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Abstract. Studies of coastal seas in Europe have noted the

high variability of the CO2 system. This high variability, gen-

erated by the complex mechanisms driving the CO2 fluxes,

complicates the accurate estimation of these mechanisms.

This is particularly pronounced in the Baltic Sea, where the

mechanisms driving the fluxes have not been characterized

in as much detail as in the open oceans. In addition, the

joint availability of in situ measurements of CO2 and of sea-

surface satellite data is limited in the area. In this paper,

we used the SOMLO (self-organizing multiple linear out-

put; Sasse et al., 2013) methodology, which combines two

existing methods (i.e. self-organizing maps and multiple lin-

ear regression) to estimate the ocean surface partial pressure

of CO2 (pCO2) in the Baltic Sea from the remotely sensed

sea surface temperature, chlorophyll, coloured dissolved or-

ganic matter, net primary production, and mixed-layer depth.

The outputs of this research have a horizontal resolution of

4 km and cover the 1998–2011 period. These outputs give a

monthly map of the Baltic Sea at a very fine spatial resolu-

tion. The reconstructed pCO2 values over the validation data

set have a correlation of 0.93 with the in situ measurements

and a root mean square error of 36 µatm. Removing any of

the satellite parameters degraded this reconstructed CO2 flux,

so we chose to supply any missing data using statistical im-

putation. The pCO2 maps produced using this method also

provide a confidence level of the reconstruction at each grid

point. The results obtained are encouraging given the spar-

sity of available data, and we expect to be able to produce

even more accurate reconstructions in coming years, given

the predicted acquisition of new data.

1 Introduction

The ocean plays an important role in the global carbon bud-

get. It acts as a major carbon sink for anthropogenic carbon

dioxide (CO2) emitted to the atmosphere from fossil fuel

burning, cement production, biomass burning, deforestation,

and various land use changes. The ocean is currently slowing

the rate of climate change, having absorbed approximately

30 % of human emissions of CO2 to the atmosphere since the

Industrial Revolution (Stocker et al., 2013). The exchange

of CO2 between coastal environments and the atmosphere is

a significant part of the global carbon budget (e.g. Borges

et al., 2005; Chen and Borges, 2009; Laruelle et al., 2010).

While continental shelves represent only 7 % of the oceanic

surface area and less than 0.5 % of the ocean volume, the

estimated overall sink of CO2 in the continental shelf sea

is −0.22 PgC yr−1 (Laruelle et al., 2010), corresponding to

16 % of the open oceanic sink (Takahashi et al., 2009). These

estimates are subject to great uncertainty related to sparse

data coverage in time and space. Monitoring the oceanic

partial pressure of CO2 (pCO2) at monthly and seasonal

timescales is essential for estimating the regional and global

air–sea CO2 fluxes and reducing this uncertainty. For tech-

nical and budgetary reasons, in situ measurements of marine

pCO2 are sparsely distributed in time and space. However,

over the last decade, technical improvements and coopera-

tion with the shipping industry have allowed for the installa-

tion of several autonomous monitoring systems aboard com-

mercial vessels routinely crossing the ocean basins. These

instruments make quasi-continuous measurements, allowing
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regional analysis of the highly variable spatial and tempo-

ral distributions of pCO2 (e.g. Lefèvre et al., 2004; Lüger

et al., 2004; Corbière et al., 2007; Schneider et al., 2003).

The Baltic Sea, a semi-enclosed sea in northern Europe, is

relatively well monitored and has been studied for several

decades (Meier et al., 2014). Despite the increased number

of measurements made in the Baltic Sea, assessing the car-

bon fluxes in the Baltic Sea remains particularly challeng-

ing due to the non-linearity of the emission and absorption

system. This non-linearity is complicated by a combination

of varying salinity, varying river input of dissolved organic

carbon, and large general variability due to the strong sea-

sonal cycle in the region. Using new methodologies could

generate additional information from the relatively limited

number of existing measurement data. Neural network tech-

niques are empirical statistical tools that somewhat resolve

the non-linear and often discontinuous relationships among

proxy parameters without any a priori assumptions. In the

past decade, several authors have reported the application of

a neural network technique to basin-scale pCO2 sea analy-

sis (Lefèvre et al., 2005; Jamet et al., 2007; Friedrich and

Oschlies, 2009; Telszewski et al., 2009; Landschützer et al.,

2013; Nakaoka et al., 2013; Schuster et al., 2013), concen-

trating mainly on the North Atlantic Ocean. Most recently,

Telszewski et al. (2009) successfully applied a neural net-

work technique based on a self-organizing map (SOM) to

reconstruct the seawater pCO2 distribution in the North At-

lantic (10.5 to 75.5◦ N, 9.5◦ E to 75.5◦W) for three years (i.e.

2004 to 2006) by examining the non-linear/discontinuous re-

lationship between pCO2 sea and the ocean parameters of

sea surface temperature (SST), mixed-layer depth (MLD),

and chlorophyll a concentration (Chl a). In this paper, we

applied the SOMLO methodology (self-organizing multiple

linear output), which creates an SOM classification of the

available explicative oceanic parameters in the Baltic Sea and

then calculates multiple linear regression (MLR) parameters

for estimating the pCO2 from the elements belonging to each

class separately. The major benefit of this methodology is

that it allows the use of a linear model (i.e. the MLR) despite

the non-linear relationship between pCO2 and its explicative

parameters, by using the SOM classifier. The SOM classi-

fier can determine the region of the multidimensional data

space in which to perform the linear regression. If the clas-

sification is fine enough, each region will represent a single

type of relationship between the pCO2 and the explicative

data, a type that can be reproduced by an MLR. Due to the

temporal and spatial limitations of the in situ pCO2 data, the

satellite data can help estimate the air–sea CO2 fluxes over

the entire Baltic Sea. The satellite data have a higher spatial

coverage of the Baltic Sea, allowing estimation of the pCO2

from in situ data using the SOMLO method. Chierici et al.

(2009) demonstrate that, in the North Atlantic Ocean, SST,

Chl a, and MLD contributed significantly to the estimation

of pCO2 from a linear relationship. Based on this idea, we

applied these parameters to the Baltic Sea, adding two other

parameters, i.e. net primary production (NPP) and coloured

dissolved organic matter (CDOM), that provide information

about the biological activity occurring in summer. From this,

we develop pCO2 algorithms applicable to the Baltic Sea us-

ing in situ pCO2 values; remotely sensed SST, Chl a, and

CDOM; modelled MLD and NPP; and time.

