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Abstract. The ADRIMED (Aerosol Direct Radiative Impact

on the regional climate in the MEDiterranean region) project

was dedicated to study the atmospheric composition dur-

ing the summer 2013 in the European Mediterranean region.

During its campaign experiment part, the WRF (Weather Re-

search and Forecast Model) and CHIMERE models were

used in the forecast mode in order to decide whether in-

tensive observation periods should be triggered. Each day, a

simulation of 4 days was performed, corresponding to (D−1)

to (D+2) forecast leads. The goal of this study was to deter-

mine whether the model forecast spread is lower or greater

than the model biases compared to observations. It is shown

that the differences between observations and the model are

always higher than those between the forecasts. Among all

forcing types used in the chemistry-transport model, it is

shown that the strong bias and other related low forecast

scores are mainly due to the forecast accuracy of the wind

speed, which is used both for the mineral dust emissions

(a threshold process) and for the long-range transport of

aerosol: the surface wind speed forecast spread can reach

50 %, leading to mineral dust emission forecast spread of

up to 30 %. These variations are responsible for a moder-

ate forecast spread of the surface PM10 (a few percentage

points) and for a large spread (more than 50 %) in the min-

eral dust concentration at higher altitudes, leading to a mean

AOD (aerosol optical depth) forecast spread of ±10 %.

1 Introduction

The regional air quality originally focused on photochemi-

cal pollution such as ozone and nitrogen dioxides, (Fenger,

2009). This interest was partly motivated by the European

“air quality directives” of 1996 that specified policies to re-

duce air pollution, at that time only focusing on gaseous

species (Monks et al., 2009). More recently, the need for a

better understanding of aerosols was taken into account in

this regulation framework. While the particulate matter with

a diameter less than 10 µm (called PM10) has been controlled

for many years, the last 10 years showed intensification of

aerosol monitoring, in particular through the added routine

measurements of PM2.5 (European Union, 2008). In this con-

text, the Mediterranean is well known as a hot spot for its

high aerosol concentrations and high spatial and temporal

variability (Millan et al., 2005).

Aerosol sources and sink studies remain difficult, since the

particulate matter includes lots of different components: sev-

eral chemical species or materials (organic matter, sulfates,

nitrates, ammonia, mineral dust, sea salt etc.), several sizes

and shapes, several origins in space, lifetimes, potential di-

rect and indirect effects on radiation, cloud formation, etc.

In order to reduce a potential damage due to the overly high

aerosol concentrations, it is thus necessary to improve our

knowledge of all these aspects (Carslaw et al., 2010).

A way to reduce atmospheric pollution is to accurately

forecast atmospheric concentrations in order to be able to

act at the right time and place to reduce the anthropogenic

part of the emissions. This remains a challenge today, and

forecast systems often miss large pollution events. Currently,

the main effort in Europe to forecast air quality is conducted

with the MACC-II system (Marécal et al., 2015), a contin-
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uation of the first European multi-model forecast platform

(Hollingsworth et al., 2008). This platform itself builds on

the first air quality forecast system in Europe, based on the

CHIMERE model (Rouïl et al., 2009).

Some previous studies tried to identify and reduce the fore-

cast error. The study of Pérez et al. (2006) is one of the first to

explore the interest to couple mineral dust concentrations and

radiation to improve aerosol forecast. Manders et al. (2009)

quantified the capability of the LOTOS-EUROS system to

forecast PM10. By reducing some systematic identified bi-

ases, Borrego et al. (2011) showed the forecast could be im-

proved over Portugal. Another way to improve forecast is to

reduce biases by increasing realism in the aerosol representa-

tion, as presented by Mulcahy et al. (2014) for the Met Office

global numerical weather prediction model. More recently,

several studies showed that data assimilation can reduce the

forecast error by constraining the forecast initial conditions,

as in (Niu et al., 2008) and (Curier et al., 2012). In all these

studies, the bias and variability were considered together.

Other frameworks provide daily experimental forecast such

as DREAM (Pérez et al., 2007) and SKIRON (Spyrou et al.,

2013), mainly focusing on mineral dust.

The goal of this study is to estimate the relative contri-

butions of two modeling aspects, the bias and the variabil-

ity, by comparing several forecasts to observations. The main

question is to what extent the differences between observed

and modeled concentrations are caused by modeling errors

and by the nonlinear variability of the atmospheric system?

To answer this question, we use the same measurements and

model configurations as the ones presented in (Menut et al.,

2015). The added value of the present study is the use of this

modeling platform in a forecast mode. Section 2 presents the

ADRIMED (Aerosol Direct Radiative Impact on the regional

climate in the MEDiterranean region) project and the obser-

vation sites used. Section 3 presents the modeling system and

the forecast setup. Sections 4 and 5 present the forecasted

meteorological fields and emissions, respectively. Section 6

presents aerosol optical depth and concentration forecast re-

sults. Conclusions and perspectives are presented in Sect. 7.

2 The ADRIMED project and the observations used

In this study, we take advantage from the CHARMEX

(Chemistry-Aerosol Mediterranean Experiment) program

(Dulac et al., 2013), and more precisely from the ADRIMED

project studying the atmospheric composition during June

and July 2013 over the Mediterranean area (Mallet, 2014).

During this period, the ADRIMED project experimental part

was measuring the atmospheric composition in the western

Mediterranean region. At the same time, regional models

were running real-time forecasts to help optimize the time

and location of these measurements. The modeling goal in

this case was not to analyze meteorology and chemical com-

position during a long time period, but rather to quickly pro-

Table 1. Characteristics of the AirBase and AERONET stations

used in this study. Note that the Italian AirBase stations of Chit-

ignano, Baceno, Schivenoglia and Vercelli provide daily averaged

values, while all other stations provide hourly (but not regular) mea-

surements. The altitude is in meters above sea level (ASL).

Site Country Longitude Latitude Altitude

(◦) (◦) (m a.s.l.)

AirBase stations

Aranjuez Spain −3.59 40.04 501.

Cordoba Spain −4.77 37.90 119.

Zorita Spain −0.16 40.73 619.

Bastia France 9.44 42.69 57.

Agen France 0.62 44.19 50.

Champforgeuil France 4.83 46.82 46.

Gap France 6.07 44.55 741.

Baceno Italy 8.25 46.31 1637.

Chitignano Italy 11.90 43.66 650.

Schivenoglia Italy 11.07 44.99 16.

Vercelli Italy 8.40 45.31 131.

AERONET stations

Banizoumbou Niger 2.66 13.54 250.

Dakar Senegal −16.95 14.39 0.

Izana Spain −16.49 28.31 2391.

FORTH Crete Greece 25.27 35.31 20.

Lampedusa Italy 12.63 35.51 45.

vide an insight in the current state of the atmosphere and its

probable evolution over the next few days.

Table 1 summarizes the measurement site locations used in

this study, giving the longitude, latitude, and altitude above

the sea level (ASL) for each site.

To compare the meteorological variables, the European

climate gridded data set (E-OBS) daily averaged data were

used (Haylock et al., 2008). The data set contains data for

2m temperature and precipitation rate collected from several

thousands of meteorological stations throughout Europe and

the Mediterranean area. The data are processed through a

series of quality tests to remove errors and unrealistic val-

ues. The aerosol optical depth (AOD) was compared us-

ing the hourly measurements of the AERONET (AErosol

RObotic NETwork) photometers (Dubovik and King, 2000).

The AOD data are recorded by numerous stations deployed

around the world. Several quality levels are available in the

AERONET database (http://aeronet.gsfc.nasa.gov/); in this

study the level 2.0 is used. The PM10 surface concentrations

are measured by the EEA (European Environmental Agency

Guerreiro et al., 2013) running the AirBase database. It con-

tains hourly surface concentration measurements and infor-

mation submitted by the participating countries throughout

Europe (http://www.eea.europa.eu/).
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3 The modeling system

The modeling system is composed of several models: the

WRF (Weather Research and Forecast Model) regional mete-

orological model, the CHIMERE chemistry-transport model,

and additional individual models for emission flux estima-

tions. All these models are integrated in a modeling platform

usable both in analysis and forecast mode. This section first

describes WRF and CHIMERE models and then the forecast

modeling platform. Note that the model configuration (do-

mains, simulated period, model setup) used here in a forecast

context is the same as the one used in an analysis context pre-

sented in (Menut et al., 2015).

