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Abstract 

Glioblastoma (GBM) is the most common and devastating primary malignant brain 

tumor in adults. The past few years have seen major progress in our understanding of 

the molecular basis of GBM. These advances, which have contributed to the 

development of novel targeted therapies, will change the paradigms in GBM therapy 

from disease-based to individually tailored molecular target-based treatment. No 

validated circulating biomarkers have yet been integrated into clinical practice for 

GBM. There is thus a critical need to implement minimally invasive clinical tests 

enabling molecular stratification, prognosis assessment, as well as the prediction and 

monitoring of treatment response. After examination of data from recent studies 

exploring several categories of tumor-associated biomarkers (circulating tumor cells, 

extracellular vesicles, nucleic acids, and oncometabolites) identified in the blood, 

cerebrospinal fluid and urine, this article will discuss the challenges and prospects for 

the development of circulating biomarkers in GBM. 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Glioblastoma (GBM, World Health Organization grade IV astrocytoma) is the most 

common and aggressive primary malignant brain tumor in adults. GBM accounts for 

~50% of primary brain malignancies with an annual incidence of 3.19 per 100,000 in 

the United States [1]. Despite intensive multimodal therapy comprising surgery, 

concomitant radio-chemotherapy and adjuvant chemotherapy [2], patients with GBM 

continue to have a dismal prognosis with a median survival between 10 and 15 

months [3-5], resulting in approximately 175,000 GBM-related deaths each year 

worldwide [6]. Therefore, efforts are urgently needed to accelerate progress in neuro-

oncology and improve the outcome of patients with GBM. 

The past decade has seen remarkable strides forward in the molecular characterization 

of GBM. These advances – achieved through collaborative works of international 

research groups [7-13] – have provided a tremendous opportunity to improve the 

management of GBM patients [14-17]. Several molecular alterations such as the 

IDH1 mutation and MGMT promoter methylation have been associated with 

diagnostic, prognostic and predictive values [18-21], suggesting that such biomarkers 

could be used to improve the diagnosis and enhance the effectiveness of cancer care, 

by allowing physicians to tailor therapy to individual molecular profiles. With the 

rapid advances in this field, and the recent progress that has occurred during the past 

few years in non-invasive tests that detect circulating tumor cells (CTCs) and tumor 

DNA fragments [22-26], a growing body of research indicates that circulating 

biomarkers would facilitate the clinical management of GBM patients [27-30].  

 

Main molecular features of glioblastoma 



 

GBM is a highly heterogeneous and invasive malignant tumor. The definitive 

diagnosis requires the histological analysis of tumor tissue – obtained through surgical 

resection or biopsy –, and typically shows poorly differentiated glial tumor cells with 

increased density and mitotic activity, hyperplastic vasculature, and areas of necrosis 

[31]. Several studies have described the genomic landscape of GBM, using integrated 

analysis from multi-omics datasets including epigenome, genome, transcriptome, 

metabolome and proteome of large cohorts of GBM [7-13]. In most cases, genomic 

alterations act in concert to disrupt several fundamental cellular processes 

simultaneously: retinoblastoma and p53 tumor-suppressor pathways, receptor tyrosine 

kinase – mitogen-activated protein kinase – phosphoinositide 3-kinase signaling 

pathways, chromatin remodeling, and telomere maintenance mechanisms. Several 

types of molecular aberrations are found, including copy number variations, 

mutations, deletions, translocations, dysregulated gene expression, and epigenetic 

reprogramming. Gene expression analysis has allowed GBM to be subclassified into 

at least four distinct molecular subtypes (proneural, classical, neural and 

mesenchymal), with better survival for the proneural subtype [7,10-12]. Moreover, 

several molecular alterations have been associated with a significant prognostic 

and/or predictive value. The best described and known is the methylation of the 

MGMT promoter, which encodes a DNA repair protein that counteracts the cytotoxic 

effect of temozolomide, the main chemotherapeutic agent used to treat newly 

diagnosed GBM [2,3]. Methylation of the MGMT promoter results in silencing of 

MGMT protein expression and is associated with sensitivity to temozolomide [18,19]. 

Other recurrent cancer genome aberrations – including IDH1, PIK3CA, EGFRvIII, 

BRAF and FGFR oncogenic alterations – are currently investigated as theranostic 



biomarkers for molecular targeted therapies in clinical trials [17,32-39].  

It is important to underline here that GBM typically displays a great degree of spatial 

and temporal intratumor heterogeneity (i.e. extensive genetic diversity both between 

different regions of the tumor and tumor subpopulations over time) [12,17,40-46]. 