The manuscript is structured in four parts. First, we present

a synopsis of the problem studied, including existing studies

of pCO2 reconstruction in other maritime regions. Next we

present the available data and briefly describe the methodol-

ogy used. In the third part of the article we present our re-

sults, namely, the topological maps obtained and the recon-

structions performed with them. We conclude the article by

discussing the results obtained and future possible improve-

ments of the method used.

2 Materials and methods

2.1 Study area

The Baltic Sea is a semi-enclosed sea with limited exchange

with the North Atlantic through the North Sea–Skagerrak

system. Previous investigations of the Baltic Proper found

large temporal and spatial variability of pCO2. The ampli-

tude of the annual pCO2 cycle varies significantly depend-

ing on the region, ranging from 400 µatm in the northeast-

ern Baltic Proper to 120 µatm in the transition areas to the

North Sea (Schneider and Kaitala, 2006). The Baltic Sea re-

ceives significant river run-off from surrounding land (a total

of approximately 15 000 m3 s−1 (Bergstrom, 1994) and net

precipitation of approximately 1500 m3 s−1 (Omstedt et al.,

2004)). This large freshwater addition brings large amounts

of nutrients and inorganic and organic carbon to the Baltic

Sea basin (Omstedt et al., 2004; Hjalmarsson et al., 2008).

The biogeochemical processes in the Baltic Sea marine envi-

ronment are controlled mainly by the biological production

and decomposition of organic matter occurring in the con-

text of the region’s hydrography (Siegel and Gerth, 2012).

Physical forcing controls the water transport, stratification,

temperature, and salinity in the Baltic Sea; these factors then

influence the nutrient and carbon distribution, thereby affect-

ing biogeochemical processes. We divide the Baltic Sea into

three basins, i.e. the central part (CP), the Gulf of Bothnia

(GB), and Gulf of Finland (GF), as shown in Fig. 1. The

Baltic Sea has an average depth of 55 m and a maximum

depth of 460 m at the Landsort Deep (Wesslander, 2011).

2.2 pCO2 observations

To compile the pCO2 maps, we use measured data from three

sources.

1. The Östergarnsholm site: this site is located next to the

small island of Östergarnsholm in the central Baltic Sea

and is further described by Rutgersson et al. (2008) and
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Figure 1. The dashed red lines divide the Baltic Sea into three

basins: CP: central part; BB: Gulf of Bothnia; and GF: Gulf of Fin-

land. Monthly data are available from 1998 to 2011 for the Baltic

Sea. The colour bar shows the pCO2 values in µatm. The black ar-

row shows the position of the SAMI sensor.

Norman et al. (2013a). The island is situated 4 km from

the east coast of the larger island of Gotland. SST and

pCO2 are measured semi-continuously 4 m below the

sea surface using a submersible autonomous moored in-

strument (SAMI) CO2 sensor moored at a buoy 1 km

southeast of the tower situate on the island. In addition,

SST is also measured using a wave rider buoy (operated

by the Finnish Meteorological Institute) at 0.5 m depth

situated approximately 4 km southeast of the tower.

2. Cargo ship: this data set derives from continuous mea-

surements of the surface water pCO2 made in the Baltic

Sea using a fully automated measurement system de-

ployed on a cargo ship. The Leibniz Institute for Baltic

Sea Research, Warnemünde, Germany (IOW – Insti-

tut für Ostseeforschung Warnemünde), has made con-

tinuous measurements of pCO2 at 5 m depth aboard

the cargo vessel Finnpartner . This ship crosses be-

tween Lübeck and Helsinki at a 2-day interval, alter-

nately crossing the eastern and western Gotland Sea

(Schneider and Kaitala, 2006; Schneider et al., 2009).

Data from Finnpartner were acquired between July

2003 and December 2005.

3. The Swedish Meteorological and Hydrological Insti-

tute (SMHI) database Svenskt Havsarkiv (SHARK): pH

(measured using the method of Grasshoff et al., 1999)

and total alkalinity (TA) (measured using potentiomet-

ric titration as described by Grasshoff et al., 1999) are

measured continuously at a monthly or semi-monthly

resolution in the Baltic Sea at various stations. All mea-

surements are made at a depth of 5 m depth. The un-

certainty of the pH is ±0.03 pH units and of the TA is

±5 % (Wesslander et al., 2009). pCO2 is estimated from

the pH, TA, salinity, and temperature measurements us-

ing the standard CO2SYS program (Lewis and Wal-

lace, 1998) with the equilibrium constant from Weiss

(1974) and Merbach et al. (1973) as refitted by Dickson

and Millero (1987), as in Wesslander et al. (2009). The

pCO2 estimation was compared with the other source

of pCO2 data, all the data were compared in time (less

than 1 h) and position (around less than 0.2◦), the corre-

lation coefficient (R) gives 0.98, and the standard devi-

ation (SD) is 9 µatm. The high standard deviation (SD)

is explained by the presence of upwelling with high

pCO2 present near the coast in the SAMI sensor mea-

surement; when we remove the upwelling event, the SD

is 1.5 µatm.

2.3 Remote sensing data

The satellite data used in this study are from various sources.

We use a monthly temporal resolution and a spatial resolution

based on the lowest spatial resolution of our data sets, i.e.

based on the lower spatial resolution CDOM data set.

We obtain values for five parameters from various sources:

SST: several data sets are used for SST, and we

combine two types of data sets for 2007 and 2011.

For 2005–2011, we use data from the Federal Mar-

itime and Hydrographic Agency (BSH), which pro-

cessed data from the NOAA Advanced Very High

Resolution Radiometer (AVHRR), and data from the

Group for High-Resolution Sea Surface Tempera-

ture (GRHSST) data set for the Baltic Sea, 2007–

2011. The spatial resolution is 0.03◦ at a daily

temporal resolution (http://podaac.jpl.nasa.gov/dataset/

DMI-L4UHfnd-NSEABALTIC-DMI_OI). For 1998–

2004, the data come from a reanalysis of the

NOAA/NASA AVHRR data stream conducted by the

University of Miami’s Rosenstiel School of Marine and

Atmospheric Science (RSMAS) and the NOAA Na-

tional Oceanographic Data Center (NODC). This data

set consists of the monthly average SST (in ◦C) over the

zone, with a spatial resolution of 4 km, extracted from

version 5.2 of the AVHRR Pathfinder project (Casey

et al., 2010) (http://www.nodc.noaa.gov/SatelliteData/

pathfinder4km/). The various SST data sets were com-

pared with measured SMHI temperature data at a

monthly resolution from 1998 to 2011, giving a cor-

relation coefficient (R) of 0.99 and a mean difference

(MD) of 0.05 ◦C between the two data sets. The dif-

ference observed between the measured and satellite

data between 1998 and 2004 give a value (R= 0.99

and MD= 0.09 ◦C) near the difference between 2005

www.biogeosciences.net/12/3369/2015/ Biogeosciences, 12, 3369–3384, 2015
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and 2011 (R = 0.99 and MD= 0.14). The two SST data

sets used between 2007 and 2011 were also compared

with the SAMI sensor data at a daily resolution, giv-

ing a good correlation for the BSH data (R = 0.95 and

MD= 0.06 ◦C) and the GRHSST data (R = 0.95 and

MD= 0.08 ◦C).

