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Abstract. The Kerguelen Plateau region in the Indian sector

of the Southern Ocean supports annually a large-scale phy-

toplankton bloom which is naturally fertilized with iron. As

part of the second Kerguelen Ocean and Plateau compared

Study expedition (KEOPS2) in austral spring (October–

November 2011), one CARbon Interface OCean Atmosphere

(CARIOCA) buoy was deployed east of the Kerguelen

Plateau. It drifted eastward downstream along the Kerguelen

plume. Hourly surface measurements of pCO2, O2 and ancil-

lary observations were collected between 1 November 2011

and 12 February 2012 with the aim of characterizing the spa-

tial and temporal variability of the biological net community

production, NCP, downstream the Kerguelen Plateau, assess-

ing the impact of iron-induced productivity on the biological

inorganic carbon consumption and consequently on the CO2

flux exchanged at the air–sea interface. The trajectory of the

buoy up to mid-December was within the longitude range

72–83◦ E, close to the polar front and then in the polar frontal

zone, PFZ, up to 97◦ E. From 17 November to 16 December,

the buoy drifted within the Kerguelen plume following a fil-

ament carrying dissolved iron, DFe, for a total distance of

700 km. In the first part of the trajectory of the buoy, within

the iron plume, the ocean surface waters were always a sink

for CO2 and a source for O2, with fluxes of respective mean

values equal to −8 mmol CO2 and +38 mmol O2 m−2 d−1.

To the east, as the buoy escaped the iron-enriched filament,

the fluxes were in the opposite direction, with respective

mean values of +5 mmol CO2 and −48 mmol O2 m−2 d−1.

These numbers clearly indicate the strong impact of biologi-

cal processes on the biogeochemistry in the surface waters

within the Kerguelen plume in November–mid-December,

while it is undetectable to the east in the PFZ from mid-

December to mid-February. While the buoy follows the Fe-

enriched filament, simultaneous observations of dissolved in-

organic carbon (DIC) and dissolved oxygen (O2) highlight

biological events lasting from 2 to 4 days. Stoichiometric ra-

tios, O2 /C, between 1.1 and 1.4 are observed indicating new

and regenerated production regimes. NCP estimates range

from 60 to 140 mmol C m−2 d−1.

1 Introduction

The Southern Ocean is a key region for the global carbon cy-

cle and the climate system. It accounts for about 25–30 % of

the anthropogenic carbon uptake by the ocean. The South-

ern Ocean (south of about 30◦ S) is found to be a sink area

for atmospheric CO2 in atmospheric or ocean inversion mod-

els (Friedlingstein et al., 2006; Gruber et al., 2009) as well

as in data-based approaches (Metzl et al., 1999; Takahashi

et al., 2009). However, it represents a sink for atmospheric

CO2 whose strength and future evolution are debated (Le

Quéré et al., 2010; Lenton et al., 2013). Despite its impor-

tance, the Southern Ocean remains the region where uncer-

tainties regarding the air–sea CO2 flux and the carbon budget

are the highest (e.g., Gruber et al., 2009). This remote part of

the global ocean is hardly accessible in winter, leading to a

very sparse spatiotemporal coverage of observations, includ-

ing measurements of surface pCO2. Undersampling biases

are aggravated by the high variability which characterizes

this oceanic region over a wide range of temporal and spatial

scales. Quantification of the impacts of thermodynamics, bi-

ology and physics on the sea surface partial pressure of CO2

(pCO2) is a necessary step to understand the processes reg-
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ulating the ocean–atmosphere exchange of CO2 and help to

overcome the unresolved spatiotemporal variability effects.

The magnitude of the gradient of pCO2 between the atmo-

sphere and the surface ocean depends on the relative contri-

bution in the ocean mixed layer of the dynamic transport, the

thermodynamics and the biological activity. Biological net

community production, NCP, decreases sea surface pCO2.

In high-nutrient, low-chlorophyll (HNLC) regions , includ-

ing the Southern Ocean, more than 2 decades of intense re-

search have confirmed that increasing iron supply stimulates

primary production (Boyd et al., 2007; Blain et al., 2008).

Large and persistent phytoplankton blooms develop annu-

ally in the vicinity of subantarctic islands (Blain et al., 2007;

Borrione and Schlitzer, 2013; Pollard et al., 2009) due to

natural iron supply. The results of field studies in the vicin-

ity of Crozet and Kerguelen islands have clearly highlighted

the crucial role of Fe in natural ecosystems and demonstrate

the stimulation of the biological carbon pump. In Febru-

ary 2005, the KErguelen Ocean and Plateau compared Study

expedition, KEOPS1, focused on the high-productivity area

of the Kerguelen Islands during the peak and decline of the

bloom (Blain et al., 2007). The results emphasized the op-

portunity of studies on the Kerguelen Plateau to investigate

the functioning of the biological carbon pump in a natu-

rally iron-fertilized region. The KEOPS2 project in October–

November 2011, designed to improve the spatial and tempo-

ral coverage of the Kerguelen region, was carried out in aus-

tral spring to document the early stages of the bloom and to

complement results of KEOPS1.

