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A graph-based approach to glacier flowline extraction:

an application to glaciers in Switzerland
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aSorbonne Universités, UPMC Univ. Paris 06, CNRS, EPHE, UMR Metis

Abstract

In this paper we propose a new, graph-based approach to glacier segmen-
tation and flowline extraction. The method, which requires a set of glacier
contours and a Digital Elevation Model (DEM), consists in finding an opti-
mum branching that connects a set of vertices belonging to the topological
skeleton of each glacier. First, the challenges associated with glacier flowline
extraction are presented. Then, the three main steps of the method are de-
scribed: the skeleton extraction and pruning algorithm, the definition and
computation of a travel cost between all pairs of skeleton vertices, and the
identification of the directed minimum spanning tree in the resulting directed
graph. The method, which is mainly designed for valley glaciers, is applied
to glaciers in Switzerland.

Keywords: glacier flowline, skeleton, discrete curve evolution, optimum
branching, directed minimum spanning tree

1. Introduction1

1.1. Glacier morphology2

Glaciers are moving ice bodies which flow under their own weight, due to3

the accumulation of solid precipitations on the higher slopes of a mountain4

range. As the strain rate increases, ice viscosity decreases and the accumu-5

lated ice literally ‘flows’ downslope. Bahr and Peckham (1996) first explicitly6

drew a parallel between rivers and valley glaciers (i.e. glaciers that are con-7

fined by topography, as opposed to ice caps). They showed that glaciers also8
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exhibit branching topologies, and computed classical river network indices9

such as bifurcation and area ratios for glacier networks. This analogy stems10

from the fact that in most recent orogens where valley glaciers are found (the11

Alps, the Andes, the Himalayas, the Rocky Mountains, etc.), glacier incep-12

tion took place in a topography previously shaped by fluvial erosion (Gsell et13

al., 2014). Bahr and Peckham also pointed out that self-similarity properties14

could provide a ‘lever arm’ for tackling glacier flow dynamics for complex15

geometries, just as these properties are used for treating subgrid, hydraulic16

propagation in complex river networks with concepts such as the Geomorpho-17

logical Instantaneous Unit Hydrograph (Rodŕıguez-Iturbe and Valdés, 1979;18

Gupta et al., 1980). One of the reasons why this approach has not been given19

much attention is maybe the difficulty lying in the first step of identifying20

networks of glacier flowlines.21

1.2. Limits of classical drainage network extraction methods22

Figure 1 shows the downstream region of the Rhone glacier in Switzer-23

land. In fluvial morphology, we typically find cross-sections such as A–A’24

with a concave topography in the talweg. This translates into V- or U-25

shaped (for former glacial valleys) elevation contours, with the lowest point26

roughly in the medial axis of the talweg. Hence, river network extraction27

from a DEM is relatively straightforward, except for problems such as flat28

areas or closed depressions (see e.g. Garbrecht and Martz, 1997; Martz and29

Garbrecht, 1998).30

31

Things are more complicated for ice-covered areas. In the accumulation32

(higher) area of the glacier, where hillslopes as well as valley floors are ice-33

covered, the topography is still concave (B–B’): the surface of the ice is more34

or less homothetic to the bedrock surface (with lower roughness though). In35

contrary, in the ablation area the glacier is limited to a narrow ice tongue36

confined between lateral, ice-free hillslopes. Since ice thickness is maximum37

in the medial axis of the ice tongue, we have a convex cross-section (C–C’)38

with seemingly two talwegs on each side of the glacier. Elevation contours39

in this area have the shape of a W with its two wedges pointing upstream,40

as opposed to the single wedge in concave topography. The central flowline41

of the glacier (i.e. the line of maximum ice thickness), which is also typically42

the line of the bedrock talweg, is a local maximum and not a local minimum43

of the ice surface (it looks like is a local water divide). Therefore, it cannot44

be extracted in a stable way from a DEM with classical algorithms.45
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Figure 1: Illustration of the spurious ‘double talweg’ in glacial landscape. This feature
mainly appears in the glacier’s ablation area where a narrow ice tongue is confined in a
valley (C–C’). On a map, elevation contours in this area have the shape of a W with its
two wedges pointing upstream, whereas contours in classical (ice-free) valleys are V- or
U-shaped with a single wedge pointing upstream (A–A’).