Chl a: this data set consists of monthly averages from

the following sensors: Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) (September 1998 to December 2002)

with 4 km spatial and monthly temporal resolutions

and Moderate-Resolution Imaging Spectroradiometer

(MODIS-Aqua) (July 2002 to June 2011) with 4 km

spatial and monthly temporal resolutions (Casey et al.,

2010). A log-normal distribution was assumed for the

Chl a data. Comparison with SMHI measurement data

and in situ data (personal communication from Dr.

Tiit Kutser) gives R = 0.67 and MD= 7 mg m−3. The

chlorophyll levels from the satellite data seem to be

overestimated compared with the in situ data. Since we

use the same data set over the whole study period, this

bias was learned during the classification process and

and the MLR parameters are calculated considering that

any further input will include that bias.

CDOM values come from MODIS-Aqua 4 km monthly

average data. The CDOM index quantifies the deviation

in the relationship between the CDOM and Chl a con-

centrations, where 1.0 represents the mean relationship

for Morel and Gentili (2009) case 1 waters, and val-

ues above or below 1.0 indicate an excess or deficit,

respectively, in CDOM relative to the mean relation-

ship. The algorithm and its application are fully de-

scribed by Morel and Gentili (2009). In situ CDOM

data (T. Kutser, personal communication, 2014) give a

lower correlation coefficient and a low average differ-

ence (R = 0.48, MD= 2.3). As for the chlorophyll, the

bias is applied to all years so it does not affect the esti-

mation of pCO2.

NPP values come from two data sources. The first data

set comes from the Environmental Marine Information

System (EMIS): the EMIS model is depth-integrated

but allows for depth-dependent variability in the dif-

fuse attenuation coefficient, which is calculated from

a multiple-component semi-analytical inversion algo-

rithm (Lee et al., 2005). The primary production calcu-

lation is based on the formulation obtained through di-

mensional analysis by Platt and Sathyendranath (1993).

The photosynthetic parameters are assigned by the com-

bined use of a temperature-dependent relationship for

the maximum growth rate Eppley (1972) and a vari-

able formulation to retrieve the C : Chl a ratio follow-

ing the empirical relationship of Cloern et al. (1995).

The EMIS data set comprises monthly average values

from October 1997 to September 2008. The second data

set, for 2009–2011, uses the Vertically Generalized Pro-

duction Model (VGPM) of Behrenfeld and Boss (2006)

as the standard algorithm. VGPM is a “chlorophyll-

based” model that estimates net primary production

from chlorophyll using a temperature-dependent de-

scription of chlorophyll-specific photosynthetic effi-

ciency. For VGPM, net primary production is a function

of chlorophyll, available light, and photosynthetic effi-

ciency. VGPM uses MODIS-Aqua chlorophyll and tem-

perature data, SeaWiFS photosynthetically active radi-

ation (PAR) data, and estimates of the euphotic zone

depth from a model developed by Morel and Berthon

(1989) and based on chlorophyll concentrations. For the

NPP for 2009–2011, the observed maximum value was

limited to 10 to be comparable to the data for 1998–

2008. Validation of NPP was difficult due to the number

of data available in the area. Comparison of the two data

sets gives similar values and seasonal cycles. We com-

pared the seasonal cycles between 1998 and 2008 and

between 2009 and 2011, obtaining values of the same

order of magnitude.

MLD: there are also two sources of the MLD data.

Monthly averages from 1998 to 2007 come from a 3-

D hydrodynamic model currently used at the the Joint

Research Centre/Institute for Environment and Sustain-

ability (JRC/IES), i.e. the public-domain General Estu-

arine Transport Model (GETM; www.getm.eu), which

has its roots in developments at the JRC/IES (Bur-

chard and Bolding, 2002). GETM simulates the most

important hydrodynamic and thermodynamic processes

in coastal and marine waters and includes flexible verti-

cal and horizontal coordinate systems. Different turbu-

lence schemes are incorporated from the General Ocean

Turbulence Model (GOTM; www.gotm.net). For 2008–

2011, we use data from the carbon-based production

model at a monthly resolution (Behrenfeld et al., 2005).

The MLD was estimated from SMHI temperature and

salinity profile measurements using the density criterion

of Boyer Montégut et al. (2004); the comparison be-

tween the model estimation and estimated SMHI MLD

is good (R = 0.63 and MD= 17 m). Between 1998 and

2007, the correlation coefficient is higher (R = 0.8) than

between 2008 and 2011 (R = 0.5). Nevertheless, the

MD is lower for the second data source, i.e. 20 m vs.

11 m. This can be explained by the available data cov-

erage: 63 % of the in situ data cover the 1998–2004 pe-

riod. From 2008 to 2011, the maximal value is below

80 m between 1998 and 2007, so for the in situ data es-

timation, we replace every value above 80 m with “not

a number”.

In the Baltic Sea, there are many gaps in the satellite data;

this is due to the high proportion of coastal waters, where

satellite data are less reliable, and to the frequent large-scale

cloud coverage. To increase the total number of our data,

Biogeosciences, 12, 3369–3384, 2015 www.biogeosciences.net/12/3369/2015/
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we used a monthly temporal resolution and a method to

improve the spatial distribution of the data. For statistical

analysis, the irregularly spaced density of the measurements

were first uniformly resampled. To this end, Gaussian grind-

ing was used, as described by Greengard and Lee (2004);

Dutt and Rokhlin (1995). The data points of the original se-

ries are convolved using a Gaussian kernel. As a result, the

data points are smeared over their neighbouring equi-spaced

points, which are more densely distributed. This method pro-

duces more realistic values than does simple interpolation,

particularly when there are many data gaps (Schomberg and

Timmer, 1995). There is no discontinuity between the differ-

ent data sets, but NPP, CDOM, and Chl a data are missing

for January and December, so no reconstruction can be per-

formed for these months.