As part of KEOPS2, a CARbon Interface OCean Atmo-

sphere (CARIOCA) buoy was launched, drifted eastward

close to the polar front then entered the polar frontal zone,

PFZ. NCP is deduced from high frequency pCO2 measure-

ments made in November–December along the trajectory of

the drifter. The aim of the present work is to provide an in-

depth look of the extent of the iron seeding downstream the

plateau during the end of the spring, its effect on the pro-

duction of organic carbon and its control of the CO2 air–sea

flux.

2 Data and methods

2.1 Site description

A CARIOCA buoy was deployed as part of the KEOPS2

expedition that took place from 9 October to 29 Novem-

ber 2011, in the Indian sector of the Southern Ocean in

the vicinity of the Kerguelen Islands. It was deployed on

1 November 2011 over the Kerguelen Plateau and drifted

eastward downstream within the Kerguelen plume. Up to

12 February 2012, its ∼ 1800 km trajectory followed the po-

lar front closely, entering the polar frontal zone on 16 De-

cember 2011 (Fig. 1). The buoy acquired data in the

72—75◦ E longitude range of the intensive KEOPS2 field
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Figure 1. Trajectory followed by the CARIOCA drifter from

1 November 2011 to 12 February 2012 (red line). The green dots

and numbers indicate the location and date where the data indicate

a large signature of biological effects. The grey diamonds indicate

high isolated salinity anomalies. The buoy enters the polar frontal

zone at the location of the blue arrow. The pink dotted line rep-

resents the location of the subantarctic front, the blue dashed line

shows the location of the polar front (Park and Vivier, 2009, 2011)

and the black line, the location of the polar front based on KEOPS2

observations, PF_Park (Park et al., 2014). The black dots indicate

the location of the KEOPS2 stations (TEW-7, TEW-8, NPF-L) close

to the PF.

campaign from 1 to 15 November 2011 and then was ad-

vected downstream within the Kerguelen plume later in the

season.

2.2 Buoy measurements

The CARIOCA buoy was equipped with a CO2 sensor

(Copin-Montegut et al., 2000; Hood and Merlivat, 2001) and

an Anderaa F3835 optode to measure dissolved O2 (Lefèvre

and Merlivat, 2012). The partial pressure of CO2 (pCO2),

dissolved oxygen concentration (O2), sea surface tempera-

ture (SST) and sea surface salinity (SSS) were measured at

a depth of 2 m on an hourly basis. Atmospheric pressure and

wind speed were measured at a height of 2 m, which were

subsequently corrected to 10 m height values. Collected data

have been transmitted by the buoy in realtime via the Ad-

vanced Research and Global Observation Satellite (Argos)

data network.

Strictly speaking, the CO2 sensor measures the fugacity

of CO2, fCO2, which is not identical to pCO2 owing to the

non-ideal nature of the CO2 gas (Dickson et al., 2007). In

the range of SST of our study, the difference between pCO2

and fCO2 is close to 1.4 µatm, which is within the instru-

ments 3 µatm absolute error. Accordingly, we will approxi-

mate fCO2 as being equal to pCO2 within this study.

Alkalinity, Alk (µmol kg−1), is computed from SST and

sea surface salinity, SSS, using the alkalinity–temperature–

salinity relationship proposed by Lee et al. (2006) for

the Southern Ocean. Dissolved inorganic carbon, DIC

(µmol kg−1), is derived from pCO2, Alk, SST and SSS us-
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ing the CO2 dissociation constants of Mehrbach et al. (1973)

as refitted by Dickson and Millero (1987) and solubility from

Weiss (1974). An accuracy of 10.5 µmol kg−1 was estimated

as a result of the combined uncertainties linked to the disso-

ciation constants, the accuracy of pCO2 measurements and

the uncertainty of the alkalinity derived from the relation-

ship proposed by Lee et al. (2006) (Boutin et al., 2008). The

relative precision of successive DIC values is expected to

be 0.5 µmol kg−1 (Boutin et Merlivat, 2009; Merlivat et al.,

2015).

The oxygen optode measurements were calibrated ini-

tially in the laboratory prior to deployment using a 0 and

100 % oxygen reference points. During the KEOPS2 cruise,

the optode data were subsequently calibrated against the

oxygen Winkler measurements made with an accuracy of

0.2 % (D. Lefèvre, personal communication, 2012). A con-

stant offset of 13.6 µmol kg−1 between the two techniques

was found. Johnson (2010) compared the optode measure-

ments recorded at a time series off Monterey Bay, Cali-

fornia, with shipboard measurements made using the Win-

kler method. He found an offset between the two tech-

niques, which remained constant over the 5-month period

of his record. Therefore, we simply apply an offset of

13.6 µmol kg−1 to correct the optode data. Oxygen satura-

tion, O2 sat (in µmol kg−1) is calculated using the equation of

Garcia and Gordon (1992). The degree of O2 saturation (%)

is given by

%O2sat= ([O2]/[O
sat
2 ])× 100.