1.3. Automatic methods for glacier flowline extraction46

The problem of glacier flowline extraction has received some attention47

recently, due to the need of feeding glacier databases with attributes such48

as glacier length. A flowline or a set of flowlines has to essentially meet49

two requirements: (i) to stay as far as possible from the glacier boundary,50

and (ii) to cross elevation contours orthogonally. Le Bris and Paul (2013)51

propose to construct a set of waypoints located at the center of ‘traverses’52

drawn perpendicular to a single, rectilinear ‘main axis’, and then connect53

them. However, the method can only extract one centerline per glacier.54

Kienholz et al. (2014) use a more complex approach based on a cost function55

which quantifies the trade-off between the two requirements; a set of flowlines56

is then extracted between glacier heads and a single snout (terminus) per57

glacier. Other methods apply alternate procedures in the accumulation and58
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ablation zones (Machguth and Huss, 2014), also resulting in a large number59

of parameters.60

1.4. Objectives of the study61

In this paper, a new method is presented that aims at extracting glacier62

flowlines with an emphasis on preserving their tree-like structure, i.e. the63

structure of tributaries within the glacier.64

65

As in Le Bris and Paul (2013), our method first identifies a set of way-66

points (i.e., vertices of a graph) that are subsequently connected. However67

these waypoints are identified with a more general operation called skele-68

tonization. Once these waypoints are identified (including special ‘snout’69

vertices), we compute a travel cost between every pair of them: the cost70

function is designed so as to penalize displacements that deviate from the71

steepest slope direction. The main difference with Kienholz et al. (2014) is72

the formulation of an anisotropic cost function. The final step is to construct73

a directed minimum spanning tree (DMST) that allows to visit all waypoints74

at minimal cost, starting from a snout (root) vertex. Edges of this DMST75

meet the two requirements: they stay ‘far’ from the glacier’s boundary (since76

they link waypoints belonging to the skeleton), and they deviate little from77

the steepest slope direction since they are least-cost paths with respect to78

the slope-dependent cost function. The overall procedure requires only 5 pa-79

rameters, in contrast with other methods (e.g. 16 parameters in Kienholz et80

al., 2014 and 17 in Machguth and Huss, 2014).81

82

The method is mainly designed for valley glaciers, as ice caps usually do83

not exhibit strong branching topologies. It is tested on a dataset of Swiss84

glaciers (Figure 2a), covering a total area of 1200 km2 and mainly located85

in the headwaters of the Rhone, Rhine, and Danube rivers. The steps of the86

method are illustrated with a focus on a particular glacier complex in the87

Bernese Alps (Figure 2b), straddling the water divide between the Rhone88

and Rhine rivers.89

2. Data90

2.1. Digital Elevation Model91

In this study we use the 25-meter Digital Elevation Model from the Swiss92

Federal Office of Topography (SwissTopo, 2004).93
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2.2. Randolph Glacier Inventory (RGI) glacier contours94

Glacier outlines are taken from the Randolph Glacier Inventory (RGI,95

Arendt et al., 2012). The RGI provides a segmentation of glacier complexes96

(continuous ice bodies) into individual glaciers; we chose to dissolve (re-97

aggregate) these elements and to work with the complexes in order test the98

ability of our approach to identify multiple snouts in such complexes. The99

segmentation is not a prerequisite and is even a by-product of our method.100

3. Skeleton extraction and pruning101

3.1. Glacier flowlines as a topological skeleton102

The method proposed by Le Bris et al. (2013), which consists in picking103

the midpoints of ‘traverses’ drawn orthogonally to the glacier’s ‘main axis’, is104

actually related to a topological operation called skeletonization, or medial-105

axis transform. A first, intuitive definition is the analogy with a grassfire106

(Blum, 1967): if one ‘sets fire’ simultaneously at all points on the border107

of a grass field enclosed in the object’s boundary, then the skeleton is the108

set of points where two or more firefronts meet (see Figure 3a). The result109

(Figure 3b) is a ‘thinned’ version of the object (i.e., a set of edges, namely110

a graph) that preserves its essential geometrical and topological features (in111

the example of Figure 3, the skeleton edges look like the veins of the leaf).112

We will see that this is a first interesting step to glacier flowline extraction.113
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Figure 2: Area covered by this study. (a) Map of Switzerland with glacier contours in dark
blue. (b) Zoom on the Rhone-Trift glacier complex illustrating the steps throughout the
paper. This complex covers 35.8 km2 and includes two large glaciers: the Rhone glacier
(15.9 km2) and the Trift glacier (16.6 km2) as well as a number of smaller ones (e.g. Tiefen,
Sidelen and Alpli glaciers).
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(a) (b)