2.4 Data available

The positions and values of all the in situ pCO2 data are

shown in Fig. 1. We use the spatial resolution of the param-

eter with the lowest resolution for the final data set chosen

(i.e. CDOM). A monthly temporal resolution is used for this

study. Rutgersson et al. (2008) demonstrate that the agree-

ment between SAMI sensor data and the ship data from

Finnpartner (near the mooring maximum of 23 km) is quite

good. This good agreement is confirmed by the comparison

between pCO2 data from the SAMI sensor, the data sur-

rounding the mooring (0.2◦), and the other data sets. These

analyses give a good correlation factor of 0.98. The in situ

data are available mainly for the central basin, but the number

of data for the Gulf of Bothnia is very low, coming from two

SMHI stations. The in situ pCO2 data are well distributed

over the 12 months (Fig. 2). January is the month for which

the number of data is lower (i.e. below 80), but the other

months have 110–155 data points each. In our case, each in

situ data point is characterized by SST, Chl a, CDOM, NPP,

and MLD as well as information on the date the measure-

ments were made. This temporal information was normalized

by sine and cosine, as follows:

time(cosine)= cos

(
Days · 2π

365

)
, (1)

time(sine)= sin

(
Days · 2π

365

)
, (2)

where “Days” represents the Julian day.

This definition of time is used to render the values contin-

uous over the course of the year, sidestepping the artificial

numerical transition from the last day of one year to the first

day of the next, to be able to situate the process in relation to

its seasonality.

Although time itself is not affecting the pCO2, the in-

clusion of time (time(cosine) and time(sine)) as a parame-

ter is important since, in the database, some situations have

similar values for SST, Chl a, CDOM, NPP, and MLD but

Figure 2. Histogram showing the number of observations in func-

tion of the month between 1998 and 2011.

different pCO2 values. For example, in May we had a sit-

uation (SST= 9.3 ◦C, Chl a= 0.1 mg m−3, CDOM= 4.3,

NNP= 1.7 mg C m−2 d−1, and MLD= 10.8 m) whose pa-

rameters were very close to those of a situation in Novem-

ber (SST= 9.1◦C, Chl a= 0.1 mg m−3, CDOM= 4.3,

NNP= 1.6 g C m−2 d−1, and MLD= 10.3 m); however, the

pCO2 values differed greatly, being pCO2= 214 and

444 µatm respectively, during the two situations. This dissim-

ilarity in the pCO2 values informs us that these situations are

generated by other drivers than SST, Chl a, CDOM, NPP, and

MLD. Since these drivers can be related to seasonal patterns,

we included information on the time of the year, as a proxy

that allows us to fine-tune our classification. The inclusion of

two temporal values instead of only one, even though those

are highly correlated, was unavoidable in order to preserve

continuity in the values obtained when changing years.

A principal component analysis (PCA) was conducted to

highlight the importance of the parameters in the pCO2 vari-

ability (Fig. 3). PCA is a method of analysis which involves

finding the linear combination of a set of variables that has

maximum variance and removing its effect, repeating this

successively (Jolliffe, 2002). The percent of variance ex-

plained by each axis of the PCA is shown in Table 1. The

results of this PCA indicate that the percentages of variance

explained by all axes beyond the first do not differ greatly,

with the notable exception of the last two axes, indicating

that most parameters can be discriminant in the definition of

the SOM states. The need to maintain the totality of these

parameters is further demonstrated by the projection of the

explicative parameters in the correlation circle, where all val-

ues are close to the boundaries of the correlation circle. This

informs us that they are all tied to the phenomena explaining

62 % of the total variation of our data. While we could reduce

the dimension of the problem by using only the projection of

these variables on the first few axes, we chose to maintain all

the explicative parameters presented when applying SOMLO

to estimate the pCO2 in order to be able to not lose any in-

formation when performing the SOM classifications.

www.biogeosciences.net/12/3369/2015/ Biogeosciences, 12, 3369–3384, 2015
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Figure 3. Correlation scatter plot with the representation of param-

eters on axes 1 and 2. The first component plane contains 62 % of

the total variance of the system under study, and all parameters are

close to the exterior of the circle, indicating that they are all impor-

tant in order to invert the pCO2.

Table 1. Percent of variance explained by each axis of the PCA.

Axis number 1 2 3 4 5 6 7 8

Percent of variance 42 20 14 9 8 4 2.5 0.5

In total, 1445 pCO2 data are used in this study, after hav-

ing removed the outliers from our data set. These 170 oultiers

were beyond 3 standard deviations away from at least one of

the explicative parameters. All parameters (i.e. SST, Chl a,

CDOM, NPP, and MLD) are located around each pCO2 da-

tum. In winter (i.e. October to March), more data are missing

(Table 2, column 1), particularly for Chl a, CDOM, and NPP,

winter being the period when it is more difficult to measure

or estimate these parameters. Between April and September,

the number of missing SST, Chl a, CDOM, and MLD data

is relatively low compared with the total number of data (Ta-

ble 2, column 2), i.e. fewer than 3 % of the total. To increase

the number of data available, we completed the data by train-

ing the topological map. Further details on this are presented

in Sect. 2.5.

2.5 Methodology

The relationship between pCO2 and the environmental pa-

rameters is highly non-linear: a slight variation in some of

the environmental parameters could correspond to significant

variations in pCO2. We chose to use the SOMLO methodol-

ogy, which combines two statistical approaches: SOMs (Ko-

honen, 1990) and linear regression. SOMs are a subfamily of

neural network algorithms used to perform multidimensional

classification. A defining characteristic of SOMs is that their

Table 2. Number of missing values for each parameter for the satel-

lite data for the October–March and April–September periods. The

numbers in parentheses indicate the total data points in each period.

Parameter October–March (685) April–September (814)

SST 28 0

Chl a 202 24

CDOM 320 5

NPP 468 571

MLD 6 2

Figure 4. The various elements used in training a self-organizing

map. On the left we have the data set used to train the SOM, which

discretizes it into classes. Each class contains a referent vector con-

taining, for each parameter, the average value of the elements com-

prising it as well as an index of the class that informs us of its loca-

tion on the topological map.

classes can represent a Gaussian distribution centred around

the typical profile of environmental parameters, if there is

high discretization of the training data set (Dreyfus, 2005).

We use this hypothesis to classify the environmental param-

eter data set and then estimate the parameters of a linear re-

gression for each class. In the following section, we present

a brief overview of the two statistical algorithms and their

application to our data sets.

2.5.1 Self-organizing maps

Self-organizing topological maps comprise a clustering

method based on neural networks. They cluster a learning

data set into a reduced number of subsets, called classes, with

common statistical characteristics.

