[78,157,158,162-164]
	OPN	ELISA, mass	Prognostic	[164,165]
		spectrometry		
	VEGF	ELISA	Diagnostic, prognostic, and monitoring	[159,160,166-173]
	PIGF	ELISA	Diagnostic, prognostic	[147]
	FGF-2	ELISA	Diagnostic, prognostic	[157,158,162,171,174]
	IGFBP-5	ELISA	Predictive	[175]
	EGFR	ELISA	Diagnostic, prognostic	[176]
	Soluble VEGFR-1	ELISA	Diagnostic	[161,162,171]
	TGFβ-1	ELISA	Diagnostic	[177]