2.3 Calculation of air–sea fluxes of CO2 and O2

The hourly air–sea CO2 flux, FCO2
(mmol m−2 d−1), is de-

rived from wind speed, the air–sea gradient in pCO2 and

the gas transfer velocity (Boutin et al., 2008; Merlivat et al.,

2015), following:

FCO2
= kCO2

αCO2
(pCO2 sea−pCO2 atm), (1)

where αCO2
is the solubility of CO2 (Weiss, 1974), pCO2 sea

the partial pressure of CO2 in seawater (µatm), pCO2 atm

the partial pressure of CO2 in the atmosphere (µatm) and

kCO2
(cm h−1) is the gas transfer velocity for CO2. pCO2 atm

is computed from the monthly molar fraction xCO2 at the

Macquarie Island atmospheric station (NOAA/ESRL Global

Monitoring Division (http://esrl.noaa.gov/gmd/ccgg/iadv)),

the water vapor pressure of Weiss and Price (1980) and the

atmospheric pressure recorded on the drifter.

Injection of air bubbles below the air–water interface is

neglected for the calculation of the CO2 flux but this contri-

bution to the flux can be relatively important for oxygen. The

equation of the O2 flux is then given by

FO2
= kO2

([O2] − [O2 sat])−Fbub (2)

where kO2
is the gas transfer velocity for O2 and Fbub is the

contribution of air bubbles using the formula given by Woolf

and Thorpe (1991):

Fbub = kO2
0.01(U/U0)

2
[O2 sat], (3)

with U the wind speed at 10 m height in ms−1 and U0 a

model-derived constant wind speed value equal to 9 ms−1 to

compute bubbles O2 air–sea flux.

The total oxygen flux becomes

FO2
= kO2

([O2] − [O2 sat](1+ 1.2310−4U2)). (4)

It results from this equation that the flux is positive when

there is outgassing to the atmosphere.

For both CO2 and O2, the gas transfer velocity is calcu-

lated using the formula of Sweeney et al. (2007):

k = 0.27U2(660/Sc)0.5, (5)

where Sc is the Schmidt number, ScCO2
, for CO2 or ScO2

for

O2 (Wanninkhof, 1992) and U the 10 m wind speed.

2.4 Calculation of in situ carbon and oxygen biological

production

Carbon net community production, NCPC, has been previ-

ously derived from drifting CARIOCA buoy measurements,

by looking at day-to-day evolution of DIC at dawn pro-

vided that daily cycles of DIC in phase with the ones ex-

pected from biological activity are observed (Merlivat et al.,

2009, 2015; Boutin and Merlivat, 2009). In addition, in case

O2 is measured, it is possible to simultaneously estimate

NCP from O2 day-to-day evolution, NCPO2
(Lefèvre and

Merlivat, 2012). The method relies on hourly measurements

of SST, SSS, pCO2 and O2 to estimate in situ biological

production from unattended platforms using a non-intrusive

method. During the daylight period, photosynthesis, respi-

ration and air–sea exchange are mechanisms responsible for

the change in DIC and O2 recorded at 2m depth. If no sig-

nificant change in salinity is observed, the processes of ad-

vection and mixing, and thus DIC and O2 fluxes through the

base of the mixed layer, h, are assumed to be negligible. De-

pending on atmospheric forcing, a warm diurnal layer, h∗,

can form during daylight (Merlivat et al., 2009). In this sur-

face layer, of depth h∗, from sunrise to sunset, due to com-

bined effect of photosynthesis and respiration, DIC generally

decreases and O2 generally increases; they reach minimum,

DICmin, and maximum, O2max, values at the end of the day.

At night, as a result of respiration and of the mixing between

the warm layer and the mixed layer, DIC increases and O2

decreases; they reach maximum, DIC max, and minimum,

O2min, values at the end of natural convection. NCP is de-

rived from the day-to-day change of DICmax and O2min,

after removing the contribution of the air–sea fluxes. Con-

tribution of biological activity (photosynthesis plus respira-

tion) during daylight is derived from DICmax–DICmin, and

O2min–O2max after removing the contribution of the air–sea

fluxes. Figure 2 shows SST, DIC and O2 over a 4-day period,

www.biogeosciences.net/12/3513/2015/ Biogeosciences, 12, 3513–3524, 2015
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Table 1. Difference between the extrema of DIC and O2 measured in the warm surface layer (columns 4 and 6). In bold, mean values of DIC

and O2 changes over consecutive mornings (columns 5 and 7), CO2 and O2 air–sea flux (columns 8 and 9) are shown.