Generating a SOM requires the creation of a training

database that contains homogenous vectors. After a training

phase, we obtain a SOM. The term “map” corresponds to a

2-D matrix that stores, for each class, its referent vector, r i ,
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Figure 5. On top we have a representation of the topological map

as a lattice, while on the bottom we have a projection of data in

the data space (black circles), as well as the average values of each

class (red circles). Adjacent classes on the SOM lattice correspond

to adjacent areas in the multidimensional data space. The red lines

indicate the connections between neighbouring classes.

which approximates the mean value of the elements belong-

ing to it, and its index, which positions it in the map matrix

used to situate it in relation to the other classes (Fig. 4).

SOMs are also called self-organizing topological maps,

“topological” indicating that the SOM training algorithm

forces a topological ordering of the classes in the matrix,

meaning that any two neighbouring classes Ci and Cj on the

map matrix have referent vectors r i and rj that are close in

the Euclidean sense in the data space.

Let us consider a vector x that is of the same dimensions

and nature as the data used to generate the topological map;

we can find the index of the class to which it is classified by

choosing index= arg maxi (||x− r i ||) (where arg max is the

argument maximal), therefore assigning it to the class whose

referent is closest to it in the Euclidean sense (Fig. 5). A clas-

sified vector x will be represented by its class index, Cindex.

If we are trying to classify a vector that has some missing val-

ues, the comparison is performed between the existing values

of x and the corresponding values of each r i .

As a version of the expectation–maximization algorithm,

the SOM algorithm performs an iterative training. During

the early phases of this training, the referent vectors of each

class are strongly affected by the changes imparted on their

neighbours’ referent vectors in order to capture the shape

of the data cloud. Depending on the training parameters of

the SOM, in the latter phases of the training, the effect of

the neighbouring vectors on the determination of the referent

vector can be considered null. In these cases, each referent

vector approximates, locally, the mean value of the multidi-

mensional Gaussian random distribution that generated the

training data assigned to that class (Dreyfus, 2005).

2.5.2 Multiple linear regression

MLR is a modelling method that expresses the value of one

response variable, V (in our study pCO2), as a linear func-

tion of other explicative variables, i.e. X=X1, X2, . . ., Xi
(in our study SST, Chl a, CDOM, NPP, MLD, timesin, and

timecos). An MLR is generally performed either to interpret

the relationship between the variable y and each of the other

predictive variables Xi or else to predict, from a data set of

vectors containing the values of X, the corresponding value

of y. In this paper, we used both aspects of MLR.

However, to perform MLRs in the present case, we had

to take into account their limitations and the nature of the

problem. Specifically, to perform an MLR we are obliged to

assume that the relationship between the predictor variables

and the response variable is linear. However, this is not the

case in our data sets: pCO2 is not linearly related to the vari-

ables presented when considering the entirety of the problem.

However, as noted above in Sect. 2.5.1, if we consider the

classes created by the SOM, they are very localized regions

of the combined explicative and response data space that can

be considered to approximate, locally, the mean value of a

multidimensional Gaussian random distribution. We there-

fore assume that, if performed in the reduced neighbourhood

of a SOM class, the relationships between pCO2 and the ex-

plicative variables are linear.

3 Application and results

3.1 Statistical imputation

As described in Sect. 2.4, both the satellite and measured

data available for the application present missing values. To

complete these data sets, we chose to use imputation meth-

ods similar to those described by Schafer and Graham (2002)

and Malek et al. (2008). The main idea of these methods is to

use the classifying abilities of the SOMs to regroup the data

in typical situations and replace the missing explicative data

values with the corresponding values of the referent vector of

the class to which it belongs.

We first selected the database containing SST, Chl a,

CDOM, NPP, MLD, timesine, and timecosine. The vectors

were sorted according to the number of values missing from

each vector and noting the locations of these missing val-

ues. We chose all complete data vectors and the first 5 % of

the sorted vectors containing missing data, and we trained a

SOM. We proceeded by replacing the missing values of these

first 5 % of vectors with the corresponding values of the ref-

erent vector of the class to which they each belong. We then

included the next 5 % of vectors with missing data in a new

training data set and created a new SOM. Based on this new

SOM, we again filled the new missing values with the corre-

sponding values of the referent vector of the class of the new

SOM to which they each belong. In addition, we deleted the
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Figure 6. A schematic of the imputation method used. We initially

sort the data depending on the amount of missing values present,

then progressively train SOMs on the data set, steadily including

more vectors for the training and completing and updating the miss-

ing data during each iteration.

values we added to the first 5 % of vectors and replaced them

with the values of the referent vector of the class of the new

SOM to which they each belong. The training parameters of

this method, such as the number of classes of the topological

map and the number of iterations, were selected by param-

eter tuning. We then continued iterating this process, updat-

ing the previously filled missing values with the values of

their corresponding referents belonging to the most recently

trained SOM, until all missing values were filled. The up-

dating of the previously filled values allows the method to

progressively incorporate information and to rectify the pre-

vious errors. A schematic of the imputation method used can

be seen in Fig. 6.

After this imputation of the missing data through iterative

training, the reconstructed data represent the original data

well. Figures 7 and 8 show data for six variables before and

after the reconstruction respectively. The main difference is

observed for the values of Chl a, where the peak of over 200

individuals occurs at 0 mg m−3 because, at the initialization

of the imputation process, we decided to replace all null val-

ues. The repartitioning of pCO2 (Fig. 8a) is very represen-

tative of the data variability with a large range of values.

Some very high values occur during local events, such as

coastal upwelling. Most of the data range between 180 µatm

(value observed in summer) and 550 µatm (observed in win-

ter). The SST (Fig. 8b) is very representative of the variabil-

ity in the Baltic Sea, with a maximum occurring between July

and September in all basins around 18 ◦C (Siegel and Gerth,

2012). The NPP variability is fairly homogenous, except for

the peak at 10 mg C m−2 d−1. This peak occurs because the

first model providing us the NPP values has a set maximum

of NPP at 10 mg C m−2 d−1; therefore, the correction of the

NPP satellite data takes this maximum into account.

Figure 7. Histogram of (a) pCO2 and satellite data, (b) SST,

(c) Chl a, (d) NPP, (e) CDOM, and (f) MLD available for the SOM

before reconstruction. Y axis represents the number of data, and the

x axis the value of the parameters.

Figure 8. Histogram of (a) pCO2 and satellite data, (b) SST,

(c) Chl a, (d) NPP, (e) CDOM, and (f) MLD available for the SOM

after reconstruction. Y axis represents the number of data, and the

x axis the value of the parameters.