3.1 The meteorological model WRF

The meteorological variables are simulated with the WRF

regional model, version 3.5.1. The model is used in its non-

hydrostatic configuration, with a constant horizontal resolu-

tion of 60 km× 60 km and 28 vertical levels from the sur-

face to 50 hPa. The Single Moment-5 class microphysics

scheme is used allowing for mixed phase processes and

super-cooled water (Hong et al., 2004). The radiation scheme

is the RRTMG (Rapid Radiative Transfer Model for GCMs)

scheme with the MCICA (Monte Carlo Independent Column

Approximation) method of random cloud overlap (Mlawer

et al., 1997). The surface layer scheme is based on the

Monin–Obukhov theory with the Carslon–Boland viscous

sub-layer. The land surface physics is calculated using the

Noah Land Surface Model scheme with four soil temperature

and moisture layers (Chen and Dudhia, 2001). The planetary

boundary-layer physics is treated using the Yonsei University

scheme (Hong et al., 2006), and the cumulus parameteriza-

tion is based on the ensemble scheme of Grell and Devenyi

(2002).

The global boundary condition fields used are those of

the National Centers for Environmental Prediction (NCEP),

Global Forecast System (GFS; Sun et al., 2010). In order

to preserve both large-scale circulation features and small-

scale gradients and variability, the “spectral nudging” was

used. This nudging method has been already evaluated in re-

gional models (Von Storch et al., 2000). In this study, the

spectral nudging was applied to all wavelengths greater than

≈ 2000 km (wave numbers less than 3 in latitude and lon-

gitude) for wind, temperature, and humidity above 850 hPa.

This configuration allows the regional model to create its

own structures within the boundary layer and yet to follow

the large-scale meteorological fields.

3.2 The chemistry-transport model CHIMERE

CHIMERE is a chemistry-transport model able to simulate

concentration fields of gaseous and aerosols species at a re-

gional scale. The model is off-line, which means that it re-

quires pre-calculated meteorological fields. In this study, we

used the version fully described by Menut et al. (2013a). The

horizontal domain is the same as the one of WRF. For the

vertical grid, the 28 vertical levels are projected onto the 20

levels of the CHIMERE mesh.

The gaseous species are calculated using the MEL-

CHIOR 2 scheme, and the aerosols are parameterized ac-

cording to Bessagnet et al. (2004). This module takes into

account species such as sulfate, nitrate, ammonia, primary

organic (OC) and black carbon (BC), secondary organic

aerosols (SOA), sea salt, dust, and water. These aerosols are

represented using nine bins with diameters ranging from 40

nm to 20 µm. The life cycle of these aerosols is completely

represented, with nucleation of sulfuric acid, coagulation,

adsorption/desorption, wet and dry deposition and scaveng-

ing. The scavenging is represented both by coagulation with

cloud droplets and precipitation. The formation of SOA is

also taken into account.

The anthropogenic emissions are estimated using the same

methodology as the one described by Menut et al. (2012)

but with the HTAP (Hemispheric Transport of Air Pollu-

tion) masses as input data. These masses were prepared

by the EDGAR Team, using inventories based on MICS–

Asia (Model Intercomparison Study Asia), EPA–US/Canada

(Environmental Protection Agency), and TNO (Neder-

lands Institute Toegepast Natuurwetenschappelijk Onder-

zoek) databases (http://edgar.jrc.ec.europa.eu/htap_v2/index.

php?SECURE=123). Biogenic emissions are calculated us-

ing the MEGAN scheme (Guenther et al., 2006) that pro-

vides fluxes of isoprene, terpene, and pinenes. In addition to

this version, several processes were improved and added in

the framework of this study. First, the mineral dust emissions

are now calculated using new soil and surface databases, as

described by Menut et al. (2013b). Second, emission fluxes

produced by vegetation fires are estimated using the new high

resolution fire model presented by Turquety et al. (2014).

And finally, the photolysis rates are explicitly calculated us-

ing the FastJ radiation module (Wild et al., 2000) fully de-

scribed by Mailler et al. (2015).

3.3 The forecast configuration

Even though the WRF and CHIMERE models are regularly

updated, the forecast configuration of these models remains

the same and was previously used in many studies, as listed

in (Menut and Bessagnet, 2010). More precisely, this forecast

configuration was used during the ESCOMPTE (Etude sur

Site pour COtraindre les Modèles de Pollution atmospheric

et de Transfert d’Emissions) project in the south of France

(Menut et al., 2005) and during the AMMA (African Mon-

soon Multidisciplinary Analysis) experimental campaign for

mineral dust aerosols in western Africa (Menut et al., 2009).

CHIMERE is also used in an operational context since 2003

for the PREVAIR French air quality forecast (Honoré et al.,

2008; Rouïl et al., 2009) and in the MACC European project

(Inness et al., 2013).

www.atmos-chem-phys.net/15/7897/2015/ Atmos. Chem. Phys., 15, 7897–7911, 2015
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Figure 1. The forecast modeling system. This system includes the

download of global meteorological fields, the simulations of the re-

gional models WRF and CHIMERE, and the calculation of numer-

ous emissions fluxes for gas and aerosols species and correspond-

ing to anthropogenic, biogenic, vegetation fires, sea salt and mineral

dust emissions. Each day, 4 days are modeled and the current day

(D+ 0) is used as initialization for the next day forecast (D− 1).

This forecast system is presented in Fig. 1. The first step

is to calculate forecasted regional meteorology. The global

GFS/NCEP forecast fields are used to force the regional

WRF3.5.1 model from (D−1) (i.e the day before) to (D+2)

(2 days in advance). The WRF results are then used for

several calculations: (i) the surface emission fluxes, (ii) the

transport and mixing of gaseous and aerosol species with

CHIMERE. For the specific case of the vegetation fire emis-

sions, satellite observations of fire activity (MODIS near-real

time detection) during the previous day are analyzed to de-

rive the corresponding burned area. These are then used as

input to the high resolution fire emissions model (Turquety

et al., 2014), assuming fires will continue to burn during

the first 72 h of the forecast period. The biogenic and min-

eral dust emission fluxes depend on the meteorology, while

the anthropogenic emissions are only dependent on the week

day. The initial conditions for gas and aerosol concentrations

are taken from the forecast of the day before. In practice, this

means that the system was launched several days before the

first day for the first forecast of the period in order to have a

correct spin up.

In this study, the simulation was performed from 10 June

to 5 July 2013. Each day, a simulation of 4 days is performed,

from (D− 1) to (D+ 2). For each modeled period, meteoro-

logical parameters, gas and aerosols species are calculated

hourly on the domain grid. Thus, for each of these parame-

ters, each grid cell and each hour of the period, this allows to

have four different values. By comparing these four values,

we can quantify the forecast variability. Our analysis focuses

on the period from the 14 to 26 June 2013, identified as the

period with the most interesting pollution events during the

ADRIMED project.

3.4 Calculation of the statistical scores

To compare the forecast results with observations, the fol-

lowing statistical scores are used. The variables Ot and Mt

stand for the observed and modeled values, respectively, at

time t . The mean value XN is

XN =
1

N

N∑
t=1

Xt (1)

with N the total number of data used for the calculation. To

quantify the temporal variability of the model compared to

the observations, the Pearson product moment correlation co-

efficient R is calculated as follows:

R =

1
N

∑N
t=1(Mt −Mt )× (Ot −Ot )√

1
N

∑N
t=1(Mt −Mt )2×

1
N

∑N
t=1(Ot −Ot )

2

, (2)

The Pearson correlation coefficient is the ratio of the covari-

ance between two data sets Ot and Mt and the product of

their 2 standard deviations. A value of 1 is a complete pos-

itive correlation. Similarly, a value of −1 represents a com-

plete negative correlation.

To quantify the mean differences between observations

and model results, the bias and the root mean square error

(RMSE) are estimated as follows:

bias=
1

N

N∑
t=1

(Mt −Ot ), (3)

RMSE=

√√√√ 1

N

N∑
t=1

(Mt −Ot )2. (4)

For the precipitation amount, it is more convenient to use sta-

tistical scores based on the hit rate. In terms of its relevance

Atmos. Chem. Phys., 15, 7897–7911, 2015 www.atmos-chem-phys.net/15/7897/2015/
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in chemistry-transport modeling, the key factors are space

and time variability. In the presence of precipitation, the

whole aerosol column is scavenged, and even if the precip-

itation rate is under- or overestimated, aerosols are quickly

deposited. The hit rate score is defined as the following: for a

threshold arbitrarily chosen as PrT =0.1 mm day−1 (i.e., there

is precipitation this day at this site), the event is considered

as true if Pr> PrT . Every time this condition is true for both

observations and the model, an increase of an “a” value oc-

curs. Every time the condition is true for the observations and

false for the model, an increase of a “c” value occurs. The hit

rate HR is then defined as follows:

HR=
a

a+ c
(5)

The target value for the hit rate is 1, meaning that the model

was able to capture all the observed events.