Date Latitude SST DICmin−DICmax dDICmax/dt O2 max−O2 min dO2 min/dt FCO2
FO2

Longitude ◦C µmolkg−1 µmolkg−1 µmolkg−1 µmolkg−1 mmolm−2 d−1 mmolm−2 d−1

1 2 3 4 5 6 7 8 9

18 Nov 49.3◦ S, 76.4◦ E 4.2 −6.46± 1.00 7.19± 1.00

23–25 Nov 50.1◦ S, 77.4◦ E 4.3 −4.72 ± 0.23 3.74 ± 0.54 −8.21 42.9

23 Nov −11.50± 1.00 9.77± 1.00

24 Nov −10.09± 1.00 11.41± 1.00

26–28 Nov 50.4◦ S, 77.3◦ E 4.4 −4.22 ± 0.85 3.90 ± 1.01 −5.83 38.5

27 Nov −9.35± 1.00 8.39± 1.00

30 Nov–4 Dec 50.4◦ S, 79.8◦ E 4.5 −1.76 ± 0.43 1.71 ± 0.32 −9.13 47.4

30 Nov −8.50± 1.00 6.17± 1.00

1 Dec −5.79± 1.00 5.73± 1.00

2 Dec −7.80± 1.00 7.25± 1.00

11–13 Dec 50.2◦ S, 81.4◦ E 4.6 −2.10 ± 0.65 −10.49 61.0

30 November–4 December 2011. The mean increase of SST

equal to 0.044 ◦C d−1, superimposed on daily cycles of SST,

indicates a stratification of the mixed layer over this 4-day

period. No change of salinity is measured (not shown). Thus,

the changes in DIC and O2 observed during the 4 days were

only driven by biological processes allowing the computation

of NCP. The carbon and oxygen mass balance, either in the

daytime interval during the development of the warm layer,

h∗, or over a 1-day time interval in the mixed layer, h, result

in the two following equations:(
1DIC

1t

)
measured

=

(
1DIC

1t

)
bio

+

(
1DIC

1t

)
air–sea

, (6)(
1O2

1t

)
measured

=

(
1O2

1t

)
bio

+

(
1O2

1t

)
air–sea

. (7)

NCP integrated over the mixed layer is given by

NCPc = ρh
1DICmax

1t
+FCO2

, (8)

NCPO2
= ρh

1O2min

1t
+FO2

, (9)

where FCO2
and FO2

are the air–sea CO2 and O2 flux

(mmol m−2 d−1), positive when there is outgassing to the at-

mosphere. h (m) is the depth of the mixed layer, ρ (kg m−3) is

the density of seawater and 1DICmax /1t and 1O2 min /1t

(µmol kg−1 d−1) are the change of DIC (O2) between two

consecutive maxima (minima).

Between two consecutive mornings, at the end of noctur-

nal convection,(
1DIC
1t

)
air–sea

and
(
1O2

1t

)
air–sea

are respectively equal to

FCO2
/h and FO2

/h (where h is the mixed layer depth,

MLD). During the daily stratification period, the diurnal

mixed layer thickness decreases from h to h∗ when DIC is

minimum and O2 is maximum. We make the assumption that

it varies linearly from h to h∗ in order to compute the hourly

values of the air–sea flux contribution, (F/h)i , which then

are added over the daily stratification period. We assume that
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Figure 2. Diurnal cycles of SST, DIC and O2 from 30 Novem-

ber to 4 December 2011. (a) SST (◦C) (black, left vertical axis)

and DIC (µmol kg−1) (grey, right vertical axis). The vertical dashed

lines indicate the time of sunrise (blue) and sunset (orange). (b) O2

(µmol kg−1) (black, left vertical axis) and DIC (grey, right vertical

axis).

the minimum depth of the diurnal mixed layer, h∗, at the end

of the production period is equal to the sampling depth 2 m.

A mixed layer depth equal to 20 m has been adopted based on

observations made during the KEOPS2 field campaign under

conditions similar to those encountered by the buoy. We will

discuss later the uncertainties related to this choice.
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Table 2. Biological changes (columns 2 and 4) and air–sea flux changes (columns 3 and 5) of DIC and O2. Calculated values of NCP carbon

and NCP oxygen (columns 6 and 7). In bold, mean values over consecutive mornings.

Date dDICbio dDICair–sea dO2 bio dO2 air–sea NCPC NCPO2

µmolkg−1 µmolkg−1 µmolkg−1 µmolkg−1 mmolCm−2 d−1 mmolO2 m−2 d−1

1 2 3 4 5 6 7

18 Nov −6.79± 1.00 −0.32± 0.10 10.23± 1.35 3.03± 0.91

23–25 Nov −5.12 ± 0.26 −0.40 ± 0.12 5.83 ± 0.83 2.09 ± 0.63 −140 ± 7 120 ± 23

23 Nov −12.43± 1.04 −0.93± 0.28 14.18± 1.66 4.41± 1.32

24 Nov −10.47± 1.00 −0.38± 0.11 13.88± 1.24 2.47± 0.74

26–28 Nov −4.50 ± 0.85 −0.28 ± 0.09 5.78 ± 1.16 1.87 ± 0.56 −124 ± 23 159 ± 31

27 Nov −9.74± 1.01 −0.39± 0.12 10.85± 1.24 2.46± 0.74

30 Nov–4 Dec −2.20 ± 0.45 −0.44 ± 0.13 4.02 ± 0.76 2.31 ± 0.69 −60 ± 12 111 ± 20

30 Nov −9.07± 1.01 −0.58± 0.17 8.78± 1.27 2.60± 0.78

1 Dec −6.44± 1.02 −0.66± 0.20 9.78± 1.57 4.05± 1.22

2 Dec −8.38± 1.02 −0.58± 0.17 10.88± 1.48 3.63± 1.09

11–13 Dec −2.61 ± 0.67 −0.51 ± 0.15 2.96 ± 0.89 −72 ± 17

Figure 3. Spatial extent of phytoplankton blooms over and down-

stream from the Kerguelen Plateau as revealed by satellite ocean

color on 6 selected days, between 11 November and 28 Decem-

ber 2011. The trajectory followed by the CARIOCA drifter is super-

posed on the chlorophyll patches (black line). The circles indicate

the location of the buoy the same days.