The variability of chlorophyll results in one subset of the

data with a low value and another subset with a value higher

than 6 mg m−3, which can be explained by the fact that the

Baltic Sea is a narrow sea, with important coastal regions,

and that two blooms take place, in spring and in summer.

The chlorophyll value can be very high during these periods,

and the reconstruction gives a mean value for this charac-

teristic. A peak at 10 mg m−3 is observed in the chlorophyll

data, not due to the reconstruction but to the maximum value

in the satellite data file. The low MLD occurs in summer,

and in the model the minimum is 10 m deep, which appears

to be around the minimum value observed in Fig. 8f. Ab-

sorption by CDOM decreases with increased distance from

the riverine sources, reaching a relatively stable absorption

background in the open sea. Most of our CDOM data cap-

ture open-sea conditions, so the values are quite low.
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3.2 pCO2 estimation

3.2.1 Topological map

We classified the explicative variables (i.e. SST, Chl a,

CDOM, NPP, MLD, timesin, and timecos) into classes that

share similar characteristics. In order to optimize the SOM

map size for the method and to calculate the method’s perfor-

mances, we randomly sampled 90 % of our completed data

set (1300 vectors) to be used for the training phase, keep-

ing 10 % (144 vectors) to be used for computing the per-

formances of the method. We iterated this process, selecting

many different random samplings for each map size, and se-

lected the map size with the best average reconstruction when

applying the SOMLO methodology.

At the end of our optimization, we selected a SOM con-

sisting of 77 classes. The number of observations captured

by each class ranges from 0 to 38 (Fig. 9). The order of mag-

nitude of the number of observations is constant throughout

the SOM, and we can regard the classes as having spread in

multidimensional space in order to accurately represent the

data space of the explanatory parameters. The presence of

classes that did not capture any elements can be justified as

preventive: they preserve the topological aspect of the SOM

by preventing classes that are not similar enough from be-

coming neighbours.

To estimate the average concentration of pCO2 in each

class, the measurements of pCO2 associated with vectors

consisting of SST, CDOM, NPP, MLD, and CHL a compo-

nents were presented to the already-trained SOM as input

data (Fig. 10). The average value computed for the vectors

belonging to each class corresponds to the average value of

pCO2 for that class.

In the final map, the distribution of pCO2 is strongly de-

pendent on the SST distribution, with low values of pCO2

correlating with high values of SST (Fig. 10). This is in

agreement with the seasonal pCO2 cycle, which is charac-

terized by a large amplitude, ranging from a high value in

winter (≈ 500 µatm) to a low value in summer (≈ 150 µatm),

described, for example, by Wesslander (2011). According to

Schneider and Kaitala (2006), the high winter value of pCO2

is a consequence of mixing with a deeper water layer en-

riched in CO2, which is in agreement with the distribution of

the MLD (Fig. 10h), with the higher value in winter and au-

tumn correlating with the high value of pCO2. High values

can also be explained by the mineralization, which exceeds

production in winter (Wesslander, 2011). Biological produc-

tion starts in spring when sunlight and nutrients are sufficient.

The chlorophyll begins to increase in March–April due to

the spring phytoplankton bloom, which reduces the pCO2

level during this period. The more intensive decrease occurs

in April and May, which is consistent with the higher value

of NPP (Fig. 10). Studies in the central Baltic Sea identify

two summer minima, the first in April–May and the second

in July–August, resulting from a second production period.

Figure 9. (a) Distribution of the neural map of (a) the average dif-

ference in pCO2 for each neuron represented by the colour bar.

(b) The standard deviation (SD) in pCO2 for each neuron repre-

sented by the colour bar. For (a) and (b), the numbers inside the

neurons correspond to the number of data that construct the charac-

teristics of the neuron.

Figure 10. Distribution of each parameter in the neural map:

(a) pCO2 in µatm, (b) SST in ◦C, (c) and (e) time cosine and

sine respectively, (d) Chl a in mg m−3, (g) NPP in mg C m−2, and

(h) MLD in m.

Higher variability is observed during this period, with a stan-

dard deviation between 39 and 50 µatm for different regions

(Wesslander, 2011; Schneider and Kaitala, 2006).

3.2.2 Linear regression in the neurons

To perform an MLR, we must assume that the relationship

between the predictor variables and the response variable

is linear. We could take this to be a valid hypothesis only

when performing the MLR in the reduced neighbourhood of

a SOM class, where the relationship between pCO2 and the

explicative variables can be assumed to be linear.

For each class j a separate training data set was created

containing all the vectors assigned to that class and to all its

adjacent classes. Based on that data set, we computed the

linear regression coefficient parameters for every explicative

parameter and for a constant value.
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Figure 11. Distribution of the neural map of the coefficient from lin-

ear regression for each parameter: (a) SST in ◦C, (b) and (d) time

cosine and sine respectively, (c) Chl a in mg m−3, (f) NPP in

mg C m−2, and (g) MLD in m.

The calculated linear regression coefficient parameter val-

ues for each class are shown in Fig. 11. Note that all param-

eters are important in specific regions of the SOM, having

both positive and negative correlations in different classes.

More importantly, the fact that each parameter has a sig-

nificantly varying range of values over the different classes

demonstrates that each parameter is important in reconstruct-

ing the pCO2 in the Baltic Sea, even though a parameter may

be highly significant in some classes and relatively stable in

other regions of the topological map.

The addition of vectors belonging to adjacent classes did

not generally perturb the estimation of the coefficient param-

eters because, as seen in Fig. 10, the values of all parame-

ters are generally organized coherently on the map. The as-

sumption that they are close in the data space is not as ro-

bust as it would have been had we solely considered the vec-

tors belonging to each class, but, given the limited number of

data available for modelling this highly non-linear and com-

plex system, we would not have sufficient elements to cor-

rectly estimate the linear regression coefficients. Given the

projected increase in available data in coming years, further

applications of this approach will limit themselves to the el-

ements belonging to each class.

3.2.3 Validation of reconstruction

To validate our results, we calculated the difference and SD

between the value of pCO2 reconstructed in each neuron and

the observation defining that neuron (Fig. 9). On average, the

SD is approximately 38 µatm and the difference observed is

25–30 µatm. By cross-validating a data set (divided by 10 se-

quences), we obtained a mean SD of 48 µatm with a varia-

tion of 32–57 µatm and R equal to 0.9 with a variation of

0.86–0.96. Nevertheless some points indicating higher val-

ues can be identified (shown in red in Fig. 9). These values

are explained by the positions of these points, which are at

the edges of the cloud and therefore more likely to include

Table 3. Maximum and mean value observed in the difference be-

tween the data used for the trainee and the value in the neurons.