This tumor heterogeneity has important implications for the mechanisms of cancer 

progression and resistance to therapy and represents a major challenge to personalized 

cancer medicine [47-49]. Indeed, this intrinsic feature of GBM may affect the ability 

of molecular signatures to predict therapeutic response and clinical outcome, and may 

explain – at least partially – the inefficacy of targeted therapies despite the use of 

robust biomarkers as inclusion criteria in clinical trials [17,34,50,51]. Non-invasive 

longitudinal tumor sampling approaches using circulating biomarkers (e.g. CTCs or 

cell-free circulating tumor nucleic acids) have the potential to provide real-time 

information on tumor heterogeneity and changes in the tumor subclonal architecture 

along the disease course, allowing clinicians to predict and circumvent tumor 

adaptation and drug resistance [47,48]. 

 

General concepts related to circulating biomarkers 

 

Circulating biomarkers refer to “measurable biological molecules found in the blood, 

or other body fluids that provide information on a normal or abnormal process, or of a 

condition or disease, such as cancer” [52]. In oncology, circulating biomarkers 

display several potential clinical applications [53-55]. The diagnostic value lies in the 

abilities of the test to: (i) estimate a risk, (ii) facilitate early and differential diagnosis, 

(iii) assess the prognosis, (iv) follow the tumor evolution longitudinally and (v) 

monitor specific treatment [48,56,57]. In addition, several circulating biomarkers – 



often referred as liquid biopsies (e.g. CTCs or cell-free circulating tumor nucleic 

acids) – can provide specific cytologic and/or molecular information on the tumor 

itself, and allow non-invasive tracking of the cancer genome. Finally, biomarkers can 

have predictive value, when the result of the test gives an indication of the probable 

effect of a treatment on the patient [58]. Such biomarkers are referred as companion 

diagnostics.  

For brain tumors, circulating biomarkers have the undeniable advantage of providing 

useful information via a minimally invasive procedure. Such tests would be clinically 

useful, especially in cases in which surgery is contraindicated or when biopsy results 

are inconclusive [59]. Furthermore, at recurrence – which is virtually inevitable in 

GBM – less than 30% of patients are candidates for second surgery [2]. For the 

remaining inoperable patients, circulating biomarkers could be the source of a 

molecular profile of the relapsed tumor, allowing clinicians to identify potentially 

druggable molecular alterations driving recurrence. 

The development and validation of circulating biomarkers is a long process that 

involves multiple steps from their discovery to approval for use. These steps (Figure) 

aim to ensure the robustness and usefulness of the test for making decisions about 

effective treatments or preventive strategies, and to demonstrate its added value 

compared to available tools [60]. No validated circulating biomarkers have yet been 

integrated into clinical practice for GBM. Current standard monitoring and follow-up 

procedures include clinical evaluation and brain imaging (magnetic resonance 

imaging [MRI], when feasible) [2,61]. They are valuable for evaluating disease 

evolution (i.e. stable, progression or response), but have several limitations: (i) they 

provide no or very limited molecular information [62-64], (ii) they offer scant 

prognostic and/or predictive information, (iii) they are frequently challenged when 



differentiating between true tumor progression and treatment-related necrosis 

(pseudo-progression) in case of apparent tumor regrowth [61,65] as well as between 

true tumor response and a pseudo-response when antiangiogenic agents are used [66]. 

The validation of clinically useful circulating biomarkers from blood, urine, or 

cerebrospinal fluid (CSF) would be a major advance in neuro-oncology, since they 

may improve the management of patients through multimodal diagnosis and follow-

up procedures. 

 

Sources of circulating biomarkers in patients with glioblastoma 

 

Circulating biomarkers can be collected from several sources in patients with GBM. 

Blood-based biomarker testing is the fastest and easier approach. The most 

extensively studied circulating biomarkers are proteins, which are actively or 

passively secreted by tumor cells and/or their microenvironment, and can be detected 

in blood, urine and CSF [27-30,67]. In addition, tumor cells can release small pieces 

of their DNA and/or RNA into the bloodstream and/or CSF [68-72], due to cell death 

or active secretion [73]. These pieces of tumor nucleic acids – called cell-free 

circulating tumor DNA (ctDNA) and circulating microRNA (miRNA) – are relatively 

stable in plasma and serum [54]. Conversely, cell-free messenger RNA (mRNA) is 

rapidly degraded in blood (see below for analysis of mRNA). In the case of 

biomarkers analyzed from CSF, it is important noteworthy that although CSF 

collection is safe in most cases, it is a more invasive procedure than blood sampling, 

and may be contraindicated due to the risk of brain herniation in patients with tumor-

induced increased intracranial pressure. However, CSF analysis may be more 

sensitive than a blood analysis to detect ctDNA, at least for a subset of patients, as 



demonstrated with the IDH1 mutation [74,75].  