Figure 3: Grassfire analogy of the skeletonization: (a) propagation of the ‘firefronts’; (b)
resulting skeleton i.e. the set of points where two or more fronts meet.
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3.2. Skeletonization using Voronoi tesselation114

A second definition of the skeleton uses the concept of maximal disk (or115

maximal ball in dimensions higher than 2). A disk B is said to be maximal116

in set D if it is completely included in D, and such that if it is contained in117

any other disc B′ then B′ is not completely included in D. Mathematically,118

B is a maximal disk in set D iif

{
B ⊆ D
B ⊂ B′ ⇒ B′ �⊆ D (1)

A maximal disk B(s) centered at point s is entirely contained in D and is119

interiorly tangent to the boundary ∂D in at least two different points, called120

generating points: these are two locations where firefronts originate from in121

the grassfire analogy, and they meet at the center of a maximal disk. The122

skeleton S(D) can be defined as the set of the centers of all maximal disks123

in D:124

S(D) =
{
s

/ B(s) is a maximal disk in D}
(2)

Figure 4 illustrates this definition. Gen(s) ⊂ ∂D denotes the generating125

points of the skeletal point s ∈ S(D).126
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Figure 4: Definition of skeleton S(D) as the set of centers of all maximal disks in D (gray
shape). Gen(s) denotes the generating points of the skeletal point s.

One possibility to generate the skeleton is to implement a ‘grassfire’ al-127

gorithm. Given the previous definition, another method uses the Voronoi128

tesselation (see e.g. Brandt and Algazi, 1992) of a set of points (input sites)129

sampled along the boundary (see Figure 5). Each Voronoi region represents130

the area closest to a boundary input site, and is delimited by several edges:131

hence, each edge E is a segment of the perpendicular bisector of a pair of132

input sites. To show the similarity with the previous results, we call this pair133

the generating pair Gen(E) of the edge. As the number n of input sites sam-134
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pled on the boundary increases (n → ∞), the set of edges of the tesselation135

that are contained in the domain D converges to the exact skeleton.136

0 1 2 3
km

0 1 2 3
km

Figure 5: Skeletonization using the Voronoi tesselation of a set of boundary input sites.
The set of internal edges of the tesselation (solid black lines) converges to the skeleton as
the number of points on the boundary increases (left: one point every 2000 m ; right: one
point every 500 m).

We used the Qhull library (Barber et al., 1996) to generate the tesse-137

lation. It allows to retrieve not only the Voronoi edges but also the pair138

of generating input sites (boundary points) for each edge, a highly valuable139

information for the subsequent steps. It is worth noting that the object may140

have inner boundaries (‘holes’ in the shape, such as inner rocks for a glacier),141

which will translate into cycles in the skeletal graph.142

143

RGI glacier contours were first densified so as to have at least one point144

every 50 m along the boundary, before running the tesselation with Qvoronoi.145

All subsequent steps were then performed under Scilab (Scilab Entreprises,146

2012), using the CLaRiNet library (Le Moine, 2013).147
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3.3. Skeleton pruning through Discrete Curve Evolution148

As mentioned previously, the set of edges obtained with the Voronoi tesse-149

lation is only an approximation of the skeleton. Moreover, due to the noise in150

the boundaries, unsignificant boundary features can generate skeleton edges151

which do not reflect essential topological properties. Hence, we need to sim-152

plify, or ‘prune’, the skeleton i.e. remove many spurious edges.153

154

In this study we use the pruning algorithm of Bai et al. (2007), who point155

out that not all n boundary points significantly contribute to the shape of156

the object: only a relatively small subset of these boundary (input) sites157

may be sufficient to describe the overall shape. Hence, if we select k ≤ n158

points on the boundary, we define a partition of the contour into k contour159

segments (subarcs). The pruning rule is to remove all skeleton edges whose160

generating points lie on a same contour segment, as illustrated in Figure 6.161

It is important to note that this pruning process is not equivalent to reducing162

the number of input sites in the Voronoi tesselation (i.e. moving from right163

to left in Figure 5): the pruning removes some edges but the geometry of the164

remaining ones is not altered.165

(a) (b) (c)

Figure 6: Pruning of the skeleton based on contour partitioning. Skeleton edges which
have their generating points lying on a same contour segment are removed (in white).
(a) Partition with k = 12 points; (b) k = 6 points; (c) k = 6 points but at different
locations.