4 Predictability of meteorological parameters

Due to many processes, atmospheric concentrations of trace

gases and aerosols are very sensitive to the meteorological

fields. First, some of the sources are directly dependent on the

near-surface meteorology: (i) mineral dust emissions depend

on the surface wind speed, (ii) biogenic emissions depend

on temperature and radiation, and (iii) fire emissions depend

on the soil moisture (for fire efficiency) and the boundary-

layer dynamics (for the pyroconvection). Second, during

the transport, atmospheric species will be influenced by (i)

wind, pressure, humidity, and temperature for the boundary-

layer dynamics and tropospheric long-range transport, and

(ii) clouds and radiation attenuation for the photochemistry.

Finally, the sinks of atmospheric species are mainly (i) sur-

face layer turbulence, acting on gas and aerosols dry deposi-

tion, and (ii) precipitation via aerosol scavenging. In order to

understand the different impacts of meteorological variabil-

ity on the aerosol concentrations, we focus on temperature,

wind speed, and precipitation.

4.1 2 m temperature

The forecast bias and spread for the 2 m temperature (T2 m)

are examined at the locations where E-OBS data are avail-

able, and the results are presented in Table 2. In general,

the correlations between measurements and modeled values

are hit with values between 0.74 (Zorita, D+ 2) and 0.98

(Aranjuez, Cordoba, Gap). Only one location, Bastia, shows

a positive bias (with values from 0.7 to 0.79). All other loca-

tions show negative biases ranging between−1.58 (Cordoba,

D+2) and 4.02 (Baceno, D−1). This shows in general that

the model underestimates the mean daily 2 m temperature

over the whole simulation domain. This result is consistent

with the previous study of Wyszogrodzki et al. (2013) re-

Table 2. Scores for the modeled hourly 2 m temperature compared

to the measurements. For each forecast, the correlation R (0 to 1)

and the bias (in ◦C) are presented.

2 m temperature (K)

Correlation R (D− 1) (D+ 0) (D+ 1) (D+ 2)

Aranjuez 0.98 0.98 0.97 0.95

Cordoba 0.98 0.98 0.98 0.98

Zorita 0.80 0.80 0.76 0.74

Bastia 0.79 0.79 0.78 0.79

Agen 0.87 0.86 0.86 0.85

Champforgeuil 0.96 0.96 0.97 0.92

Gap 0.98 0.98 0.97 0.96

Baceno 0.96 0.95 0.95 0.90

Chitignano 0.90 0.90 0.90 0.86

Schivenoglia 0.94 0.94 0.92 0.90

Vercelli 0.89 0.89 0.85 0.79

bias (D− 1) (D+ 0) (D+ 1) (D+ 2)

Aranjuez −2.01 −1.95 −1.91 −1.70

Cordoba −1.95 −1.86 −1.63 −1.58

Zorita −2.45 −2.38 −2.24 −2.01

Bastia 0.70 0.68 0.75 0.89

Agen −2.11 −2.10 −1.94 −1.61

Champforgeuil −3.73 −3.63 −3.62 −3.48

Gap −2.21 −2.15 −1.94 −1.65

Baceno −4.02 −3.94 −3.79 −3.60

Chitignano −2.58 −2.55 −2.38 −2.22

Schivenoglia −2.40 −2.37 −2.12 −1.90

Vercelli −3.00 −3.01 −2.88 −2.63

porting a negative bias in WRF simulations over the United

States.

The biases and correlations are found to fluctuate depend-

ing on the forecast range. However, these fluctuations are

fairly low, with no significant trends in terms of the impact

on atmospheric pollutant concentrations. In addition, it ap-

pears that the differences between observations and model

are always higher than those between several forecast leads;

this implies that the model is generally biased, and that the

chaotic character of the forecast is low compared to this

bias. This was recently discussed by Zhang et al. (2013) who

showed that the meteorological forecast accuracy with the

WRF model strongly depends on the predictability of the

lower-atmospheric boundary layer, especially when synop-

tic forcing is weak. These conditions are the most common

in case of air pollution peaks.

Figure 2 shows the time series of the modeled 2 m temper-

ature differences between the forecasts. Results are presented

for three sites, Banizoumbou, Bastia, and Lampedusa, which

are of interest in terms of other variables, such as the mineral

dust, sea salt, and biogenic emissions. Note that these per-

centages are calculated using temperature values in Kelvin.

The maximum differences are calculated for Banizoumbou:

over the whole period, values range from ≈−2 to +2 % (for

www.atmos-chem-phys.net/15/7897/2015/ Atmos. Chem. Phys., 15, 7897–7911, 2015
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Figure 2. Time series of hourly modeled 2m temperature differ-

ences for several sites. Each line corresponds to a difference be-

tween the forecast (D+ 0), (D+ 1) or (D+ 2) and the simulation

for the day before (D− 1). Results are expressed as percentage of

differences.

a mean value of 300 K, a variability of ±6 K). In Bastia, the

maximum differences are lower: ≈−0.5 to +0.5 %. Finally,

in Lampedusa the differences may be considered as negligi-

ble with values less than 0.2 % (less than 0.6 K).

4.2 Wind speed and direction

The wind speed is a key variable in meteorology and

chemistry-transport modeling. Close to the surface (repre-

sented by the 10 m wind speed), it drives mineral dust and sea

salt emissions, the diurnal cycle of the boundary-layer con-

vection, and the dry deposition. At higher altitudes, it deter-

mines the horizontal transport. In order to quantify the wind

speed spread between the forecasts, times series and vertical

profiles are presented and discussed in the next section.

Figure 3. Time series of relative differences (%) in hourly 10 m

wind speed (m s−1) for sites Banizoumbou, Bastia, and Lampedusa

for several forecast leads. The data are shown only for the values

where |U |(D−1) > 2 m s−1, to avoid overly large and unrealistic

values at low wind speed.

4.2.1 Time series of differences

The forecast spread of |U |10 m is quantified at the same

sites as those used for the 2 m temperature. The results are

shown in 3 as the percentage of differences between the

(D− 1) forecast and the other forecasts (D+ 0, D+ 1, and

D+ 2). In order to avoid unrealistic values at wind speeds

close to zero, the percentage is calculated only for values

|U |(D−1) > 0.1 m s−1.

Compared to the 2 m temperature, the 10 m wind speed

variability between forecasts is higher. There is no system-

atic bias; the differences range from 0 to 250 %, at wind

speeds between 0.1 and 10 m s−1. For the site of Banizoum-

bou, mineral dust emissions are sensitive to the wind speed.

It is known that saltation occurs for wind speed values up

to ≈ 7 m s−1 (even though this absolute value can depend on

the soil texture and the land use). A variability of ±1 m s−1
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Figure 4. Modeled vertical profiles of the wind speed (m s−1) for

the cells corresponding to the locations of Bastia and Lampedusa.

Profiles are presented for the 21 June 2013 at 12:00 UTC and for

the four forecasts, from (D− 1) to (D+ 2).

(low in absolute value) can have a large impact on mineral

dust emission fluxes. For the sites of Bastia and Lampedusa,

the forecast differences are lower; being situated on islands,

these sites have a more stable 10 m wind speed than over

hot and dry land (Banizoumbou). Even though the values are

lower, they remain high in terms of differences: up to 150 in

Bastia and 130 % in Lampedusa.

4.2.2 Vertical profiles

Figure 4 presents vertical profiles of mean wind speed and di-

rection for two locations, Bastia and Lampedusa. The profiles

are shown for the whole atmospheric column modeled by

CHIMERE, from the surface to 8000 m AGL (above ground

level) for the 21 June 2013 at 12:00 UTC. The first result is

that the spread between forecasts is higher for the wind speed

than for the wind direction. This spread is observed at all al-

titudes and thus would have an impact both for surface emis-

sions and long-range transport. For example, the wind speed

at Lampedusa at around 3000 m AGL ranges from 2 (D− 1)

to 10 m s−1 (D+2). The forecasted aerosol plumes could be

advected too quickly in the middle of the Mediterranean in

the (D+ 2) forecast.