Extracellular vesicles (EVs) are nanometer size membrane-enclosed particles that are 

released from GBM living tumor cells either from the fusion of an endosome with the 

plasma membrane (“exosomes”), or directly from the cell membrane 

(“microvesicles”) [76,77]. EVs are vehicles of communication between different 

tumor compartments and its microenvironment, as other tumor cells and normal cells 

take them up [78-81]. Importantly, EVs – which can be isolated from both blood and 

CSF [75,78,79,82-84] – are a rich source of tumor-derived molecules such as DNA, 

microRNA, mRNA, proteins, lipids and metabolites, because the structure of EVs 

protect them from nucleases and proteases [76]. Accordingly, isolation of RNA 

(including mRNA) from EVs can yield a greater concentration of RNA compared to 

circulating mRNA from whole blood, plasma or serum [74]. Platelets can sequester 

the content of EVs, and it has been demonstrated that tumor-specific nucleic acids can 

be isolated in platelets extracted from patients with GBM [85]. These additional 

sources of tumor RNA could be useful for mRNA-based analysis (e.g. gene 

expression profiling and gene rearrangements detection).  

Finally, recent works demonstrated the presence of CTCs in a subset of patients with 

GBM [86-88].  

 

Circulating Tumor Cells 

 

CTCs are cells that have shed from a tumor into the vessels and circulate in the 

bloodstream. CTCs are tumor-specific, and can potentially constitute seeds for 

subsequent growth of additional tumors (metastasis) in distant organs. CTCs are a 

widely studied biomarker with potential to inform on the prognosis and therapeutic 



response in a variety of solid malignancies including lung, breast, and prostate 

cancers [89]. Furthermore, CTC analysis provides crucial diagnostic information on 

tumor cells, including morphology, immunocytochemical phenotype and molecular 

profile [90-92]. Finally, CTC isolation offers the ability to perform in vivo functional 

testing thereby providing opportunities to study the biology of metastasis, and to test 

drug sensitivity in ex vivo preclinical models [93,94]. 

Various technologies have been developed to detect and characterize CTCs including 

flow-cytometry based systems, immunomagnetic cell enrichment, and automated 

microscopy systems [89,95,96], but only one, CellSearch® (Janssen Diagnostics), 

based on clinical trials in patients with metastatic breast, prostate and colorectal 

cancers, has been approved by the US  Food and Drug Administration (FDA) for 

detecting the presence of CTCs and monitoring disease evolution through CTC levels.  

As CellSearch® is mainly based on the detection of epithelial cell adhesion molecule 

(EpCAM), it is probably ineffective for the detection of primary brain tumor cells, 

which do not express such surface markers [86]. 

The presence of CTCs in GBM has fuelled debate for many years [97]. Although 

GBM is a highly aggressive and invasive tumor, it is mostly restricted to the brain. 

Unlike the case in other solid malignancies, the incidence of extracranial metastases is 

extremely low in patients with GBM with only 0.5%-2% of patients developing 

secondary lesions in the bone, lymph nodes, or liver [98-100]. Conversely, cases of 

GBM transmission have been reported in patients who received organ transplants 

from donors with GBM [101]. These rare observations have provided indirect 

evidence that GBM tumor cells may acquire the ability to disseminate via the 

bloodstream, in particular circumstances such as systemic immunosuppression. 

Recently, three research groups reported on the isolation of CTCs in the blood of 20-



70 percent of GBM patients (Table 1). MacArthur et al devised a strategy based on 

the evaluation of telomerase activity in a cohort of glioma patients undergoing 

radiotherapy [86]. Telomerase is a DNA polymerase required to replicate the ends of 

the chromosomes, and is aberrantly expressed through TERT promoter mutation in 

75.7 percent of primary GBM [102]. The detection assay used was an adenoviral 

probe allowing GFP expression in cells with elevated telomerase activity. Initial 

experiments demonstrated the specificity of the probe for accurately isolating glioma 

cells while leaving normal cells – including normal brain and white blood cells – 

unaffected. In this pilot study, CTCs were detectable in 72 percent (8/11) of pre-

radiotherapy patients, compared with 12 percent (1/8) of post-radiotherapy patients 

[86]. Interestingly, in a small subset of patients with available serial measurements, 

the variation of CTC levels during the disease course was correlated with tumor 

progression, suggesting that CTC levels may reflect the status of the tumor after 

resection and/or radiation therapy. In a recent study by Sullivan et al [88], CTCs were 

identified in 39 percent (13/33) of patients with GBM, using both immunomagnetic 

and immunofluorescence-based cell selection. First, blood specimens were enriched 

for CTCs using a microfluidic device developed by the authors, the CTC-iChip 

platform, which combines size-based removal of red blood cells and platelets, and 

immunomagnetic depletion of leukocytes using antibodies against leukocyte markers 