The problem is to select the k most relevant points; Bai et al. (2007)166

propose to reduce the number of boundary points from n to k < n through167

Discrete Curve Evolution (DCE).168

169
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Let c1, . . . , cn be the n input sites sampled on the boundary, and let170

ui−1,i = ci − ci−1 and ui,i+1 = ci+1− ci be the vectors of the boundary edges171

incident to point ci (Figure 7). The contribution of this site to the overall172

shape is (Latecki and Lakämper, 2002):173

K(ci) =
θi ‖ui−1,i‖ ‖ui,i+1‖
‖ui−1,i‖+ ‖ui,i+1‖ (3)

where

θi = ̂(ui−1,i , ui,i+1) = arccos

(
ui−1,i · ui,i+1

‖ui−1,i‖ ‖ui,i+1‖
)
sgn

(
det(ui−1,i , ui,i+1)

)
is the oriented turn angle at point ci (trigonometric, i.e. measured counter-174

clockwise). This contribution is usually defined in 2D (planar computation),175

but there is no difficulty in extending it to a 3D curve. However, even if176

glaciers are located on steep topography, they remain objects in the geo-177

graphical space i.e. with a rather flat aspect ratio, so that the addition of178

the vectors’ z-coordinate would not change the contributions dramatically.179

Figure 7: Definition of the turn angle at a boundary point.

Since contours are closed, we set cn+1 = c1 and c0 = cn. If boundary180

points are sorted clockwise (i.e. with the ‘inside’ on the right and the ‘outside’181

on the left when moving along the boundary, as in the ESRIR© shapefile182

format), then:183

• K is negative for a convex point (clockwise turn), and positive for a184

concave point (counterclockwise turn),185

• the higher the absolute value |K|, the higher the contribution to the186

overall shape (through great segment lengths and/or large turn angle).187
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A point lying on a straight contour portion, i.e. such that θ = 0, will188

have a zero contribution (i.e. it can be removed without any loss of189

shape information).190

We start the DCE with the n initial input sites and we removes the point191

cimin
having the lowest absolute value |K(cimin

)|, thus leading to a simplified192

contour called DCE level n−1. The metric K is again computed for the n−1193

remaining points, and the procedure is repeated p times to obtain a hierar-194

chical set of contour partitions, called DCE level n− 2, n− 3, . . . , k = n− p.195

At each iteration, we remove the skeleton edges whose generating points lie196

on a same contour segment of DCE level k = n − p, and these edges are197

assigned the level k. Since we need at least two points on the contour to198

define a partition, the highest possible level is k = 2. Figure 6c actually rep-199

resents DCE level 6 of the leaf, and in Figure 8 we show the final hierarchy200

of skeleton edges.201

202

If the shape has one or several inner boundaries, we simply add a loop on203

the boundaries in order to find the least-contributing site at each iteration.204

Figure 8: Hierarchy of skeleton edges obtained at the end of the pruning algorithm: we
can stop at any level in this hierarchy.

4. Identification of snout vertices205

In the previous section we illustrated the skeleton extraction and pruning206

with a simple shape (a leaf); we now apply these methods to RGI contours207
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of Swiss glaciers. The main issues will be to decide the level k at which we208

should extract the skeleton for each glacier, and to use elevation data in order209

to identify snout and head vertices.210

4.1. Choice of DCE level for each glacier211

Consider a glacier with area A. Clearly, the larger the glacier, the more212

points will be needed on its boundary to correctly describe its shape or skele-213

ton, i.e. the higher we will need to stay in the DCE hierarchy. Conversely,214

a small glacier with a single main axis without tributary could be correctly215

described at DCE level k = 2. A selection rule of thumb k = f(A) was216

devised empirically upon visual appreciation:217

(k − 2) = �k0Aγ�
where � � is the floor function. We used k0 = 13.5 and γ = 0.8 with A in218

km2. For example, the skeleton of Rhone-Trift glacier complex, with an area219

A = 35.8 km2, is still correctly described at DCE level k = 2+13.5(35.8)0.8 =220

238, i.e. with 238 sites on its boundary (Figure 9, left panel).221

4.2. Hierarchical snout identification222

The next step is the orientation of the skeletal edges in order to identify223

glacier snouts and heads. Indeed, skeletonization is a planar operation and224

we do not know if a ‘leaf’ vertex in the skeleton corresponds to the beginning225

of a flowline (‘head’ vertex), or to its end (‘snout’ vertex). Again, we will use226

the results of the DCE algorithm to create a hierarchy of potential snouts.227

A skeletal vertex s is said to be a level-k snout if it meets the three following228