Table 3. Scores for the modeled, daily cumulated total precipitation

(mm day−1) compared to the measurements. For each forecast, hit

rate (HR) and bias are presented.

Precipitation rate (mm day−1)

Hit rate (D− 1) (D+ 0) (D+ 1) (D+ 2)

Cordoba 1.00 1.00 0.00 1.00

Zorita 0.67 0.67 0.67 0.33

Agen 0.75 0.75 0.75 0.50

Champforgeuil 0.78 0.89 1.00 0.89

Gap 0.33 0.33 0.33 1.00

Baceno 0.78 0.78 0.67 0.78

Chitignano 1.00 1.00 0.50 0.50

Schivenoglia 0.50 0.50 0.25 0.25

Vercelli 0.40 0.40 0.60 0.60

Bias (D− 1) (D+ 0) (D+ 1) (D+ 2)

Cordoba 1.80 1.94 −1.38 2.63

Zorita 0.26 −1.05 −5.78 −8.20

Agen −5.73 −5.26 −2.78 −5.90

Champforgeuil −4.17 −4.84 −4.91 −5.10

Gap −0.60 −0.56 −1.60 1.83

Baceno 3.09 1.55 0.71 1.52

Chitignano −0.25 −2.78 −3.17 −4.22

Schivenoglia −7.80 −8.31 −8.22 −8.53

Vercelli −1.65 −2.51 −2.71 −2.78

4.3 Precipitation rates

Table 3 presents the hit rates and biases between the E-OBS

observations and modeled values. For the sites where precipi-

tation amount was observed and/or modeled, the results show

that this variable is correctly modeled in terms of time fre-

quency, but less well in terms of magnitude. In general, when

a precipitation event is observed, it is often reproduced by the

model. The precipitation intensity appears to be more dif-

ficult to simulate, often with factor-of-2 differences (under-

or overestimated). For a chemistry-transport model, indepen-

dent of the meteorology, the time occurrence is more impor-

tant than the magnitude: the scavenging schemes lead to the

total cleaning of the atmospheric column when a precipita-

tion event is diagnosed. This meteorological parameter re-

mains difficult to model but is known to have a large impact

on forecast accuracy Eder et al. (2006). The hit rate and the

spread between forecasts show this parameter explains some

discrepancies between forecasts and observations.

5 Predictability of emissions

The predictability of emissions is quantified for the mineral

dust and biogenic emissions. Anthropogenic emissions are

not hourly or daily meteorology-dependent, and their time

variability is therefore not considered here. For the fire emis-

sions, the model is not able to forecast the burned areas in
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advance. Each day, the burned areas of the day before are

used for the whole period to forecast: the main varying pa-

rameter is kept constant. In addition, no significant fire events

occurred in June 2013. The fires emission variability is thus

not considered neither.

5.1 Mineral dust emissions

Mineral dust emissions depend on the soil texture, the surface

with the land use and the surface layer wind speed. At the re-

gional scale and over a few days, there is no variability of the

soil and surfaces characteristics. On the other hand, the sur-

face layer wind speed can vary a lot. Mineral dust emissions

are strongly dependent on the wind speed and thus the cor-

responding friction velocity u∗ (Menut et al., 2013b). These

dynamical variables act in a non-linear way: the mineral dust

emission occurs only if the friction velocity is greater than a

threshold value uT∗ , itself depending on the surface charac-

teristics. This means that for a small change (ε), in the fric-

tion velocity (parameterized using the 10 m wind speed), the

mineral dust emission could be either zero (if u∗ = u
T
∗ − ε)

or nonzero (if u∗ = u
T
∗ + ε).

Figure 5 presents two maps for the mineral dust fluxes.

The map for the 20 June 2013 is shown as an example, after

daily cumulating the hourly fluxes calculated by the model.

For this day, the emissions mainly occur over western Africa

and Saudi Arabia. Depending on the location, these fluxes

range from 0.1 to more than 20 g m−2 day−1. The second

map shows the difference between the fluxes calculated for

the (D−1) and (D+2) forecasts. For the region of the high-

est fluxes, the absolute differences are quite large, i.e., of the

same order of magnitude as the flux itself.

In order to quantify the forecast spread in a synthetic way,

the mineral dust emission fluxes are cumulated daily over the

whole simulation domain. The values are presented in Fig. 6

(top) and expressed in Tg day−1. These results show that the

fluxes are close between the forecasts: the two main peaks are

modeled for the 25 and 28 June with the same order of mag-

nitude. Since the fluxes depend mainly on the wind speed,

the latter means that the model is stable at the synoptic scale,

and the mean large-scale wind patterns are reproduced re-

gardless of the forecast lead. The same results are seen in

terms of the relative differences in Fig. 6 (bottom). The sign

of these differences varies in time showing large day-to-day

variability. The maximum values of differences are ±30 %

of the maximum daily flux. Logically, the longer the forecast

lead (i.e., for (D+1) and (D+2)), the higher the differences.

The largest differences do not occur for the highest abso-

lute values: dust emission being a threshold process, when

a high wind speed is forecasted, this is generally true for all

forecasts, and the emission fluxes are simulated in a similar

way. But, when the wind speed is close to the threshold, a

large spread between the forecast leads can occur, as for the

22 June for example. The fluxes correspond to the minimum

over the whole period, but the differences are the largest.

Figure 5. (top) Map of mineral dust fluxes for the 20 June 2013

and the forecast (D−1; g m−2 day−1; bottom) absolute differences

(D+ 2)-(D− 1) for the 20 June 2013.

5.2 Biogenic emissions

The biogenic emissions are sensitive to the temperature and

the photosynthetically active radiation (PAR). Over veg-

etative areas, some changes in these meteorological val-

ues could impact the isoprene and terpene emission fluxes.

As for the dust emissions, the biogenic emissions are cu-

mulated over the whole simulation domain. The time se-

ries are presented in Fig. 7 (top). A moderate day to day

variability is modeled over the whole period: starting with

a low value of 2.2× 109 molecules day−1, a maximum of

2.4× 109 molecules day−1 is reached on 17 June, followed

by a monotonic decrease to 1.8× 109 molecules day−1. The

relative differences (%) are shown in Fig. 7 (bottom). For

all forecasts, the same tendency is observed: the longer the

forecast lead, the larger the spread in the flux differences.

The differences are moderate, between −2 and +6 %. This

is consistent with the low differences between the forecasts

of the 2 m temperature, the latter being the main driver for

biogenic emissions.
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Figure 6. Top: time series of daily mineral dust fluxes, spatially cu-

mulated over the modeled domain. Units are in Tg day−1. Bottom:

relative differences between the fluxes (%).

6 Predictability of aerosol

Using the meteorological variables and emission fluxes an-

alyzed above, the hourly concentrations of gaseous and

aerosol species are simulated with the CHIMERE model.

Here we focus on the aerosol forecast. First, surface concen-

trations of PM10 are compared to observations using statisti-

cal scores. The sea-salt and mineral dust vertical profiles are

discussed. Finally, the aerosol optical depth (AOD) forecast

analysis is presented.

6.1 PM10 statistical scores

Results for the PM10 are presented in Table 4. The cor-

relations are lower and show higher variability compared

to the meteorological variables. The low values are mainly

due to the short study period: the contribution of the long-

range transport to the aerosol variability is not represented.

The mean bias varies from 0 to 14 µg m−3, being within the

range of regional chemistry-transport models. These scores

are very different from site to site, but for each site they re-

main close for different forecast leads. This indicates that

the main errors in the forecast system are still caused by

the aerosol representation and its forcings, rather than their

chaotic character during a forecast. An improvement in the

aerosol representation was also shown to improve the fore-

cast score in the Met Office weather prediction model (Mulc-

ahy et al., 2014).

Figure 7. (top) Time series of the daily isoprene fluxes,

spatially cumulated over the modeled domain. Units are in

109 molecules day−1. (bottom) Differences between the flux ex-

pressed percentages.

6.2 Vertical profiles of sea-salt and mineral dust

The PM10 represent the aggregation of numerous aerosol

species. In order to better understand the forecast variability,

vertical profiles are presented for the two dominant species

in the budget: sea salt and mineral dust. The profiles are ex-

tracted from the model outputs for the Bastia and Lampedusa

locations for the 21 June 2013, 12:00 UTC. The results are

presented in Fig. 8.