(CD45 and CD16). Subsequently, GBM CTCs were isolated from purified samples 

using immunofluorescence staining based on a panel of markers commonly expressed 

in GBM tumor cells (SOX2, Tubulin β-3, EGFR, A2B5, and c-MET). The analysis of 

CTCs isolated from both patient-derived xenografts (PDX) models and patients 

revealed enrichment for mesenchymal over neural subtype, suggesting that the 

mesenchymal subtype of GBM may harbor a greater potential to proliferate outside 



the brain. Finally, Müller et al [87] identified CTCs in blood collected from 20.6 

percent of patients (29/141), using tumor cell enrichment and screening methods 

based on glial fibrillary acidic protein (GFAP). The tumor-specificity of GFAP-

positive and CD45-negative cells was demonstrated by the absence of such cells in 

healthy volunteers. GFAP-positive CTCs were further characterized with comparative 

genomic hybridization (CGH array) and/or next generation deep sequencing, which 

allowed the detection of tumor-specific aberrations such as gains of chromosome 7 

regions, losses of chromosome 10 regions and EGFR amplification. Interestingly, 

there was no correlation between the presence of CTCs and survival or GBM 

dissemination. 

Using assays based on different technologies, these independent studies established 

the proof of concept of the feasibility of isolating and characterizing CTCs in GBM 

(Table 1). The question is what is the more accurate and useful technology for 

identifying CTCs originating from brain tissue, especially given the heterogeneity of 

GBM? Larger-scale prospective studies are needed to address this question, and to 

demonstrate the clinical utility of characterizing CTCs in GBM. Further research is 

needed in this field to determine whether CTCs are: (i) relevant for understanding the 

clinical behavior of GBM and its mechanisms of extracranial dissemination, (ii) 

representative of the majority of tumor cells, and (iii) informative for the 

characterization of somatic genomic aberrations and the dynamics of tumor genomic 

diversity during the disease course.  

 

Cell-free circulating tumor DNA  

 

ctDNA can be easily extracted from blood plasma, using commercially available kits, 



and is found at varying levels in the blood of patients with diverse solid tumor types 

[103]. Extensive research is ongoing to develop and implement ctDNA-based 

biomarkers [54,55,104]. Multiple approaches are now available, from PCR-based 

methods that allow the detection of known point mutations to next-generation exome 

or whole genome sequencing that allow characterization of mutations, copy-number 

changes and chromosomal rearrangements [22-25,104]. Thus, ctDNA analysis has the 

potential to provide similar molecular information as that obtained from invasive 

tumor biopsies [54-56]. However, isolating and characterizing ctDNA pose a number 

of challenges, especially for diseases confined to the brain, since ctDNA levels 

correlate with both cancer type and stage. To illustrate this point, Bettegowda et al 

[103] reported a very low rate of glioma patients with detectable ctDNA as compared 

with patients with other solid tumors. This is probably mainly due to the biophysical 

obstacle represented by the blood-brain barrier (BBB). Indeed, although being 

partially disrupted in virtually all GBM, the BBB may prevent the efficient passage of 

DNA molecules into the peripheral circulation [105]. However, with the development 

of ultrasensitive ctDNA detection methods [106], as well as that of novel methods to 

overcome the BBB [107], more sensitive ctDNA detection assays are expected in the 

coming years.  

Several small retrospective studies have addressed the feasibility and utility of ctDNA 

detection in patients with primary brain tumor (Table 2). Using Polymerase Chain 

Reaction (PCR)-based assays, ctDNAs were successfully detected in GBM patients, 

and multiple molecular alterations were characterized including loss of heterozygosity 

(LOH) in chromosome arms 1p, 19q and 10q, IDH1 and EGFRvIII mutations, as well 

as methylation status of promoters of MGMT, PTEN, and CDKN2A [105,108-113]. In 

addition, a recent study reported on the value of a ctDNA-based NGS panel of 54 



genes using the Guardant360® assay in a prospective cohort of patients with primary 

brain tumors, including 34 GBM. Overall, 43 percent of GBM patients had at least 

one somatic alteration detected among 21 genes [114], with most common mutations 

affecting TP53 (n=12). These studies indicated the potential diagnostic value of 

ctDNA and provided several other insights. MGMT promoter methylation status 

assessed from ctDNA exhibited both prognostic [115,116] and predictive values 

[111]. However concordance between tissue and serum methylation status was limited 

[115], with several false-negative results when status was assessed from blood. 

Nevertheless, compared with the analysis performed on respective tumors samples, 

ctDNA-based mutation testing showed an excellent specificity (100 percent in most 

studies), and sensitivity was between 50 and 90 percent in most studies. As expected, 

the sensitivity was correlated with the tumor volume and contrast enhancement [105], 

indicating that an intact BBB prevents ctDNA from entering the circulation. Until 

now, the clinical utility of candidate ctDNAs as biomarkers for patients with GBM 

has not been demonstrated, and larger-scale prospective studies are needed before 

their implementation in routine clinical practice. 