requirements:229

(i) s is a leaf vertex of the skeletal graph of DCE level k, i.e. having a230

degree (number of incident edges) d = 1,231

(ii) s is at an elevation lower than its closest vertex s′ of degree d �= 2 in the232

level k skeleton graph. s′ is such that all vertices on the path between233

s and s′ have degree 2: in the following we will call such a sequence of234

vertices of degree 2 (except the two extremal vertices) a stretch.235

(iii) the generating points Gen(Es) of its unique incident edge Es (pendant236

edge) lie on either side of an input site which is a local topographic237

minimum in the DCE level k.238
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Figure 9: Definition of a snout vertex in the skeleton pruned at DCE level k (k = 238
here).

These seemingly complicated requirements translate the more intuitive239

notion that an edge is at a snout if it points downslope in a locally convex240

portion of the boundary that also points downslope, as shown in Figure 9.241
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On Figure 9, skeleton edges at level k are drawn in solid black lines, while242

edges that have been pruned at earlier levels are drawn with dotted lines.243

There are several ‘candidate’ snouts in this area: skeleton vertices S1, S2,244

S4, S6 and S9, which are all leaf vertices at the current pruning level, i.e.245

meeting requirement (i). All these 5 vertices also satisfy requirement (ii),246

since we have:247

Leaf vertex Nearest vertex of degree �= 2
z(S1) < z(S3)
z(S2) < z(S3)
z(S4) < z(S5)
z(S6) < z(S7)
z(S9) < z(S8)

However, Table 1 shows that only one candidate satisfies the third re-248

quirement:249

Input site in DCE level k
Leaf vertex that separates the vertex’s Is requirement (iii) met ?

generating pair
S1 I3 NO: z(I2) > z(I3) > z(I4)
S2 I4 YES: z(I3) > z(I4) < z(I5)
S4 I2 NO: z(I1) > z(I2) > z(I3)
S6 I5 NO
S9 I1 NO

Table 1: Check for requirement (iii) in the definition of snout vertices.

Hence, the only snout at level k in this part of the glacier is vertex S2. As250

input sites are iteratively removed from the glacier’s outline in the DCE pro-251

cess, the combination of requirements allows a robust identification of convex252

portions of the boundary that point downslope, i.e. glacier tongues/snouts.253

Finally, skeleton stretches which satisfy requirements (i) and (ii) but not re-254

quirement (iii) are further removed.255

256

Hence, we obtain a snout hierarchy tied to the edge hierarchy: with a257

single threshold (the level k = f(A) of the DCE), we can extract both a set258

of skeletal edges and a set of snouts for a given continuous ice body of area A.259

16



4.3. Definition of skeleton waypoints260

Let us have a closer look at the final pruned skeleton in Figure 10. The261

solid black lines are the remaining edges while the black dots are just a subset262

of the vertices in the pruned skeleton that we downsampled for simplicity263

(these vertices are waypoints distant from at least 1000 m). Clearly the264

skeleton edges are far from a set of flowlines, except maybe in the ablation265

area. The location of glacier heads and snouts looks satisfying but major266

flaws appear:267

• many edges in the skeleton significantly deviate from the local steepest268

slope direction, i.e. do not at all cross elevation contours at a right269

angle,270

• the skeleton has cycles (around inner rocks).271

0 1 2 3
km

Figure 10: Example of flaws in the pruned skeletal graph, notably the deviation of skele-
ton edges from steepest slope directions and the presence of cycles. Black dots are a
downsampled subset of skeleton vertices (waypoints), and red dots are snout vertices.

We will see that we can build another graph which links those same272

skeleton vertices/waypoints, but which do not exhibit these flaws, provided273

we can quantify what a ‘significant deviation from the local steepest slope274

direction’ is.275
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5. Construction of optimum branchings276