Parameter Maximum Average

pCO2 (µatm) 56,4 29.15

SST (◦C) 1.9 0.98

time(cos) 0.33 0.07

Chl a (mg m−3) 0.14 0.06

time(sin) 0.4 0.06

CDOM 5.15 0.06

NPP (mg m−3) 1.19 0.25

MLD (m) 9.7 3.2

Figure 12. pCO2 reconstructed in function of the measured. The

red line represents the linear relationship. The data represent 10 %

of the total of data used for the validation data set.

outliers that disturb the estimation of the MLR coefficients.

For the reconstruction of pCO2, with this identifiable point,

it is quite easy to organize a flag system. The flag can give

information about the quality of the reconstructions based on

the root mean square errors (RMSEs) of the neurons used

for the reconstruction. The difference obtained for pCO2 in

each neuron ranges from 0 to 56 µatm (Table 3), but 58 % of

the values observed are under 30 µatm. The difference can

be quite high for a parameter such as SST, with a maximum

value of 1.9 ◦C, but most of the values are lower than 1 ◦C

and CDOM ranges from 0 to 5.15 (Table 3). The other param-

eters have quite low variability, such as MLD, which ranges

from 0 to 9.7 m. The average is 2 to 3 times lower than the

maximum value observed, which gives a low value for all the

satellite parameters.

The pCO2 validation data set gives a quite good correla-

tion (R= 0.93) with the results of the reconstruction method

(Fig. 12), the root mean square (rms) being 36.7 µatm: 12 %

of the validation data have a value higher than 20 µatm, and

45 % have a value between 20 and 30 µatm (Fig. 13). The

characteristics of time, SST, MLD, CDOM, Chl a, and NPP

do not explain the difference observed in the reconstruction.
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Figure 13. Difference between pCO2 reconstructed and measured

in function of time. The red crosses and black dotted lines represent

differences greater than 20 µatm. The data represent 10 % of the

total of data used for the validation data set.

A reconstruction has been done using the satellite data

from 1998 to 2011. The seasonal cycle of pCO2 is well re-

produced and in agreement with the results of other stud-

ies. The maximum is observed in winter, with a pCO2 of

437 µatm on average, while the level is 274 µatm in summer.

These values are comparable to the averages estimated in the

central Baltic Sea of 500 µatm in summer and 150 µatm in

winter (Wesslander, 2011). The pCO2 decreases in April due

to the biological activity and increases slowly in September

(Fig. 14).

We also evaluate these results by comparing them with

modelling results. The model output used in the present study

is from a process-oriented biogeochemical ocean model in

which the Baltic Sea is divided into 13 natural sub-basins

(e.g. Omstedt et al., 2009; Norman et al., 2013b). The prop-

erties of each sub-basin are horizontally averaged and ver-

tically resolved, and the various sub-basins are horizontally

coupled to each other using strait flow models. The model

is forced by meteorological gridded data with a 3 h temporal

resolution and by river run-off and net precipitation data with

a monthly resolution (Omstedt et al., 2005). To compare the

output of the model with our results, we couple the 13 basins

in optic to reduce the number to three basins, correspond-

ing to the three basins defined in Fig. 1. The modelled and

estimated pCO2 are compared for the entire Baltic Sea and

for the three basins from 1998 to 2009 (Fig. 14). The sea-

sonal cycle for the entire Baltic Sea is well reproduced with

a quite good correlation (R= 0.7) between the modelled and

estimated pCO2 values (Table 4), whose standard deviations

differ by 74 µatm. The modelled and estimated pCO2 val-

ues for the gulfs of Finland and Bothnia are not as correlated

(R= 0.6), while the order of magnitude of the variability of

pCO2 in the Gulf of Finland as calculated with SOMLO

is closer to the model estimate (122 µatm for the modelled

and 142 µatm for the estimated pCO2). This lower correla-

tion could be due to the lower number of data in this region

available for these basins. The central basin is well repro-

duced, but the amplitude of the seasonal pCO2 cycle is lower

Table 4. Coefficient of correlation (R) between the modelled pCO2

and the pCO2 data estimated and the SD for the model and the data.

Basin R SD model (µatm) SD data (µatm)

Baltic Sea 0.7 48 96

Central basin 0.7 69 92

Bothnian Basin 0.6 44 101

Gulf of Finland 0.6 122 144

in the simulation. In the southwest part of the Baltic Sea,

SOMLO underestimates the pCO2 concentration by 60 µatm

compared with the model. In the eastern and western parts of

the basin, SOMLO produces good estimates of pCO2 com-

pared with the model, with an average difference of 20 µatm.

In Omstedt et al. (2009), the simulated pCO2 agrees quite

well with the calculated values based on observations in the

eastern Gotland Basin.

A simple flag was constructed to monitor the reconstruc-

tion quality and give an idea of the confidence in the esti-

mated pCO2. The difference between the estimated and neu-

ral values is computed. The flag equals 1 for classes in which

the average difference is less than 20 µatm, equals 2 for an

average difference of 20–30 µatm, and equals 3 for higher

average differences. In the example shown here, the flag val-

ues are high (i.e. 3), so the confidence in the reconstruction

is low, but some points have flag values of 1 or 2 (Fig. 15d,

e, and f) so the reconstruction is more reliable. On the geo-

graphic map (Fig. 15d, e, and f), the values of 4 correspond to

the presence of ice, which is estimated using the satellite data

of the National Snow and Ice Data Center based on NOAA

level 3 data Njoku (2007). The flag gives confidence in our

reconstruction; for example, in March 2010 (Fig. 15a), the

southern portion of the map (i.e. the Bornholm and Arkona

basins) shows lower pCO2 values than does the northern por-

tion and than in February (not show here). In March 2010,

this region corresponds to a flag value of 2, which was as-

cribed medium confidence. In July 2010, the flag value is

quite good and the variability of pCO2 seems to be in line

with the monthly variability (Fig. 15b and e). In Septem-

ber 2010, the value of pCO2 has a good order of magnitude

when the flag is 2 but seems slightly too high when there is

poor confidence (i.e. a flag value of 3) (Fig. 15c and f).

In conclusion, the reconstruction of pCO2 needs to be im-

proved to increase the confidence in the reconstruction data,

particularly in the gulfs.