 

Cell-free circulating miRNA and extracellular vesicles carrying tumor-derived 

RNA 

 

Tumor cells can release small pieces of their RNA into the bloodstream and/or CSF 

[68-72], as the result of cell death or active secretion [73]. Circulating miRNA can be 

collected as cell-free circulating entities, as these nucleic acids are relatively stable in 

plasma and serum [54]. Conversely cell-free mRNAs are prone to rapid digestion due 

to the presence of RNA degrading enzymes which are elevated in the serum. Tumor-



derived mRNA can be efficiently isolated and analyzed after extraction from EVs. 

EVs are highly stable nanometer size membrane-enclosed particles that are released 

from both normal and tumor cells in blood, urine and CSF [75,78,79,82-84], carrying 

a rich source of nucleic acids (including DNA, miRNA and mRNA), proteins, lipids 

and metabolites from the host cells. Importantly, isolation of RNA (including mRNA) 

from EVs can yield a greater concentration of RNA compared to circulating RNA 

from whole blood, plasma or serum [74], as the structure of EVs protect RNA from 

circulating nucleases [76]. 

miRNAs are small (~ 22 nucleotides) non-coding RNAs that can be detected as cell-

free entities or as the content of circulating EVs in blood and/or CSF. miRNAs are 

regulatory nucleic acids that modulate the epigenetic state and gene expression of 

cells from both the tumor and its microenvironment, thereby exerting an impact on 

tumor behavior [117]. Indeed, several functional studies have demonstrated that 

miRNAs may act as oncogenes or tumor suppressor genes and influence tumor cell 

proliferation, differentiation, survival, and invasion [118,119]. miRNAs are the most 

extensively studied circulating nucleic acids in GBM. Several groups have studied the 

expression patterns of circulating miRNAs, and have reported that miRNA 

differential expression can distinguish patients with GBM from healthy patients 

[69,77,84,120-125]. Altered levels of several miRNAs have been associated with 

GBM, and miRNA-21, miRNA-128 and miRNA-342-3p plasma levels have been 

associated with both prognostic and monitoring values [120,121,123,124].  

Tumor-specific mRNAs – including EGFRvIII and MGMT – can be isolated from 

EVs and/or platelets from GBM patients [77,82,85], allowing analysis using 

technologies such as NGS and RT-qPCR. Several pilot studies [77,82,85] have 

demonstrated that tumor-derived EVs isolation is feasible in GBM, providing the 



opportunity for mRNA-based molecular profiling (e.g. gene expression profiling and 

characterization of tumor-specific molecular alterations such as mutations and 

translocations). 

Overall, these studies established the feasibility of noninvasive tumor-derived RNAs 

analysis in patients with GBM. Such tests have several potential applications from 

differential to molecular diagnosis. Like ctDNAs, circulating RNAs, have not been 

evaluated in large-scale prospective studies. Further validation of these biomarkers is 

needed before their integration into clinical practice. 

  

Circulating Tumor-associated Oncometabolite and Protein Biomarkers 

 

Circulating Oncometabolites 

Mutations of the isocitrate dehydrogenase genes (IDH1 and IDH2) are found in 6 

percent of primary GBM and more than 70 percent of secondary GBM [12,127]. 

IDH1/2 mutations are independent prognostic factors [10-12,128,129], and 

assessment of the IDH1/2 status has been implemented in routine clinical practice for 

patients with gliomas. IDH1 and IDH2 encode enzymes that catalyze the oxidation of 

isocitrate to alpha-ketoglutarate in the tricarboxylic acid cycle [130]. Mutant IDH 

enzymes acquire neomorphic enzymatic activity, thereby catalyzing the production of 

D-2-hydroxyglutarate (D2HG), an oncometabolite that accumulates at high levels and 

inhibits several enzymes notably involved in histones and DNA demethylation [131]. 

Elevated circulating D2HG levels have been reported in patients with D-2-

hydroxyglutaric aciduria (an extremely rare neurometabolic inborn disease), and with 

IDH1/2-mutant cancers, including acute myeloid leukemias (AML), and 

cholangiocarcinomas [132,133]. Importantly, D2HG levels have been demonstrated to 



be of interest for both the diagnosis and monitoring of patients with IDH1/2-mutant 

malignancies [132-135]. However, in most patients with IDH1/2-mutant gliomas, 

plasmatic D2HG values are in the normal range [136], suggesting that the BBB 

prevents D2HG from entering the circulation. A recent study showed that the 

plasma/urine ratio of 2HG may increase the sensitivity and specificity for IDH1/2 

mutation detection in glioma [137]. However, in the latter study, the authors explored 

the value of the total 2HG level – which include both enantiomers L-2-

hydroxyglutarate and D2HG – although previous studies have demonstrated that only 

D2HG level is predictive for IDH1/2 status. Whereas the clinical value of noninvasive 

detection and monitoring of D2HG levels has been well established in AML [132], 

the feasibility in glioma remains unclear. Brain imaging-based methods [62] are 

currently under investigation. To our knowledge, the diagnostic value of the D2HG 

level in the CSF has not been evaluated.  