In this section we define a cost function that will allow us to rate how277

much an edge between two vertices deviates from a slope line, and to select278

a suitable set of edges.279

5.1. Rationale280

Douglas (1994) recalls that computing the least-cost path (with respect281

to various factors such as slope, soil cover, etc.) between a point A and a282

point B involves three steps:283

1. the definition of a cost of movement for an elementary movement from284

A to A’ (close to A);285

2. the computation of the accumulated cost surface spreading from the286

starting point, that sums the costs of all elementary movements;287

3. the construction of the least-cost path as the slope line of the accumu-288

lated cost surface starting at B and ending at A (Warntz, 1957).289

If we want a least-cost path to look like a steepest ascent or descent line,290

we can figure out what the corresponding cost function has to look like by291

reversing the three steps:292

3. The least-cost path has to look like a topographical slope line (it will293

never be a true one though, unless B is strictly upslope or downslope294

from A)295

2. This implies that the accumulated cost surface has to ‘look like’ the296

topographical surface z around A;297

1. It means that the local cost of movement has to ‘look like’ a differential298

of the topographical surface, i.e. depend on its gradient ∇z.299

The next section presents a cost function designed according to this ra-300

tionale.301

5.2. Definition of the cost function302

Consider an elementary displacement δx = (dx, dy) from x = (x, y) to303

x′ = (x′, y′) = x + δx = (x + dx, y + dy). The cost of this elementary304

displacement will be defined as:305
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C↑(x , x+ δx) =
[
zmax − z(x)

] − [
z(x + δx)− z(x)

]
+ λ‖δx‖

= ‖∇z‖‖δx‖︸ ︷︷ ︸ − (∇z) · δx︸ ︷︷ ︸ + λ‖δx‖︸ ︷︷ ︸
(1) (2) (3)

where ‖δx‖ =
√

dx2 + dy2 is the length of the displacement, ∇z is the306

gradient vector of the topographic surface at point x, and λ is a friction factor307

(scalar) in m ·m−1. This cost is expressed in meters of potential energy and308

is the sum of three terms:309

(1) is the maximum elevation (relative to z(x)) we could reach with a310

displacement of length ‖δx‖ starting at x. By definition of the gradient,311

this maximum elevation is zmax = ‖∇z‖‖δx‖, which is always positive.312

(2) is the elevation we actually reached with the displacement δx, which313

is z′ = (∇z) · δx (note that z′ is algebraic and may be negative).314

Consequently, the difference (1)−(2), which is always positive whatever315

the displacement, is a measure of how much higher we could have gotten316

with a displacement of the same length. If the displacement is in the317

direction of the gradient (i.e. upslope) then ∇z and δx are colinear318

and (∇z) · δx = ‖∇z‖‖δx‖. Hence (1) and (2) cancel out in the319

case of a steepest ascent : the cost will be low. Conversely, if we move320

downslope, (∇z) · δx is negative and (1) − (2) is largely positive: the321

displacement is very costly.322

(3) is a friction term stabilizing the cost function: whatever the direction323

(upslope, downslope or along an elevation contour), there is always a324

cost λ for moving 1 meter across the surface. The effect is to smooth325

trajectories and to prevent paths from following too closely the small-326

scale irregularities on the surface.327

We call C↑ the upslope cost function, which is obviously not symmetric:328

C↑(x,x′) �= C↑(x′,x)

The definition of C↑ looks unusual, as classical cost functions (see e.g.329

Kienholz et al., 2014) are simply the product of a scalar impedance I(x)330

by the length of the elementary displacement: C(x , x + δx) = I(x) ‖δx‖.331
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Hence, every displacement of length ‖δx‖ around x has the same cost what-332

ever the direction (C is necessarily isotropic). This kind of formulation is eas-333

ily solved in classical GIS softwares (it only requires to specify the impedance334

raster, and the start and end points). However, we believe that our formula-335

tion is preferable for steepest ascent/descent problems, which are anisotropic336

in nature (see also Collischonn and Pilar, 2000).337

338

Similarly, we can define a downslope cost function:339

C↓(x , x+ δx) = +(∇z) · δx︸ ︷︷ ︸ − (− ‖∇z‖‖δx‖)︸ ︷︷ ︸ + λ‖δx‖︸ ︷︷ ︸
(1) (2) (3)

This time, (2) is the minimum elevation we could reach with a displace-340

ment of length ‖δx‖. The difference (1) − (2) is always positive and is a341

measure of how much lower we could have gotten with a displacement of342

the same length: (1) and (2) cancel out in the case of a steepest descent.343

Conversely, if we move upslope, (1)− (2) is large and the cost is high.344

345

Finally, these cost functions satisfy the requirement that the steepest346

ascent path from x to x′ is also the steepest descent path from x′ to x347

(assuming the same friction factor λ):348

C↑(x,x′) = C↓(x′,x)

In the following, we only use the upslope cost function C↑; we will see349

why it is more convenient to treat the problem from downslope up. Moreover,350

in order to improve flow convergence near the glacier boundary, we slightly351

modify the cost function by increasing the friction factor λ near the boundary352