The mineral dust vertical profile shows low concentrations

close to the surface, with values lower than 5 µg m−3. The

highest concentrations peak at an altitude of 3000 m AGL.

For this date, the concentration maximum is ≈ 17 µg m−3 at

Bastia and≈ 350 µg m−3 at Lampedusa. In the two cases, the

peaks correspond to the long-range transport of African dust

emissions. While the forecast spread is moderate at Bastia,

it is large at Lampedusa, with values ranging from 200 to

350 µg m−3. These differences result from the spread previ-

ously discussed for the wind: directly involved in both emis-

sion and transport, the wind speed forecast spread impacts

the concentration spread at some altitude. A correct represen-

tation of the altitude of these dense layers is a crucial point,

as previously shown by Wang et al. (2014), using lidar data

assimilation to improve aerosol forecast.

The sea salt vertical profiles show that the highest concen-

trations are close to the surface. This makes sense, since these

two sites are on islands in the Mediterranean sea and thus

close to the emission sources. Compared to mineral dust, the

absolute values of the concentrations are low. But depending

on the forecast lead from (D− 1) to (D+ 2), the variabil-
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Table 4. Scores for the comparison between observed and mod-

eled hourly PM10 surface concentrations ( µg m−3). For each site,

nobs is the number of hourly valid PM10 observed surface concen-

trations. PM10 is the mean PM10 value averaged over the whole

period for observations and model. The statistical scores presented

are the correlation R, the RMSE, and the bias. For each site, the

highest correlation is shown in bold.

Site (nobs) PM10 R RMSE Bias

Cordoba

Obs (426) 20.26

(D− 1) 10.13 0.14 12.43 −10.12

(D+ 0) 10.13 0.14 12.44 −10.12

(D+ 1) 10.41 0.23 12.39 −9.84

(D+ 2) 12.20 0.27 13.39 −8.05

Zorita

Obs (359) 15.82

(D− 1) 10.39 0.49 11.01 −5.43

(D+ 0) 10.29 0.48 10.92 −5.53

(D+ 1) 8.32 0.02 11.48 −7.50

(D+ 2) 10.31 0.50 11.60 −5.51

Bastia

Obs (428) 21.60

(D− 1) 18.08 0.04 15.73 −3.51

(D+ 0) 18.17 0.04 15.79 −3.42

(D+ 1) 18.30 0.08 15.60 −3.29

(D+ 2) 18.44 0.05 15.79 −3.15

Agen

Obs (432) 13.86

(D− 1) 14.59 0.10 12.25 0.73

(D+ 0) 14.23 0.06 11.54 0.37

(D+ 1) 13.33 0.02 10.80 −0.53

(D+ 2) 12.87 0.16 9.55 −0.99

Champforgeuil

Obs (421) 12.21

(D− 1) 13.75 0.43 8.30 1.53

(D+ 0) 13.71 0.41 8.46 1.49

(D+ 1) 13.96 0.45 8.48 1.75

(D+ 2) 14.85 0.47 9.26 2.64

Lampedusa

Obs (428) 37.90

(D− 1) 23.82 0.39 24.48 −14.07

(D+ 0) 23.69 0.40 24.55 −14.21

(D+ 1) 23.23 0.41 24.65 −14.66

(D+ 2) 23.11 0.38 25.10 −14.78

ity can be high and of the same order of magnitude as the

concentrations. In this case, the forecast spread can be di-

rectly related to the 10 m wind speed used in the model for

the emission flux calculations.

Figure 8. Vertical profiles of mineral dust and sea salt concentra-

tions (µg m−3). In each figure, the four forecasts are presented from

(D−1) to (D+2). Results are presented for Bastia and Lampedusa

for the 21 June 2013.

6.3 Aerosol optical depth

The aerosol optical depth is another way to represent the

aerosol concentration evolution over a large domain. By ver-

tically integrating the aerosol concentrations that are opti-

cally active in a specific wavelength (500 nm in this study),

the AOD can be an indicator of the daily evolution of aerosols

related to the long-range transport. In addition, the dense net-

work of AERONET enables to quantify the realism of the

aerosol transport modeling for numerous locations. Table 5

presents the statistical scores comparing the observed and

modeled hourly AOD.

As for the previous parameters, the correlation values

vary a lot between the studied locations. This represents the

model’s ability to reproduce dense plumes at the right time

and place in the domain. But for one location, the values re-

main close between the forecasts. For example at FORTH

(Foundation for Research and Technology-Hellas) Crete, the

mean AOD is between 0.115 and 0.120, with an observed

mean value of 0.099. For all locations, the bias is mainly
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Figure 9. Map of modeled (D− 1) AOD for the 20 June 2013 and maps of AOD differences between the several forecasts.

positive except the Banizoumbou site. The two highest bias

values are at Banizoumbou and Dakar in Africa, close to the

mineral dust sources. These mineral dust concentrations are

the main contributors to the AOD over this region during

this summertime period. For the other sites, the bias remains

lower than 0.1, and the correlations are ≈ 0.9 at Izana, 0.6

at FORTH Crete and 0.8 at Lampedusa, showing the model’s

ability to capture aerosol plumes far from the main African

sources.

The spread between the forecasts is also seen on the AOD

maps, Fig. 9. The daily averaged AOD is shown for the 20

June as an example. This day was identified as the one with

a dense plume of mineral dust spreading from Africa to the

south of Europe. The highest AOD peaks are located in west-

ern Africa and Saudi Arabia, with maximum values of≈ 1.8.

The plume over Europe shows values between 0.1 and 1. The

three other maps represent the absolute difference between

the daily averaged map of 20 June (D− 1) and the forecasts

for the same day: (D+0), (D+1), and (D+2). Logically, the

longer the forecast leads, the greater the differences between

them.

First, these maps show that the largest differences are lo-

cated in Africa, where mineral dusts are emitted and where

the highest AOD are calculated, such as the hot spots located

in Senegal and Yemen. The differences appear as plumes,

reflecting the fact that they are caused by both emissions

and transport. Another interesting point is that these differ-

ences are not spatially homogeneous. The differences repre-

sent “dipoles” of the opposite sign, and they increase with

the forecast lead. The largest gradients are located where the

highest AOD are simulated. These locations correspond to

the largest emissions and transport of mineral dust. The lat-

ter are very sensitive to the wind speed and direction, and the

gradients reflect the impact of the wind direction variabil-

ity between the forecast leads. The long-range transport can

also lead to the differences of the opposite sign: the longer

the transport of dense plumes, the more pronounced are the

differences. Finally, with AOD values ranging between 0 to

2, the absolute differences between all forecasts can reach

±0.1 (≈ 10 %).

7 Conclusions

This study was dedicated to the quantification of the

spread between several aerosol forecasts over the Euro-

pean Mediterranean area. This was done in the framework

of the ADRIMED campaign (Mallet, 2014), as part of the

CHARMEX project (Dulac et al., 2013). The studied period,

the domain, and the model set-up are the same as those pre-

sented in (Menut et al., 2015). In the present study, the model

was run every day for 4-day-long simulations. By compar-
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Table 5. Scores for the comparison between observed and mod-

eled hourly AOD. For each site, nobs is the number of hourly valid

AERONET AOD observations. AOD is the AOD averaged over the

whole period for observations and the model. The statistical scores

presented are the correlation R, the root mean square error RMSE,

and the bias.

Site (nobs) AOD R RMSE Bias

Banizoumbou (151)

Obs 0.486

(D− 1) 0.353 0.115 0.408 −0.133

(D+ 0) 0.351 0.108 0.409 −0.135

(D+ 1) 0.364 0.125 0.407 −0.122

(D+ 2) 0.379 0.154 0.401 −0.107

Dakar (145)

Obs 0.587

(D− 1) 0.806 0.612 0.321 0.218

(D+ 0) 0.793 0.615 0.315 0.206

(D+ 1) 0.764 0.539 0.291 0.177

(D+ 2) 0.760 0.384 0.334 0.173

Izana (234)

Obs 0.035

(D− 1) 0.092 0.929 0.073 0.056

(D+ 0) 0.090 0.912 0.072 0.055

(D+ 1) 0.084 0.975 0.054 0.049

(D+ 2) 0.091 0.806 0.085 0.056

FORTH Crete (32)

Obs 0.099

(D− 1) 0.118 0.619 0.054 0.019

(D+ 0) 0.115 0.627 0.054 0.016

(D+ 1) 0.119 0.584 0.060 0.020

(D+ 2) 0.120 0.486 0.065 0.021

Lampedusa (88)

Obs 0.138

(D− 1) 0.166 0.889 0.092 0.028

(D+ 0) 0.166 0.889 0.093 0.028

(D+ 1) 0.165 0.852 0.092 0.026

(D+ 2) 0.154 0.805 0.089 0.015

ing several forecasts between them and with observations,

we quantified the relative impacts of the model biases and

the chaotic character of a forecast on the forecast accuracy.