 

Non-tumor specific proteins 

Whereas CTCs, tumor EVs, circulating tumor nucleic acids, and oncometabolites are 

tumor-specific, most of the circulating proteins that have been studied as putative 

GBM biomarkers are not tumor-specific because they are also closely associated with 

diverse types of brain parenchymal injury [138-142], suggesting that these proteins 

are released into the bloodstream in case of disruption of the BBB, whatever the 

mechanism of disruption. Indeed, when BBB disruption occurs due to tumor 

development, these circulating proteins could originate either from tumor cells or 

other cells in the tumor microenvironment, such as endothelial, inflammatory and 

stromal cells. That circulating GFAP levels are reported to be significantly increased 

in patients with glioma compared with healthy controls is a case in point, as GFAP 



values were also elevated in several other conditions such as head trauma, 

intracerebral hemorrhage, brain infarction and multiple sclerosis [138-142].  

Several circulating proteins have been evaluated, and include proteins associated 

with: (i) cell lineage such as GFAP [143-147], NCAM [148] and S100B 

[145,147,149], (ii) matricellular proteins and matrix metalloproteinases such as YKL-

40 [150-153], MMP2 [154-159], MMP9 [151,154-156,159-161], TIMP-1 

[78,157,158,162-164] and osteopontin (OPN) [164,165], and (iii) cytokines/growth 

factors and growth factors receptors such as VEGF [159,160,166-173], FGF-2 

[157,158,162,171,174], PIGF [147], IGFBP-5 [175], epidermal growth factor receptor 

(EGFR) [176], VEGFR1 [161,162,171], and TGFβ-1 [177].  

Further validation of these biomarkers is warranted, and several ongoing prospective 

studies are examining the clinical utility of candidate circulating proteins in patients 

with GBM.  

 

Conclusion 

 

Circulating biomarkers represent an exciting area of research that holds promise for 

better management of patients with GBM. They have the potential to expand our 

knowledge of GBM biology, to improve the diagnosis of this entity and to identify 

novel therapeutic targets, which should ultimately help improve the outcome of GBM 

patients. Circulating biomarkers can be studied from several types of biofluids such as 

blood, CSF and urine. Current research is at an exploratory stage and shows that the 

potential applications for circulating biomarkers encompass early diagnosis, 

molecular stratification, prognosis assessment, prediction of treatment response, and 

disease course monitoring. Several promising circulating biomarkers identified in 



small studies require further evaluation and validation in larger-scale prospective 

studies before their implementation in routine clinical practice. Compared to tissue 

analysis which is the ‘gold-standard’, CTCs, tumor-derived circulating EVs and 

nucleic acids, and oncometabolites have the advantages of being tumor-specific and 

of providing genomic information that will help physicians to tailor treatment to 

individual molecular profiles along the disease course. The translation of circulating 

biomarkers into a routine clinical test is hampered by the relatively low sensitivity of 

some candidate biomarkers for disease confined to the brain. The advent of such a test 

is in the offing, since novel ultrasensitive methods for detecting circulating 

biomarkers are under development. 

 

Expert commentary 

 

Despite numerous attempts to improve the outcome of patients with GBM, overall 

survival remains stagnant. Translating progress achieved in our understanding of the 

biology of GBM into a clinical benefit is an unmet need, since recent clinical trials 

evaluating targeted therapies have failed to demonstrate efficacy in overall population 

of enrolled GBM patients. Several particularities of neuro-oncology may explain 

these failures. First, GBM has an extremely complex biology that thwarts our ability 

to: (i) identify and prioritize actionable alterations, (ii) understand intratumor 

heterogeneity and the dynamics of clonal and subclonal tumor architecture during 

disease progression, and (iii) prevent tumor adaptation and drug resistance. Second, 

we lack the noninvasive tools to more accurately monitor disease progression. Third, 

GBM is a unique challenge with regard to difficulties in drug delivery due to the 

BBB. Circulating biomarkers – especially tumor-specific biomarkers – may help 

clinicians overcome some of the above-mentioned challenges. From the viewpoint of 



a neuro-oncologist, circulating biomarkers have the major advantage of providing 

real-time molecular information without recourse to brain surgery, particularly when 

tumor recurrence occurs.  