(this will penalize flowlines wandering along the boundary):353

C↑(x , x+ δx) = ‖∇z‖‖δx‖ − (∇z) · δx+
(
λ∞+(λ0−λ∞)e

−D(x)
Dλ

)
︸ ︷︷ ︸ ‖δx‖

λ(x)

where D(x) is the distance to the boundary at point x, λ∞ is the friction354

cost far from the boundary, λ0 > λ∞ is the friction cost at the boundary and355

Dλ is the scale of decrease with distance. Note that this modified cost is still356
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anisotropic: λ(x) is an impedance, but it is not the dominant term of the357

cost function. The values λ∞ = 0.035 m · m−1, λ0 = 5λ∞ = 0.175 m · m−1,358

and Dλ = 150 m were found to give very good results on all glaciers.359

360

Finally, since we use a raster DEM (i.e. a square lattice with only 8361

possible elementary displacements from a given grid point xi,j), we define a362

discrete version of C↑:363

C↑(xi,j ,xi+δi,j+δj) =
(
zi,j + smax

√
δi2 + δj2

)
− zi+δi,j+δj + λ(xi,j)

√
δi2 + δj2

where364

smax = max
0<(δi2+δj2)≤2

{
zi+δi,j+δj − zi,j√

δi2 + δj2

}

is the estimated upward slope (norm of the gradient) at pixel xi,j. If the365

above expression for smax is negative, it is of course set to zero: there is a366

local maximum at xi,j.367

5.3. Cost assignment for paths between waypoints368

We use Dijkstra’s algorithm (Dijkstra, 1959) to compute the least-cost369

path between each pair of waypoints. It uses the elementary cost function370

to produce an accumulated cost surface spreading around a start point S,371

and a backlink grid which gives the direction opposite to the gradient of the372

accumulated cost surface at each pixel. The least-cost path from S to any373

point is constructed in the reverse direction, starting from the destination and374

following the backlinks to S. In our case, the cost is defined from downslope375

up, so a backlink is defined from upslope down (see Figure 11).376
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Figure 11: Example of accumulated cost surface, spreading from a start point S. Arrows
indicate the backlinks: the least-cost path from S to any destination (K, L, M, N, etc.) is
constructed from the destination to the start S, following the backlink grid. White pixels
are ice-free zones (inner rocks) across which no displacement is possible.

Figure 11 illustrates the effects of the definition of C↑:377

• destination K is located right upslope from start S, at an elevation of378

about 3130 m. Since edge (S,K) is almost a steepest ascent path, its379

cost is low: C↑(S,K) = 11.2380

• destination L is located at about the same elevation, but one has to381

cross elevation contours at some angle to get there from S. The cost is382

higher: C↑(S,L) = 25.3383

• destination M is located at an elevation lower than S, about 3030 m.384

Consequently, the edge from S to M is far from a steepest ascent (it is385

almost a steepest descent), and has a high cost: C↑(S,M) = 80.5 (note386

that this path would in contrary have a very low cost with respect to387

the downslope cost function C↓)388

• finally, destination N is located on the other side of a ridge. In order389

to reach N from S, one must first climb to a pass at about 3100 m (low390

cost), but then go down (high cost). We have C↑(S,N) = 169.3391
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We use this algorithm to compute the costs between any pair of skeletal392

vertices/waypoints. In practice, we only compute the costs to the n nearest393

neighbors of each vertex with respect to the cost function, using a local run394

of Dijkstra’s algorithm that is aborted as soon as n neighbor vertices have395

been visited (straightforward with an implementation based on a priority396

queue). The value n = 30 turned out to be largely sufficient for the following397

steps. We obtain the kind of graph shown in Figure 12. Each edge can be398

traversed in both directions, but at a different cost in each direction: the399

graph is directed.400

5.4. Identification of minimum spanning branchings401

The creation of a dense, redundant graph between the skeletal waypoints402

looks like a step backwards, compared to the simplicity of the skeleton. How-403

ever, graph theory provides powerful tools which will help simplify this graph404

again, in the way we want.405

406

Each waypoint (vertex) has several incoming and outgoing edges in the407

new directed graph. The set of flowlines we are looking for is a branching or,408