In order to quantify the forecast accuracy of aerosols, sev-

eral forcing parameters are studied. For the meteorological

parameters, it was shown that the 2m temperature is mainly

biased, but well correlated to the measurements and with a

low spread between the forecasts. The precipitation is simu-

lated moderately well: on average two events of three are re-

produced, and precipitation rate is biased. But since its main

effect is fast scavenging of the atmospheric column, this pa-

rameter is modeled sufficiently well to ensure a low impact of

the forecast lead on the aerosol content. On the other hand,

the wind was found to have a high variability between the

forecasts. The 10m wind speed can have a day-to-day vari-

ability of ±150 %. The mineral dust and biogenic emissions

were also studied, depending on the forecast range. The bio-

genic emissions show a low variability between the forecasts,

due to the forecast stability of the temperature. But the min-

eral dust emission forecast is highly variable, with values of

±40 % between the forecast leads. This is a direct effect of

the wind forecast variability, acting on both emission fluxes

(a threshold process) and the long-range transport of aerosol.

The forecast spread of aerosol concentrations was pre-

sented in terms of surface PM10, vertical profiles of sea-

salt and mineral dust, and aerosol optical depth. The sur-

face PM10 are compared to AirBase measurements in Eu-

rope: the correlation is moderate (from 0 to 0.49), and the

bias varies from 0 to −14 µg m−3. However these scores are

weakly variable, the bias and the correlation remaining sta-

ble with increasing the forecast lead. The forecasts are more

variable in terms of vertical profiles: for sea-salt, a wide

spread of 100 % is found close to the surface (and thus to

their maritime emissions), whereas mineral dust concentra-

tions are strongly variable (±50 %) at certain altitude, in the

center of dense plumes. The AOD were compared using the

AERONET measurements. The correlations are higher than

for PM10, and the bias is weakly variable between the fore-

casts.

Finally, there are two main conclusions for this study: (i)

the differences between observations and the model remain

higher than between the forecasts. When high differences

between the model results and the observations occur, they

are mainly due to the model biases rather than forecast lead.

(ii) among all studied variables, the highest variability of the

forecast is due to the wind speed and direction. The wind is

at the origin of mineral dust and sea salt emissions, as well as

the long-range transport of these long-lived species; therefore

the differences in the forecasted wind speed and direction are

at the origin of the spread between the aerosol concentration

forecasts.

Acknowledgements. This study was partly funded by the French

Ministry in charge of Ecology. We acknowledge Francois Dulac

(IPSL/LSCE) and Marc Mallet for their coordination of the

CHARMEX program and the ADRIMED project, respectively.

We thank the EEA for maintaining and providing the AirBase

database of pollutant surface concentrations over Europe. We

thank the principal investigators and their staff for establishing and

maintaining the AERONET sites used in this study: Didier Tanré

for Banizoumbou, Capo Verde and Dakar; Bernadette Chatenet

and Jean-Louis Rajot for Zinder and Cinzana; Daniela Meloni

and Alcide Di Sarra for Lampedusa. We acknowledge the Service

d’Observation PHOTONS/AERONET and the AERONET-

ACTRIS TNA supporting the AERONET activity in Europe.

We acknowledge the E-OBS data set from the EU-FP6 project

ENSEMBLES (http://ensembles-eu.metoffice.com) and the data

Atmos. Chem. Phys., 15, 7897–7911, 2015 www.atmos-chem-phys.net/15/7897/2015/

http://ensembles-eu.metoffice.com


L. Menut et al.: Aerosol forecast during CHARMEX 7909

providers in the ECAD project (http://www.ecad.eu).

Edited by: S. Kazadzis

References

Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S.,

Honoré, C., Liousse, C., and Rouil, L.: Aerosol modeling with

CHIMERE: preliminary evaluation at the continental scale, At-

mos. Environ., 38, 2803–2817, 2004.

Borrego, C., Monteiro, A., Pay, M., Ribeiro, I., Miranda, A., Basart,

S., and Baldasano, J.: How bias-correction can improve air qual-

ity forecasts over Portugal, Atmos. Environ., 45, 6629–6641,

doi:10.1016/j.atmosenv.2011.09.006, 2011.

Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae,

J. G. L., Woodward, S., and Kulmala, M.: A review of natu-

ral aerosol interactions and feedbacks within the Earth system,

Atmos. Chem. Phys., 10, 1701–1737, doi:10.5194/acp-10-1701-

2010, 2010.

Chen, F. and Dudhia, J.: Coupling an advanced land surface-

hydrology model with the Penn State-NCAR MM5 modeling

system, Part I: Model implementation and sensitivity, Mon.

Weather Rev., 129, 569–585, 2001.

Curier, R., Timmermans, R., Calabretta-Jongen, S., Eskes, H.,

Segers, A., Swart, D., and Schaap, M.: Improving ozone fore-

casts over Europe by synergistic use of the LOTOS-EUROS

chemical transport model and in-situ measurements, Atmos. En-

viron., 60, 217–226, doi:10.1016/j.atmosenv.2012.06.017, 2012.

Dubovik, O. and King, M. D.: A flexible inversion algorithm for re-

trieval of aerosol optical properties from Sun and sky radiance

measurements, J. Geophys. Res.-Atmos., 105, 20673–20696,

doi:10.1029/2000JD900282, 2000.

Dulac, F., Arboledas, L. A., Alastuey, A., Ancellet, G., Arndt, J.,

Attié, J.-L., Augustin, P., Becagli, S., Bergametti, G., Bocquet,

M., Bordier, F., Bourdon, A., Bourrianne, T., Bravo-Aranda, J.,

Carrer, D., Ceamanos, X., Chazette, P., Chiapello, I., Comeron,

A., D’Amico, G., D’Anna, B., Delbarre, H., Denjean, C., Des-

boeufs, K., Descloitres, J., Diouri, M., Biagio, C. D., Iorio, T. D.,

Sarra, G. D., Doppler, L., Durand, P., Amraoui, L. E., Ellul, R.,

Ferré, H., Fleury, L., Formenti, P., Freney, E., Gaimoz, C., Gera-

sopoulos, E., Goloub, P., Gomez-Amo, J., Granados-Munoz, M.,

Grand, N., Grobner, J., Rascado, J.-L. G., Guieu, C., Hadjim-

itsis, D., Hamonou, E., Hansson, H., Iarlori, M., Ioannou, S.,

Jambert, C., Jaumouillé, E., Jeannot, M., Junkermann, W., Ke-

leshis, C., Kokkalis, P., Lambert, D., Laurent, B., Léon, J.-F., Li-

ousse, C., Bartolome, M. L., Losno, R., Mallet, M., Mamouri,

R.-E., Meloni, D., Menut, L., Montoux, N., Baquero, R. M.,

Nabat, P., Navas-Guzman, F., Nicolae, D., Nicolas, J., Notton,

G., Ohayon, W., Paoli, C., Papayannis, A., Pelon, J., Pey, J., Pont,

V., Pujadas, M., Querol, X., Ravetta, F., Renard, J.-B., Rizi, V.,

Roberts, G., Roujean, J.-L., Sartelet, K., Savelli, J.-L., Sciare, J.,

Sellegri, K., Sferlazzo, D., Sicard, M., Smyth, A., Solmon, F.,

Tanré, D., Torres, B., Totems, J., Sanchez, A. T., Verdier, N., Vi-

gnelles, D., Vincent, J., Wagner, F., Wang, Y., Wenger, J., and

Yassaa, N.: Overview of the Project ChArMEx activities on Sa-

haran Dust in the Mediterranean region, in: 7th Int. Workshop on

Sand/Duststorms and Associated Dustfall, 2–4 Dec. 2013, Fras-

cati, Italy, 2013.

Eder, B., Kang, D., Mathur, R., Yu, S., and Schere, K.:

An operational evaluation of the Eta-CMAQ air qual-

ity forecast model, Atmos. Environ., 40, 4894–4905,

doi:10.1016/j.atmosenv.2005.12.062, 2006.