Key issues in this field of research must be addressed in order to maximize the 

potential of circulating biomarker-based profiling for treatment selection and 

monitoring. Ensuring that the process and technologies implemented will exhibit 

greater sensitivity in patients with GBM is one of the most pressing issues. 

Specifically regarding antiangiogenic agents such as bevacizumab – one of the main 

agents used to treat progressive GBM –, studies are needed to better determine the 

impact of therapies “normalizing” the BBB on our ability to detect circulating 

biomarkers. As normalization of tumor vasculature may be associated with decreased 

levels of circulating biomarkers, some of these may not be adequate for monitoring 

patients treated with antiangiogenics. Finally, combining several approaches of 

noninvasive tumor profiling (e.g. concomitant analysis of tumor-derived RNA and 

DNA) may enhance our ability to characterize tumor genome at diagnosis and during 

disease progression, which may help to match patients to targeted therapies. The 

integration of data collected from noninvasive diagnostics tests with clinical and 

radiological evaluation will be undoubtedly pivotal in upcoming years to characterize 

specific tumor processes (e.g. discriminate between tumor progression and pseudo-

progression) within the setting of clinical trials or daily routine medical management 

of patients. 

The sensitivity, accuracy and prognostic and predictive value of the technologies 

remain to be evaluated, and larger-scale prospective studies are required before these 

novel methods can be integrated into routine clinical practice. Collaborative research 

efforts worldwide are needed to this end. 



 

Five year view 

 

Two scenarios can be expected. In the first scenario, with continued research, the 

clinical utility of more informative circulating biomarkers will be demonstrated, 

resulting in their use in routine clinical practice as liquid biopsies to: (i) perform non-

invasive molecular stratification, (ii) improve patient treatment stratification based on 

genomic characterization, (iii) offer assistance for real-time disease monitoring, and 

(iv) identify changes in the tumor genomic architecture and mechanisms of drug 

resistance. Liquid biopsies – integrated with sequential analysis of advanced imaging 

–, will provide a noninvasive and relatively easy way to sample tumors in real-time. 

This will lead to earlier diagnosis of cancer or recurrence, and will ultimately improve 

the survival of GBM patients. Due to their lack of specificity and their limited value 

to inform on molecular profiles and tumor heterogeneity, it is less likely that 

circulating proteins will demonstrate clinical utility in the coming years.  

In the second scenario, circulating biomarkers will fail to demonstrate clinical utility, 

due to their low sensitivity for diagnosis and inefficient prediction of disease 

progression or response to therapies. Tissue-based analysis will remain the standard 

strategy at diagnosis. Clinicians will need to obtain multiple tissue samples from 

patients during surgery, in order to maximize the chances of identifying the most 

relevant and/or actionable target among clonal and subclonal molecular alterations. 

Whenever possible, the same strategy will be repeated at relapse, in order to address 

resistance mechanisms and to adapt the therapeutic strategy. As multiple tumor 

sampling will not be feasible for all patients during the disease course, progress in 

noninvasive advanced imaging procedures [62-64] will contribute to therapeutic 

decision-making. 



 

Key issues    

 

 The past decade has seen remarkable strides forward in the genomic 

characterization of GBM.  Several candidate oncogenic alterations have been 

identified for rational drug design. 

 Accurate molecular diagnosis is a major issue in precision medicine to assess 

patient candidacy for a smart therapy targeting specifically molecular alterations in 

the tumor. 

 Circulating biomarkers can be collected from blood, urine and CSF. Potential 

applications for circulating biomarkers encompass early diagnosis, molecular 

stratification, prognosis assessment, prediction of treatment response, and disease 

course monitoring. 

 Circulating tumor cells (CTCs) can be isolated and characterized from a simple 

blood test and their molecular characterization can inform diagnosis, prognosis and 

therapeutic response. 

 Cell-free circulating tumor DNA (ctDNA) represents a very promising biomarker 

with several potential applications from molecular diagnosis to disease monitoring.  

 Several circulating proteins have been associated with diagnostic, prognostic and 

predictive values in GBM. 

 Analytical and clinical validation of technologies is required if circulating 

biomarkers are to become routine tests in the clinic; collaborative research efforts 

worldwide will be decisive in achieving this objective. 

 

 



 

 

 

 

 

 

 

 

Legend to figure 

Figure 1. Development and validation of circulating biomarkers – from 

discovery to clinical utility. The initial discovery generally involves comparing 

samples from patients with cancer and healthy donors (or different subgroups of 

patients with cancer, depending on the clinical question) matched for known 

confounding factors such as age and performance status. Multiple types of platforms 

based on ”omics” technologies (e.g. genomic, metabolomic and proteomic platforms) 

can be used to identify candidate biomarkers. Analytical and clinical validation 

involves analyses performed in larger patient populations in order to: (i) ensure robust 

biomarker detection, and (ii) demonstrate that the test accurately and reliably informs 

on the clinical state of interest. The final step of development is when the clinical 

utility of the test for making decisions about patient management is established, 

followed by regulatory approval for its application in the clinic. This step requires 

controlled studies across multiple institutions to demonstrate the usefulness and added 

value of the test, compared with currently available testing. The current standard 

diagnosis and following procedures include tumor histological analysis, and clinical 

and imaging follow-up. No circulating biomarker has to date demonstrated its clinical 



utility in GBM. 
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Table 1. Summary of clinical studies evaluating circulating tumor cells in glioblastoma. 