2.5 Chlorophyll and age distribution of the water

parcels over and downstream the Kerguelen

Plateau

The time and spatial changes of the phytoplankton bloom

as revealed by satellite ocean color are shown in Fig. 3

(on which the buoy trajectory is indicated). The strongest

bloom is observed from 11 November to 2 December, about

2 months after bloom initiation, followed by a clear decay

early summer in December.

The horizontal transport of water parcels eastward of the

Kerguelen Plateau has been derived from altimetry (d’Ovidio

et al., 2015). From this analysis, the time since a water par-

cel has left the plateau (the so-called age of the water parcel)

could be estimated. The trajectory of the CARIOCA buoy

was placed in this temporal framework using the age map of

25 November (Fig. 4). Over the period 1 November to 31 De-

Figure 4. Lagrangian perspectives on large-scale natural iron fer-

tilization on the Kerguelen Plateau and in the downstream plume: a

snapshot on 25 November 2011. The color coding indicates the time

in days since leaving the plateau for each water parcel (d’Ovidio et

al., 2015). The white line indicates the trajectory of the CARIOCA

drifter from 1 November to 31 December 2011. The cyan dots indi-

cate the locations where carbon NCP estimates are calculated. The

cyan square is the position of the buoy on 16 November (see text).

cember, the buoy sampled a large range of water parcels with

different ages as shown by the stirring pathways east of the

Kerguelen Plateau close to the trajectory of the drifter. NCP

estimates have been made over the period 18 November–

13 December (Tables 1 and 2).

www.biogeosciences.net/12/3513/2015/ Biogeosciences, 12, 3513–3524, 2015
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Figure 5. Buoy data from 1 November 2011 to 12 February 2012. (a) Temperature in ◦C (black, left vertical axis) and salinity (grey,

right vertical axis). (b) Temperature–salinity diagram: 1 to 11 November, black diamonds; 12 November to 16 December, grey diamonds;

17 December to 12 February, black squares. (c) pCO2 measured at a depth of 2 m in µatm (black) and in the atmosphere in µatm (grey). (d)

Dissolved oxygen concentration measured at a depth of 2 m in µmol kg−1 (black, left vertical axis) and oxygen saturation in % (grey, right

vertical axis). In Fig. 5a, the cyan dashed lines indicate 12 November and 16 December (see text). In Fig. 5b, the red dots indicate the data

measured at the KEOPS2 stations TEW7, TEW8, F-L.

3 Results

3.1 Buoy measurements

The variations of SST and SSS observed along the trajec-

tory of the buoy are largely explained by its position rela-

tive to the polar front, PF (Fig. 1). From 1 to 12 November,

the buoy was drifting in the meander of the PF (Park et al.,

2014) with SST∼ 3 ◦C and SSS∼ 33.83. From 12 November

to 16 December, while the buoy followed closely and some-

times crossed the PF, SST was ∼ 4.2 ◦C and SSS ∼ 33.75.

During this time interval, simultaneous short time peaks of

SST (negative) and SSS (positive) were observed while tran-

siting the PF (Figs. 1 and 5a). From 16 December 2011 to

11 February 2012, the buoy drifted in the polar frontal zone,

where higher temperature (close to 6 ◦C) and higher salinity

(in the range 33.8 to 33.9) were measured.

A very large variability of pCO2 values, from ∼ 280 to

∼ 400 µatm, were observed while the buoy drifted in the me-

ander of the PF (Fig. 5c). Shipboard measurements of pCO2

made during the KEOPS2 field campaign show a similar

range of variability (Lo Monaco et al., 2014). During pe-

riods when the buoy is southward or close to the PF, the

surface waters were undersaturated in CO2 relative to atmo-

spheric CO2. After 17 December, in the polar frontal zone,

the surface waters became supersaturated. Moreover, the sur-

face waters were supersaturated in oxygen up to 16 Decem-

ber, with saturation values up to 110 % (Fig. 5d). In the polar

frontal zone, data showed O2 undersaturation.

3.2 Air–sea flux of CO2 and O2

From 1 November to 17 December, surface waters are

a source of O2 (Fig. 6a) for the atmosphere and a sink

of CO2 (Fig. 6b). Conversely, in the polar frontal zone,

east of 83◦ E, we observe an ingassing of O2 and out-

gassing of CO2. It is worth noting that the absolute val-

ues of the fluxes are larger for O2 than for CO2 due to

the buffer factor of ocean water carbonate chemistry. From

1 November to 16 December, the flux of O2 and CO2 are,

respectively, 38± 34 and −8.3± 7.5 mmol m−2 d−1. After

16 December, they are equal, respectively, to −48± 43 and

5.3± 4.7 mmol m−2 d−1.
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Figure 6. Air–sea flux from 1 November 2011 to 12 February 2012

in mmol m−2 d−1 (positive for outgassing). (a) O2), (b) CO2.