European Union: Ambient air quality and cleaner air for Europe, Di-

rective 2008/50/EC of the European Parliament and of the Coun-

cil of 21 May 2008 OJ L 152, 1–44, 2008.

Fenger, J.: Air pollution in the last 50 years – From local to global,

Atmos. Environ., 43, 13–22, 2009.

Grell, G. A. and Devenyi, D.: A generalized approach to pa-

rameterizing convection combining ensemble and data as-

similation techniques, Geophys. Res. Lett., 29, 38-1–38-4,

doi:10.1029/2002GL015311, 2002.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I.,

and Geron, C.: Estimates of global terrestrial isoprene emissions

using MEGAN (Model of Emissions of Gases and Aerosols from

Nature), Atmos. Chem. Phys., 6, 3181–3210, doi:10.5194/acp-6-

3181-2006, 2006.

Guerreiro, C., de Leuw, F., and Foltescu, V.: Air quality in Europe,

European Environment Agency, report, 9, 110 pp., 2013.

Haylock, M. R., Hofstra, N., Tank, A. M. G. K., Klok,

E. J., Jones, P. D., and New, M.: A European daily high-

resolution gridded data set of surface temperature and precip-

itation for 1950-2006, J. Geophys. Res.-Atmos., 113, D20119,

doi:10.1029/2008JD010201, 2008.

Hollingsworth, A., Engelen, R. J., Benedetti, A., Dethof, A., Flem-

ming, J., Kaiser, J. W., Morcrette, J.-J., Simmons, A. J., Textor,

C., Boucher, O., Chevallier, F., Rayner, P., Elbern, H., Eskes, H.,

Granier, C., Peuch, V.-H., Rouil, L., and Schultz, M. G.: Toward

a monitoring and forecasting system for atmospheric composi-

tion: The GEMS project, B. Am. Meteorol. Soc., 89, 1147–1164,

2008.

Hong, S. Y., Dudhia, J., and Chen, S.: A revised approach to ice

microphysical processes for the bulk parameterization of clouds

and precipitation, Mon. Weather Rev., 132, 103–120, 2004.

Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion pack-

age with an explicit treatment of entrainment processes, Mon.

Weather Rev., 134, 2318–2341, doi:10.1175/MWR3199.1, 2006.

Honoré, C., Rouïl, L., Vautard, R., Beekmann, M., Bessagnet, B.,

Dufour, A., Elichegaray, C., Flaud, J., Malherbe, L., Meleux, F.,

Menut, L., Martin, D., Peuch, A., Peuch, V., and Poisson, N.: Pre-

dictability of European air quality: The assessment of three years

of operational forecasts and analyses by the PREV’AIR system,

J. Geophys. Res., 113, D04301, doi:10.1029/2007JD008761,

2008.

Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark,

H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flem-

ming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen,

V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J.,

Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G.,

Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V.,

Vrekoussis, M., Zerefos, C., and the MACC team: The MACC

reanalysis: an 8 yr data set of atmospheric composition, Atmos.

Chem. Phys., 13, 4073–4109, doi:10.5194/acp-13-4073-2013,

2013.

Mailler, S., Menut, L., di Sarra, A. G., Becagli, S., Di Iorio,

T., Formenti, P., Bessagnet, B., Briant, Régis, Luis Gómez-

Amo, J., Mallet, M., Rea, Géraldine, Siour, G., Sferlazzo, D.

M., Traversi, R., Udisti, R., and Turquety, S.: On the radia-

www.atmos-chem-phys.net/15/7897/2015/ Atmos. Chem. Phys., 15, 7897–7911, 2015

http://www.ecad.eu
http://dx.doi.org/10.1016/j.atmosenv.2011.09.006
http://dx.doi.org/10.5194/acp-10-1701-2010
http://dx.doi.org/10.5194/acp-10-1701-2010
http://dx.doi.org/10.1016/j.atmosenv.2012.06.017
http://dx.doi.org/10.1029/2000JD900282
http://dx.doi.org/10.1016/j.atmosenv.2005.12.062
http://dx.doi.org/10.1029/2002GL015311
http://dx.doi.org/10.5194/acp-6-3181-2006
http://dx.doi.org/10.5194/acp-6-3181-2006
http://dx.doi.org/10.1029/2008JD010201
http://dx.doi.org/10.1175/MWR3199.1
http://dx.doi.org/10.1029/2007JD008761
http://dx.doi.org/10.5194/acp-13-4073-2013


7910 L. Menut et al.: Aerosol forecast during CHARMEX

tive impact of aerosols on photolysis rates: comparison of sim-

ulations and observations in the Lampedusa island during the

ChArMEx/ADRIMED campaign, Atmos. Chem. Phys. Discuss.,

15, 7585–7643, doi:10.5194/acpd-15-7585-2015, 2015.

Mallet, M.: Overview of the Chemistry-Aerosol Mediterranean Ex-

periment/Aerosol Direct Radiative Forcing on the Mediterranean

Climate (ChArMEx/ADRIMED) summer 2013 campaign, in:

Atelier de Modélisation de l’Atmosphère, 20–22 january 2014,

Toulouse, France, 2014.

Manders, A., Schaap, M., and Hoogerbrugge, R.: Testing the capa-

bility of the chemistry transport model LOTOS-EUROS to fore-

cast PM10 levels in the Netherlands, Atmos. Environ., 43, 4050–

4059, doi:10.1016/j.atmosenv.2009.05.006, 2009.

Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J.,

Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B.,

Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L.,

Denier van der Gon, H. A. C., Drouin, A., Elbern, H., Emili,

E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M.,

Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kady-

grov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Li-

ora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux,

F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini,

A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl,

L., Schaap, M., Segers, A., Sofiev, M., Thomas, M., Timmer-

mans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R.,

Vira, J., and Ung, A.: A regional air quality forecasting system

over Europe: the MACC-II daily ensemble production, Geosci.

Model Dev. Discuss., 8, 2739–2806, doi:10.5194/gmdd-8-2739-

2015, 2015.

Menut, L. and Bessagnet, B.: Atmospheric composition forecasting

in Europe, Ann. Geophys., 28, 61–74, 2010,

http://www.ann-geophys.net/28/61/2010/.

Menut, L., Coll, I., and Cautenet, S.: Impact of meteorological data

resolution on the forecasted ozone concentrations during the ES-

COMPTE IOP 2a and 2b, Atmos. Res., 74, 139–159, 2005.

Menut, L., Chiapello, I., and Moulin, C.: Previsibility of min-

eral dust concentrations: The CHIMERE-DUST forecast during

the first AMMA experiment dry season, J. Geophys. Res., 114,

D07202, doi:10.1029/2008JD010523, 2009.

Menut, L., Goussebaile, A., Bessagnet, B., Khvorostiyanov, D., and

Ung, A.: Impact of realistic hourly emissions profiles on mod-

elled air pollutants concentrations, Atmos. Environ., 49, 233–

244, doi:10.1016/j.atmosenv.2011.11.057, 2012.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M.,

Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic,

A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G.,

Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.:

CHIMERE 2013: a model for regional atmospheric composition

modelling, Geosci. Model Dev., 6, 981–1028, doi:10.5194/gmd-

6-981-2013, 2013a.

Menut, L., Perez Garcia-Pando, C., Haustein, K., Bessagnet, B., Pri-

gent, C., and Alfaro, S.: Relative impact of roughness and soil

texture on mineral dust emission fluxes modeling, J. Geophys.

Res., 118, 6505–6520, doi:10.1002/jgrd.50313, 2013b.

Menut, L., Mailler, S., Siour, G., Bessagnet, B., Turquety, S., Rea,

G., Briant, R., Mallet, M., Sciare, J., Formenti, P., and Meleux,

F.: Ozone and aerosol tropospheric concentrations variability

analyzed using the ADRIMED measurements and the WRF

and CHIMERE models, Atmos. Chem. Phys., 15, 6159–6182,

doi:10.5194/acp-15-6159-2015, 2015.

Millan, M., Estrela, M. J., Sanz, M. J., Mantilla, E., Martan, M., Pas-

tor, F., Salvador, R., Vallejo, R., Alonso, L., Gangoiti, G., Ilardia,

J., Navazo, M., Albizuri, A., Artano, B., Ciccioli, P., Kallos, G.,

Carvalho, R. A., Andreas, D., Hoff, A., Werhahn, J., and Seufert,

G., and Versino, B.: Climatic Feedbacks and Desertification: The

Mediterranean Model, J. Climate, 18, 684–701, 2005.