3.2.4 Sensitivity analysis

In order to estimate the sensitivity of the reconstruction of

the pCO2 to noisy data, white noise was added on all incom-

plete data before the reconstruction. We performed three tests

by adding white noise to each parameter, which was related

to the SD of that parameter. The tested configurations were

1× sigma, 2× sigma, and 0.5× sigma.
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Figure 14. Comparison between modelled pCO2 (dotted lines) and pCO2 estimated using the SOM linear method (solid lines) for (a) the

Baltic Sea (BS, blue), (b) the Gulf of Finland (GF, grey), (c) the Gulf of Bothnia (BG, red), and (d) the central basin (C, green).

Figure 15. (a, b, and c) reconstruction of the pCO2 map, (d, e, and

f) the flag for each map. (a, d) March 2010, (b, e) July 2010, (c, f)

September 2010. The flag value 1 corresponds to high confidence,

2 to medium confidence, and 3 to low confidence.

Table 5. Coefficient of correlation (R) between the measured pCO2

and the pCO2 data estimated with SOMLO and the rms in function

of the sigma apply for the noise 0.5, 1 and 2 times the sigma.

X SIGMA R rms (µatm) Numbers of tests

0.5 0.85 61 701

1 0.80 77 733

2 0.59 134 709

The results as seen in Table 5 imply that the method is sen-

sitive to noisy data, since when increasing the noise we pro-

gressively get worse reconstructions. It is important to note

that the values obtained when using 1× sigma give an aver-

age rms of 77 and an average R coefficient of 0.80, which

indicate that the method does not degrade too much.

Another area where errors might appear is the completion

of missing data. In the data set there were vectors with miss-

ing parameters. We kept only those missing up to three pa-

rameters. The difference observed between the pCO2 mea-

sured and reconstructed in function of month and of number

of missing parameters can be seen in Fig. 16. We chose to

present the data this way to also give a better understand-

ing of the seasonal variation of the reconstruction. As seen in

Table 6 the imputation method does introduce errors. When

reconstructing the pCO2 with data that have no missing data,

we obtain a correlation of 0.96 and an rms of 25.7 µatm;

when reconstructing the pCO2 with data missing three pa-

rameters, the results are less reliable, with a correlation of

0.81 and an rms of 51.4 µatm. The rms we obtain in the

case of the reconstruction using data that contain one miss-

ing value is higher than the one obtained when using data

containing two missing values, while retaining a higher cor-
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Figure 16. Absolute difference between pCO2 reconstructed and

pCO2 measured in function of the month. The colour bar corre-

spond to the number of empty parameter before the reconstruction

(blue: 0 missing data; light blue: 1 missing datum; yellow: 2 missing

data; red: 3 missing data).

Table 6. Coefficient of correlation (R) between the measured pCO2

and the pCO2 data estimated and the SD for the model and the data

in function of the number of missing parameters.

Number of parameter R rms (µatm)

missing

0 0.96 25.7

1 0.93 39.5

2 0.86 31.9

3 0.81 51.4

relation. This could be due to the higher number of vectors

containing only one missing value.

4 Discussion and conclusions

In this paper, we used the SOMLO methodology to re-

construct the pCO2 from satellite data for the Baltic Sea.

SOMLO was used to accommodate the non-linearity of the

mechanics driving the pCO2. It uses artificial neural net-

works to classify data into situations and then performs a

reconstruction by using an MLR in each class. The pro-

cess involves classifying the explicative parameters (i.e. SST,

CDOM, Chl a, time, NPP, and MLD) and then using the lin-

ear regression coefficients corresponding to that class in or-

der to reconstruct the pCO2. The satellite data used were also

completed using an iterative process of SOM training.

We also performed a statistical analysis of the reconstruc-

tions obtained, which allowed us to add a flag to each class,

informing us of the quality of the reconstruction obtained.

This could both influence further numerical modelling of

other phenomena depending on the pCO2 and allow for an

informed interpretation of the reconstructions obtained.

The current results obtained using this method, based on

1445 vectors, gave a high correlation coefficient of 0.93 %

and an rms of 36 µatm. These results are promising given the

conditions under which we obtained them since, in addition

to having a limited number of in situ pCO2 measurements,

the co-localized satellite data were frequently incomplete.

In comparison, existing studies were performed over the

North Atlantic and North Pacific, based on a minimum of

10 000 data points (which take into account all the data from

SOCAT) to a maximum of 800 000 data points (e.g. Friedrich

and Oschlies, 2009; Hales et al., 2012; Landschützer et al.,

2013). Friedrich and Oschlies (2009) obtained an RMSE of

19 µatm. A similar study over the totality of the Atlantic

Ocean obtained an RMSE of 17 µatm for independent time

series (Landschützer et al., 2013). Hales et al. (2012) ob-

tained an RMSE of 20 µatm with a correlation coefficient

of 0.81. The RMSE we obtained here was higher than that

obtained in a previous study of the Atlantic Ocean but, tak-

ing into account the much smaller number of data available,

and a stronger spatial pCO2 variability might in the Baltic

Sea compared to the open ocean. the results presented are

promising.

The organization of the values of various MLR coefficients

over each class indicated that all the satellite data parameters

are important for reconstructing the pCO2 in the Baltic Sea,

even if only in certain cases. Improved satellite data avail-

ability could therefore also improve the performance of our

reconstruction.

This study could be further developed so as to reconstruct

the spatial fields of pCO2. Specifically, one could imagine a

Bayesian approach that would select which class to use for

the MLR by also taking into account the potential classes at-

tributed to the neighbouring grid points of a geographic study

area. This, however, remains dependent on the acquisition of

additional in situ measurements to allow for the robust esti-

mation of such Bayesian probabilities.

Many programs exist for the acquisition of new data.

Data from the Östergarnsholm site are still being ac-

quired; 2012 did not yield much data from this site, and

the data from 2013 and 2014 still need to be validated.

In time, the SMHI station could also supply additional

data. The cargo ship transect data are not yet available

for 2012–2014, but these measurements will continue,

and some data will soon be available. Data are also being

gathered from ferries sailing the Gothenburg–Kemi–Oulu–

Lübeck–Gothenburg route. This Gothenburg transect

is weekly (see http://www.hzg.de/imperia/md/content/

ferryboxusergroup/presentations/fb-ws2011_karlson.pdf).

The first tests of these data were conducted in 2010

and 2011, so some data should soon be available. In

addition, new measurements of pCO2 began in 2012 at

the Utö Atmospheric and Marine Research Station (see

http://en.ilmatieteenlaitos.fi/GHG-measurement-sites#Uto).

Given the amount of new data soon to be available, we re-

main optimistic that comprehension and statistical modelling

of pCO2 in the Baltic Sea will continue to improve in coming

years.
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