3.3 Dissolved inorganic carbon, DIC, and oxygen

A significant reduction in DIC of∼ 50µmol kg−1 is observed

from 1 November to 17 December, followed by an increase

of approximately 20 µmol kg−1 when the buoy crossed the

PF and starts drifting northward in the polar frontal zone. At

the same time, a sharp decrease of the O2 concentration is

measured (Fig. 7). During the first part of the trajectory of

the buoy close to and along the PF, the highly variable dis-

tribution of the concentrations of DIC and O2 are controlled

by physical transport processes, lateral advection and verti-

cal mixing, air–sea exchange and biological processes. Four

periods for DIC and O2 of 3 to 5 days have been identified

when only air–sea exchange and biological processes control

the change with time of the concentrations of DIC and O2,

as described by Eqs. (6) and (7) (see also Fig. 2). For 7 days

during these periods, the amplitude of the difference between

the extrema (|max–min|) for DIC and O2 in the warm daily

surface layer, h∗, were measured (Table 1 and Fig. 8).

3.4 Quantification of biological processes

Large amplitudes of the diurnal cycles of DIC and O2 up

to 12 µmol kg−1 were measured, while day-to-day changes

peak at 5 µmol kg−1 (Fig. 8). These numbers represent the

contribution of the biological processes plus the air–sea ex-

change terms (Eqs. 6 and 7). Their ratio is close to 1 (Fig. 8).
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Figure 7. Distribution of O2 in µmol kg−1 (black, left vertical axis)

and DIC in µmol kg−1 (grey, right vertical axis) between 1 Novem-

ber 2011 and 12 February 2012. The purple dots and lines indicate

the periods when NCP estimates have been made. The cyan dashed

lines indicate 12 November and 16 December and the cyan arrow

16 November (see text).

In Table 1, it is interesting to note the wide range of values

of CO2 and O2 air–sea fluxes, the O2 fluxes up to 6.6 larger

than the CO2 ones.

A summary of the biological and air–sea flux terms for

DIC and O2 is given in Table 2. Figure 9 shows the simul-

taneous biological changes of O2 and DIC observed in the

ten selected cases. The DIC measurements are used to cal-

culate NCPC (Eq. 8 and Table 2). In November, two values

of NCPC, respectively equal to 140± 7 and 124± 23 mmol

C m−2 d−1, are computed. In December, we have NCPC

equal to 60± 12 and 72± 17 mmol C m−2 d−1. The standard

deviation does not include the uncertainty on the choice of

the value of the MLD.

4 Discussion

4.1 Hydrodynamical environment along the trajectory

of the buoy

During the 2011 KEOPS2 cruise, Park et al. (2014) deter-

mined and validated an up-to-date location of the PF around

the Kerguelen Islands over the longitude of 78◦ E. The PF,

defined as the northern limit of the subsurface minimum of

temperature, Tmin of 2 ◦C, was validated based on in situ

hydrographic and current measurements made during the

cruise, satellite ocean color images, and altimetry-derived

surface velocity fields. The PF location rounds the Kergue-

len Islands from the south, executing a permanent cyclonic

meandering in the off-plateau area immediately east of the

Kerguelen Islands and then extends eastward (Fig. 5, Park et

al., 2014).

The buoy, after drifting inside the meander, traversed the

front many times during which rapid increases of salinity

were observed (Figs. 1 and 5). East of 78◦ E, the compari-
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son of the two routes cannot be very specific as the trajec-

tory of the buoy is compared with a large-scale climatolog-

ical PF (Park et al., 2009, 2011) which certainly does not

take into account the highly time-varying frontal circulation

of the area. On 16 December, the latitude of the polar front as

derived from the buoy measurements (Figs. 1 and 5) is very

close to the climatological PF.

4.2 Lagrangian distribution of chlorophyll along the

trajectory of the buoy

The sequence of ocean color images, to which the trajectory

of the buoy from 11 November to 28 December is super-

posed (Fig. 3), shows the rapid development of the bloom

until 2 December and then its decline. In most cases, the

buoy follows the highly time-varying mesoscale meanders

observed within satellite chlorophyll images. In their detailed

study of the location of the PF during the KEOPS2 cruise,

Park et al. (2014) put forward that the high-resolution chloro-

phyll concentration images appear as an excellent marker of

the fronts and filaments, supporting evidence for the frontal

circulation determined from the combined hydrography, al-

timetry and drifter tracking data. We are then led to conclude

that the biological processes identified during four periods

along the trajectory of the buoy (Fig. 1 and Table 1) are

representative of frontal conditions which favor biological

production. Specifically, the data computed between 18 and

28 November, in the longitude domain 76–78◦ E, seem very

tightly linked to the complex structures of the PF (Fig. 1).