Mlawer, E., Taubman, S., Brown, P., Iacono, M., and Clough, S.:

Radiative transfer for inhomogeneous atmospheres: RRTM a val-

idated correlated-k model for the longwave, J. Geophys. Res.,

102, 16663–16682, 1997.

Monks, P., Granier, C., Fuzzi, S., Stohl, A., Williams, M., Akimoto,

H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake,

N., Blake, R., Carslaw, K., Cooper, O., Dentener, F., Fowler,

D., Fragkou, E., Frost, G., Generoso, S., Ginoux, P., Grewe, V.,

Guenther, A., Hansson, H., Henne, S., Hjorth, J., Hofzumahaus,

A., Huntrieser, H., Isaksen, I., Jenkin, M., Kaiser, J., Kanakidou,

M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M., Lee, J.,

Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville,

A., Moussiopoulos, N., Orlando, J., O’Dowd, C., Palmer, P., Par-

rish, D., Petzold, A., Platt, U., Pöschl, U., Prévôt, A., Reeves,

C., Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simp-

son, D., ten Brink, H., Theloke, J., van der Werf, G., Vautard, R.,

Vestreng, V., Vlachokostas, C., and von Glasow, R.: Atmospheric

composition change – global and regional air quality, Atmos.

Environ., 43, 5268–5350, doi:10.1016/j.atmosenv.2009.08.021,

2009.

Mulcahy, J. P., Walters, D. N., Bellouin, N., and Milton, S. F.:

Impacts of increasing the aerosol complexity in the Met Of-

fice global numerical weather prediction model, Atmos. Chem.

Phys., 14, 4749–4778, doi:10.5194/acp-14-4749-2014, 2014.

Niu, T., Gong, S. L., Zhu, G. F., Liu, H. L., Hu, X. Q., Zhou, C. H.,

and Wang, Y. Q.: Data assimilation of dust aerosol observations

for the CUACE/dust forecasting system, Atmos. Chem. Phys., 8,

3473–3482, doi:10.5194/acp-8-3473-2008, 2008.

Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J., and Oz-

soy, E.: Interactive dust-radiation modelling: A step to im-

prove weather forecasts, J. Geophys. Res., 111, D16206,

doi:10.1029/2005JD006717, 2006.

Pérez, I. A., Sánchez, M. L., and García, M.: Weibull wind speed

distribution: Numerical considerations and use with sodar data, J.

Geophys. Res., 112, D20112, doi:10.1029/2006JD008278, 2007.

Rouïl, L., Honoré, C., Vautard, R., Beekmann, M., Bessagnet, B.,

Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., Flaud,

J., Menut, L., Martin, D., Peuch, A., Peuch, V., and Poisson,

N.: PREV’AIR : an operational forecasting and mapping sys-

tem for air quality in Europe, B. Am. Meteor. Soc., 90, 73–83,

doi:10.1175/2008BAMS2390.1, 2009.

Spyrou, C., Kallos, G., Mitsakou, C., Athanasiadis, P., Kalogeri, C.,

and Iacono, M. J.: Modeling the radiative effects of desert dust

on weather and regional climate, Atmos. Chem. Phys., 13, 5489–

5504, doi:10.5194/acp-13-5489-2013, 2013.

Sun, R., Moorthi, S., Xiao, H., and Mechoso, C. R.: Simulation of

low clouds in the Southeast Pacific by the NCEP GFS: sensitiv-

ity to vertical mixing, Atmos. Chem. Phys., 10, 12261–12272,

doi:10.5194/acp-10-12261-2010, 2010.

Turquety, S., Menut, L., Bessagnet, B., Anav, A., Viovy, N., Maig-

nan, F., and Wooster, M.: APIFLAME v1.0: high-resolution fire

Atmos. Chem. Phys., 15, 7897–7911, 2015 www.atmos-chem-phys.net/15/7897/2015/

http://dx.doi.org/10.5194/acpd-15-7585-2015
http://dx.doi.org/10.1016/j.atmosenv.2009.05.006
http://dx.doi.org/10.5194/gmdd-8-2739-2015
http://dx.doi.org/10.5194/gmdd-8-2739-2015
http://www.ann-geophys.net/28/61/2010/
http://dx.doi.org/10.1029/2008JD010523
http://dx.doi.org/10.1016/j.atmosenv.2011.11.057
http://dx.doi.org/10.5194/gmd-6-981-2013
http://dx.doi.org/10.5194/gmd-6-981-2013
http://dx.doi.org/10.1002/jgrd.50313
http://dx.doi.org/10.5194/acp-15-6159-2015
http://dx.doi.org/10.1016/j.atmosenv.2009.08.021
http://dx.doi.org/10.5194/acp-14-4749-2014
http://dx.doi.org/10.5194/acp-8-3473-2008
http://dx.doi.org/10.1029/2005JD006717
http://dx.doi.org/10.1029/2006JD008278
http://dx.doi.org/10.1175/2008BAMS2390.1
http://dx.doi.org/10.5194/acp-13-5489-2013
http://dx.doi.org/10.5194/acp-10-12261-2010


L. Menut et al.: Aerosol forecast during CHARMEX 7911

emission model and application to the Euro-Mediterranean re-

gion, Geosci. Model Dev., 7, 587–612, doi:10.5194/gmd-7-587-

2014, 2014.

Von Storch, H., Langenberg, H., and Feser, F.: A spectral nudging

technique for dynamical downscaling purposes, Mon. Wea. Rev.,

128, 3664–3673, 2000.

Wang, Y., Sartelet, K. N., Bocquet, M., Chazette, P., Sicard, M.,

D’Amico, G., Léon, J. F., Alados-Arboledas, L., Amodeo, A.,

Augustin, P., Bach, J., Belegante, L., Binietoglou, I., Bush,

X., Comerón, A., Delbarre, H., García-Vízcaino, D., Guerrero-

Rascado, J. L., Hervo, M., Iarlori, M., Kokkalis, P., Lange, D.,

Molero, F., Montoux, N., Muñoz, A., Muñoz, C., Nicolae, D.,

Papayannis, A., Pappalardo, G., Preissler, J., Rizi, V., Rocaden-

bosch, F., Sellegri, K., Wagner, F., and Dulac, F.: Assimilation

of lidar signals: application to aerosol forecasting in the western

Mediterranean basin, Atmos. Chem. Phys., 14, 12031–12053,

doi:10.5194/acp-14-12031-2014, 2014.

Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of

In- and Below-Cloud Photolysis in Tropospheric Chemical Mod-

els, J. Atmos. Chem., 37, 245–282, 2000.

Wyszogrodzki, A., Liu, Y., Jacobs, N., Childs, P., Zhang, Y., Roux,

G., and Warner, T.: Analysis of the surface temperature and wind

forecast errors of the NCAR-AirDat operational CONUS 4-km

WRF forecasting system, Meteorol. Atmos. Phys., 122, 125–143,

doi:10.1007/s00703-013-0281-5, 2013.

Zhang, H., Pu, Z., and Zhang, X.: Examination of Errors in Near-

Surface Temperature and Wind from WRF Numerical Simula-

tions in Regions of Complex Terrain, Weather Forecast, 28, 893–

914, doi:10.1175/WAF-D-12-00109.1, 2013.

www.atmos-chem-phys.net/15/7897/2015/ Atmos. Chem. Phys., 15, 7897–7911, 2015

http://dx.doi.org/10.5194/gmd-7-587-2014
http://dx.doi.org/10.5194/gmd-7-587-2014
http://dx.doi.org/10.5194/acp-14-12031-2014
http://dx.doi.org/10.1007/s00703-013-0281-5
http://dx.doi.org/10.1175/WAF-D-12-00109.1

	Abstract
	Introduction
	The ADRIMED project and the observations used
	The modeling system
	The meteorological model WRF
	The chemistry-transport model CHIMERE
	The forecast configuration
	Calculation of the statistical scores

	Predictability of meteorological parameters
	2m temperature
	Wind speed and direction
	Time series of differences
	Vertical profiles

	Precipitation rates

	Predictability of emissions
	Mineral dust emissions
	Biogenic emissions

	Predictability of aerosol
	PM10 statistical scores
	Vertical profiles of sea-salt and mineral dust
	Aerosol optical depth

	Conclusions
	Acknowledgements
	References