Methodology Type of analysis Sensitivity (%) Observations Reference 

GFAP-based assay Quantitative, 

molecular profiling 

21 CTCs shared genomic alterations with the primary tumor. [87] 

Immunomagnetic and 

immunofluorescence-

based cell selection 

Quantitative, 

molecular profiling 

39 CTCs analysis showed enrichment for the mesenchymal subtype. 

CTCs shared genomic alterations with the primary tumor. 

[88] 

Telomerase-based 

assay 

Quantitative, 

longitudinal analysis 

72 Detection rate was higher before treatment with radiation therapy. 

Evolution of CTCs levels correlated with treatment response in a 

small subset of patients with available longitudinal sampling. 

[86] 

 

  



Table 2. Summary of clinical studies evaluating cell-free circulating tumor DNA (ctDNA) in glioblastoma. 

Candidate ctDNA Methodology Observations Reference 

EGFRvIII PCR, RT-PCR Good correlation between mutational status in tumor and 

blood. 

[109,85] 

Mutant IDH1 COLD-PCR Moderate sensitivity (60%), excellent specificity (100%).  

The sensitivity increased with both tumor volume and 

contrast enhancement. 

[105] 

MGMT promoter 

methylation 

Methylation-specific 

PCR 

Moderate sensitivity (50-60%) and good specificity in most 

studies. 

Prognostic and predictive values of serum MGMT status. 

[68,108,110,111,113,115,116] 

PTEN promoter 

methylation 

Methylation-specific 

PCR 

Sensitivity of 50% and specificity of 100%.  [116] 

RASSF1A promoter 

methylation 

Methylation-specific 

PCR 

Hypermethylation of RASSF1A differentiated primary from 

metastatic brain tumors. 

[110,111,116] 

CDKN2A promoter 

methylation 

Methylation-specific 

PCR 

High correlation between methylation status in tumor and 

serum. 

[68,108,110,111,112,116] 



1p, 10q and 19q LOH PCR-based LOH 

analysis 

Sensitivity of 50% and specificity of 100%.  [113] 

Abbreviations: PCR, Polymerase Chain Reaction; RT-PCT, Real-Time Polymerase Chain Reaction; COLD-PCR, co-amplification at lower denaturation 

temperature-PCR; LOH, Loss of Heterozygosity;  

 

 

  



Table 3. Summary of main clinical studies evaluating circulating proteins in glioblastoma. 

Protein Methodology Potential values for clinical application Reference 

YKL-40 ELISA Diagnostic, prognostic, and monitoring [150-153] 

MMP-9 ELISA Diagnostic, prognostic, and monitoring [151,154-156,159-161] 

MMP-2 ELISA Diagnostic, prognostic, predictive, and monitoring [154-159] 

TIMP-1 ELISA Diagnostic [78,157,158,162-164] 

OPN ELISA, mass 

spectrometry 

Prognostic [164,165] 

VEGF ELISA Diagnostic, prognostic, and monitoring [159,160,166-173] 

PIGF ELISA Diagnostic, prognostic [147] 

FGF-2 ELISA Diagnostic, prognostic [157,158,162,171,174] 

IGFBP-5 ELISA Predictive [175] 

EGFR ELISA Diagnostic, prognostic [176] 

Soluble VEGFR-1 ELISA Diagnostic [161,162,171] 

TGFβ-1 ELISA Diagnostic [177] 



GFAP ELISA Diagnostic [143-147] 

S100B ELISA Diagnostic [145,147,149] 

2-hydroxyglutarate Mass spectrometry Diagnostic [137] 

Abbreviations: ELISA, enzyme-linked immunosorbent assay 



Clinical 
utility 

Clinical validation 

Analytical validation 

Identification of candidate biomarkers 

No circulating biomarker has to date demonstrated 
its clinical utility in GBM. 
 

The current standard diagnosis and following 
procedures include tumor histological analysis, 
and clinical and imaging follow-up. 

Candidate circulating biomarkers under investigation: 

CIRCULATING TUMOR CELLS 

CIRCULATING NUCLEIC ACIDS (DNA, RNA) 

CIRCULATING PROTEINS 

CIRCULATING EXTRACELLULAR VESICLES 

Figure 1 
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