In Fig. 4, the trajectory of the buoy is superposed on a

mapping of the age of the water parcels since they have left

the plateau where they are loaded with iron (d’Ovidio et al.,

2015). The rate of change of the horizontal dissolved iron

supply, DFe, downstream the plateau is modeled with an ex-

ponential decay of the initial on-plateau iron stock in the wa-

ter column.
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acterize the new and regenerated production regime.

The data in Fig. 4 can be interpreted as representative of

the changes of the stock of DFe in the ocean upper layer (0–

150 m), the largest DFe concentrations in the youngest wa-

ters. It is interesting to note, at least qualitatively, the rela-

tionship between the distribution of DFe and the signature

of the biology on the DIC and O2 concentrations measured

along the trajectory of the buoy. As a first example, when the

buoy escaped the rich DFe waters on 15–16 November (the

cyan square in Fig. 4), large abrupt changes of DIC (an in-

crease) and O2 (a decrease) are observed (Fig. 7), suggesting

the lack of organic matter production in the absence of iron.

4.3 Carbon and oxygen biological production regimes

During the KEOPS2 expedition, MLD were estimated at

three stations (TEW-7, TEW-8, F-L) very close to the PF

(Park et al., 2014) (Fig. 1). The average MLD at these sta-

tions, calculated with the criteria that depth where the poten-

tial density equals potential density at 10 m+ 0.02 kg m−3,

was equal to 20 m (Park et al., 2014; Trull et al., 2015). We

elect to use this depth as our MLD definition, as physical

(T , S) characteristics at these stations are very similar to

CARIOCA measurements (Fig. 5b). Furthermore, the choice

of a relatively shallow mixed layer, 20 m, is supported by

the work of Taylor and Ferrari (2012), who found, based

on numerical simulations, that restratification at fronts can

inhibit vertical mixing, triggering high-latitude phytoplank-

ton blooms. However, the values of NCP integrated over the

depth of the mixed layer may be an underestimate if the

depth of the euphotic layer, Ze, is greater than MLD. Dur-

ing the KEOPS2 expedition at the station F-L, Cavagna et

al. (2014), indicate that Ze= 30 m. From the vertical pro-

file of net primary production, NPP, based on the analysis

of carbon-13 incubation experiments, the computed value of

NPP integrated over 20 m represents about 75 % of NPP in-
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tegrated over Ze. NPP at depth greater than Ze is negligi-

ble close to 2 %. We take into account an underestimation of

33 % to compute NCP, as the euphotic layer depth is larger

than the MLD which is equal to 20 m.

The values of the carbon net community production,

NCPC, which corresponds to DIC transformed into particu-

late organic carbon, POC and dissolved organic carbon, DOC

by biological activity, decrease from 130 mmol m−2 d−1 be-

tween 23 and 28 November to about 65 mmol m−2 d−1 at

the beginning of December (Table 2). A similar range of

values of carbon net community production along fronts in

the Southern Ocean have previously been observed (Merli-

vat et al., 2015). During the KEOPS1 expedition in 2005,

Lefèvre et al. (2008) and Jouandet et al. (2008) measured

NCP at two stations south of the polar front. At the same

locations, NCP measured at a 5-day interval varied between

105 and 43 mmol C m−2 d−1. This illustrates the large spa-

tial and temporal variability of processes which control NCP,

depending on the bathymetry and the physical and dynami-

cal regime prevailing in the upper layers in the KEOPS2 field

study.

The biological terms,
(
1O2

1t

)
bio

and −
(
1DIC
1t

)
bio

are rep-

resented in Fig. 9 on which the two lines with slopes equal

to 1.4 and 1.1 indicate the expected oxygen–carbon rela-

tionship respectively for a new production regime, photo-

synthetic quotient, PQ= 1.4 or a regenerated one, PQ= 1.1

(Laws, 1991). During daytime, DIC and O2 variations repre-

sent GCP-R/2 (GCP, gross community production, R, respi-

ration) if we assume the respiration rate to be constant over

a day. From dawn to dawn, it corresponds to GCP-R. As a

result, the daytime and the dawn-to-dawn ratio should be dif-

ferent, the difference being smaller when R is small compare

to GCP (autotrophy, high f ratio). In Fig. 9 within the er-

rors bars, we cannot estimate the difference. Nevertheless,

it appears that both regimes may have prevailed at different

times. This supports the choice of values of h and h∗. With

larger values of the MLD, the relative part of the air–sea flux

in the DIC and O2 measurements would have been smaller

and make the slope of the oxygen–carbon relationship closer

to 1 as in Fig. 8. Further, the linear distribution of the data

points (Fig. 9) demonstrates that our technique satisfactorily

identifies the biological signature during the selected periods

that we have considered.

In Table 2 (columns 3 and 5), we note the larger contribu-

tion of the air–sea exchange for oxygen (positive) relatively

to carbon (negative), with a mean ratio of the absolute values

close to 6. In the calculation of NCPC, the contribution of

CO2 air–sea exchange is low, and varies between 7 and 25 %

of the measured change of DIC. By contrast, for oxygen,

air–sea exchange represents 50 to 135 % of the outgassing

of O2 which results in a large uncertainty in the calculation

of NCPO2
. This situation occurs during observations made

during the 11–13 December period, when it was not possible

to isolate the oxygen biological signal due to the large air–sea

flux.