synonymously, a directed spanning tree i.e. a graph T such that:409

• T contains no cycle,410

• each vertex has one and only one incoming edge: each vertex is visited411

(the tree is spanning), but no two edges of T enter the same vertex412

(i.e., each vertex has only one downstream pixel, since we build the413

flowlines from downstream towards upstream).414

Of course, such a tree T has to be rooted at a snout, i.e. a special vertex415

without an incoming edge. Moreover, we want the edges of this tree to be416

—as much as possible— steepest climb routes, i.e. to have low costs with re-417

spect to our cost function. Extracting a subset of edges (a subgraph) which418

satisfies all these requirements (being a tree, being spanning, and having419

a minimal cost) is a classical problem called Directed Minimum Spanning420

Tree (DMST) extraction. It is efficiently solved with the Chu-Liu/Edmonds421

algorithm (Chu and Liu, 1965; Edmonds, 1967): in this study we use the422

implementation of Tofigh (2009), based on the Boost Graph Library (Siek et423

al., 2002).424

425
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Since there are several snouts in a glacier complex, the subgraph may426

actually be a forest i.e. a set of trees, each one rooted at a different snout.427

The single-root version of the Edmonds algorithm is easily extended to the428

multiple-root case: a virtual ‘master’ root is created, and zero-cost edges are429

added from this root to each snout (see Figure 12).430

431

Figure 13 shows the output of the algorithm for the Rhone-Trift glacier432

complex. It is worth noting that the segmentation of the complex into in-433

dividual glaciers is a by-product of the method: each snout ‘drains’ a set of434

upstream vertices which form its catchment.435

436
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Figure 14 is a zoom on a pass across the topographical divide between437

Rhone and Trift glaciers (Undri Triftlimi). It explains why no edge in the438

DMST/DMSF should cross any major topographical ridge. Let us suppose439

that the ridge-crossing edge (K,L) is part of the DMSF, denoted F and of440

total cost C↑(F). In this case, point L ultimately drains to Trift glacier’s441

snout. However, the other incoming edge to L, (M,L), has a lower cost than442

(K,L): hence if we remove (K,L) from F and add (M,L), we obtain a forest443

F ′ that is still spanning (L is visited i.e. has an incoming edge) and has444

a lower total cost C↑(F ′) = C↑(F) + C↑(M,L) − C↑(K,L) < C↑(F). This445

means that F was not a DMSF in the first place (it is spanning but not of446

minimum cost): point L has to flow to Rhone glacier’s snout, and no edge447

should go through the pass. Hence, our procedure is efficient not only for448

flowline extraction, but also for glacier segmentation.449

Figure 14: Zoom on the minimum branching in the vicinity of Undri Triftlimi, a pass on
the divide between Rhone and Trift glaciers. Vertex L, which is located south of the ridge,
has to be visited from M and not from K in the Directed Minimum Spanning Tree/Forest:
no edge should go across any major divide.
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6. Conclusion and perspectives450

In this paper we proposed a new method to extract glacier flowlines, based451

on Voronoi skeletonization of glacier boundaries, skeleton pruning using Dis-452

crete Curve Evolution (DCE), and the construction of a Directed Minimum453

Spanning Tree between skeletal vertices with respect to an anisotropic, ups-454

lope cost function C↑.455

456

The application of the method requires limited parameter tweaking: it457

only requires a selection rule k = f(A) for the level k of the DCE as a function458

of glacier area A (2 parameters), and 3 parameters for the friction law (i.e.459

the isotropic term of the cost function). Table 2 sums up the values used on460

the whole domain of Figure 2a (1200 km2 of glaciers, the largest contiguous461

icefield having an area of 261 km2).462

DCE level selection k = 2 + �k0Aγ� k0 13.5
γ 0.8

Cost function
C↑(x , x+δx) = ‖∇z‖‖δx‖− (∇z) ·δx+λ(x)‖δx‖
with λ(x) = λ∞+(λ0−λ∞)e

−D(x)
Dλ

λ∞ 0.035 m ·m−1

λ0 0.175 m ·m−1

Dλ 150 m

Table 2: Parameters of the method.

The method currently lacks a quality assessment, though this could be463

done on a small subset of glaciers by comparison with manually-extracted464

flowlines. The large-scale visual assessment is however very satisfying, and465

the resulting network can be used to compute indices such as Strahler orders,466

bifurcation ratios, etc. Many scaling properties of glaciers, such as volume-467

are scaling (Bahr et al., 1997) or power-law behavior of accumulation basin468

areas (Gsell et al., 2014), originate in glacier branching topology: such prop-469

erties could act as a ‘lever arm’ for tackling the problem of catchment-scale470

glacier flow dynamics, much like other fundamental symmetries (plane-strain471

or radial), as advocated by Bahr and Peckham (1996). We hope that this472

study will foster ideas in this field.473
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