This is an issue regarding the in situ estimates of NCP

based on dissolved oxygen argon measurements at the ocean

surface (Cassar et al., 2009) in high wind regions when the

air–sea flux is large. NCP based on O2 measurements have

to be considered with caution as long as the biological con-

tribution is a small term relative to the air–sea exchange one.

Simultaneous measurements of oxygen and carbon ratios

on oceanographic moorings have been reported in a few

instances in tropical or mid-latitudes. Lefèvre and Merli-

vat (2012), based on data in the tropical Atlantic Ocean on

a Pirata mooring equipped with a CARIOCA pCO2 sensor

and an oxygen optode found an O2 /DIC ratio ranging be-

tween −1.0 and −1.3.

Johnson (2010), using simultaneous measurements of O2

and DIC, at two moorings M1 and M2 off Monterey Bay,

California, found −0.77± 0.02 and ±0.93± 0.03, respec-

tively, for the O2 /TCO2 ratio. He explains these low values

with the different impact of gas exchange on DIC and O2,

as the gas exchange for O2 is 10 times faster than for CO2.

Martz et al. (2014) use autonomous oxygen and dissolved

inorganic carbon observations to examine the oxygen carbon

relationship at an upwelling site in the Southern California

Current System. They compute a mean value of O2 /DIC

equal to −1.20± 0.01 and conclude that it is in good agree-

ment with Redfield ratio, in spite of a value different than the

theoretical value of the Redfield ratio, 1.30.

We think that the distribution of our observed simultane-

ous biological changes of DIC and O2 (Fig. 9) convincingly

exhibits a spectrum of values ranging from a near-100 % new

production to a 100 % regenerated production regime.

4.4 Air–sea flux

A striking feature is the abrupt change of the direction of the

air–sea CO2 and O2 fluxes, from a sink of atmospheric CO2

at the ocean surface (the opposite for O2) to a source, on

an episodic event on 16 November and 16 December when

the buoy escaped the iron-fertilized plume to enter the polar

frontal zone (Fig. 5). It illustrates how the carbon biological

pump is at first order controlled by the iron availability in the

water in the plume. These observations highlight the neces-

sity to take into consideration the limits of the different water

masses in order to spatially extrapolate field measurements

of CO2 air–sea flux in a highly dynamic ocean area like the

Southern Ocean. This is reinforced in an iron-fertilized re-

gion, as the distribution of the iron concentration is closely

linked to this dynamic environment.

5 Summary and conclusion

Hourly pCO2 and oxygen measurements were made along

the trajectory of a CARIOCA drifter downstream from the
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Kerguelen Plateau during the austral bloom from 1 Novem-

ber 2011 to 12 February 2012. From 1 November to

12 November, the buoy drifted through a cyclonic meander of

the polar front and followed it eastward until 16 December,

before heading north and entered the polar frontal zone. The

surface water is supersaturated in oxygen until 16 December

while pCO2 ocean is smaller than pCO2 atmosphere, sug-

gesting that biological production dominates. North of the

polar frontal zone, the ocean is a source of CO2 for the atmo-

sphere and a sink of oxygen.

Using an alkalinity–salinity relationship, DIC is calculated

from pCO2 and alkalinity. Net community production is cal-

culated from changes of DIC and/or oxygen over short peri-

ods of time when biological activity is present and no mix-

ing is encountered. NCP values obtained from 23 Novem-

ber to 13 December decrease from 140± 7 to 60± 12 mmol

C m−2 d−1. Concomitant O2 increases and DIC decreases al-

low the calculation of the oxygen carbon stoichiometric ra-

tio O2 /C in organic matter (dissolved and particulate) after

subtracting the contribution of CO2 and O2 air–sea gas ex-

change. O2 /C values range between 1.1 and 1.4 as expected

for new and regenerated biological production regimes.

In the vicinity of the polar front, within the downstream

Kerguelen Plateau plume, the absorbed CO2 air–sea flux is

equal to −8 mmol m−2 d−1 and the O2 outgassing equal to

+38 mmol m−2 d−1. In the polar frontal zone from 16 De-

cember 2011 to 12 February 2012, the ocean surface is a

source of CO2 for the atmosphere equal to+5 mmol m−2 d−1

and a sink for O2 equal to −48 mmol m−2 d−1. The abrupt

simultaneous changes of the sign of the air–sea CO2 and O2

fluxes when the buoy crosses the polar front show the domi-

nant contribution of biology to the west in the iron-fertilized

Kerguelen plume, which is characterized by an absorption of

CO2 and an outgassing of O2. However a patchy distribution

of iron within the plume can lead to a patchy organic car-

bon production and consequently affect the uptake of atmo-

spheric CO2 unevenly in time and space. For instance, this

is well illustrated when the buoy crosses the polar front on

16 December. This study points out that care should be taken

when extrapolating sparse air–sea flux measurements obser-

vations without an understanding of the hydrodynamic fea-

tures of the upper ocean.
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