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Abstract

A novel path-planning algorithm is proposed for a tracked mobile robot to traverse uneven terrains, which can efficiently search
for stability sub-optimal paths. This algorithm consists of combining two RRT-like algorithms (the Transition-based RRT (T-RRT)
and the Dynamic-Domain RRT (DD-RRT) algorithms) bidirectionally and of representing the robot-terrain interaction with the
robot’s quasi-static tip-over stability measure (assuming that the robot traverses uneven terrains at low speed for safety). The
robot’s stability is computed by first estimating the robot’s pose, which in turn is interpreted as a contact problem, formulated as a
linear complementarity problem (LCP), and solved using the Lemke’s method (which guarantees a fast convergence). The present
work compares the performance of the proposed algorithm to other RRT-like algorithms (in terms of planning time, rate of success
in finding solutions and the associated cost values) over various uneven terrains and shows that the proposed algorithm can be
advantageous over its counterparts in various aspects of the planning performance.
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1. Introduction

In path-planning problems, the definition of the domain in
which a solution (i.e., a path that connects a given pair of the
start and the goal configurations satisfying certain constraints
that depend on the applications) may reside and the choice of al-
gorithms to solve such problems are critical to discern whether
a solution exists in a timely manner and to choose the optimal
one, if multiple solutions exist.

First, the definition of the domain in which a solution may
reside depends on the application types. For instance, a vertical
surface (such as a wall) is prohibitive for ground mobile robots,
but, for climbing robots or humanoids that use it as a mean ei-
ther for creating their mobility or for increasing their stability,
it forms part of the free configuration space. For ground mo-
bile robots, any entity that protrudes from the flat surface is
often seen as an obstacle. However, for the problem of plan-
ning paths over uneven terrains, such entities need to be ana-
lyzed whether they really represent obstacles for the considered
robot model (e.g., cliffs, deep pits, buildings, etc.) or they are
objects that a robot actually needs to interact with (sometimes
being absolutely necessary) to achieve certain goals (e.g., when
a goal position is located on a terrain level that can only be
reached through steps, stairways, ramps or hills). In essence, a
given environment for ground mobile robots can be defined as
the union of traversable and non-traversable regions. And, an
approach to define the environment in this manner may be by
associating it to its traversability map.
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Various definitions of traversability can be found in the liter-
ature. The traversability can be defined as the product between
two probability values for a given position in a terrain map: the
probability that the terrain slope is smaller than a chosen maxi-
mum permissible slope value and the probability that the rough-
ness is smaller than a chosen maximum permissible roughness
value [1]. Likewise, the traversability may be defined as the
sum of the roughness and the curvature (or slope) of a given
grid cell known as cell impedance [2] or traversability index
[3]. Unfortunately, these approaches represent the traversabil-
ity as a single probabilistic value that characterizes each terrain
map point by only considering the terrain samples in a neigh-
borhood of size equivalent to the robot’s dimension, and they
do not give a sense of how the robot actually interacts with the
terrain. On the other extreme, the robot dynamics that includes
the terramechanics can be considered to have a more accurate
estimate on the robot-terrain interaction, and such knowledge
can be used to generate an objective function such as the dy-
namic mobility index for choosing optimal paths [4, 5, 6]. How-
ever, this approach is not suitable for the design of an efficient
path planner because it requires the integration of the differen-
tial equations that include the contact forces generated between
the robot and irregular terrains involving rolling friction, longi-
tudinal slippage and lateral skidding where the associated pa-
rameter values change from terrain to terrain [7]. In addition,
the planning efficiency is further reduced because its domain
becomes now the state space which has twice the dimension of
the configuration space.

To remedy these weaknesses, other approaches can be con-
sidered. Kubota et al. defined the traversability as the probabil-
ity that a robot pose satisfies the roll, pitch and height criteria
for a wheeled microrover with the Gaussian distribution, where
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the robot pose was approximately estimated [8]. In like man-
ner, Haı̈t et al. proposed a method that searches for a path that
minimizes changes in the robot body roll and pitch angles us-
ing the A∗ algorithm for a six-wheeled robot [9]. However, both
works deal with wheeled robots for which the contact points are
known a priori. When dealing with tracked mobile robots, this
assumption does not hold since the robot can make contact with
the terrain along any point on the tracks, flippers and even with
the main base of the robot. Moreover, they search for optimal
paths using grid-based search algorithms, which might not be
efficient depending on the map size and each cell size.

Recently, Beck et al. proposed that the robot’s tip-over sta-
bility measure can be used to plan safer traversable paths for
tracked mobile robots [10], and Norouzi et al. used a dynamic
simulator (ODE [11]) to estimate the robot’s uncertain height,
roll and pitch values in order to estimate this stability measure,
with the purpose to search the path that optimizes the stabil-
ity using the A∗ algorithm [12]. The tip-over stability is com-
puted as proposed by Papadopoulos and Rey [13] (a.k.a. force-
angle stability measure), which considers both the distance of
the robot’s center of mass with respect to the terrain, and the
shape and the orientation of the support polygon, which de-
pend on the pose of the robot. In a separate study, Roan et al.
experimentally compared (in [14]) the correspondence of vari-
ous stability measures such as the force-angle stability measure
[13, 15], the moment-height stability (MHS) [16], and the dy-
namic stability measure obtained through zero-moment point
(ZMP) compensation [17]. In this study, they showed that the
force-angle approach gives the best results with small negative
stability measure at the time instant of tip-over with small lag
time, although the number of false positives was relatively high
compared to the ZMP approach due to its increased sensitivity
[14].

In the present work, the problem of path planning for a
ground mobile robot to traverse uneven terrains is studied, and,
in particular, a tracked mobile robot is considered in the con-
text of the ongoing FRAUDO1 project. When navigating over
off-road and over uneven terrains, tracked mobile robots are
attractive for their mechanical robustness due to their reduced
number of degrees of freedom, and for their large stability and
traction achieved by the large contact area formed between the
tracks and the terrain. For these advantages, these robots are
frequently used to traverse uneven terrains for applications such
as search and rescue [18, 19, 20, 21].

Concerning the definition of the interaction between the
tracked mobile robot model and uneven terrains, we first as-
sume that a set of data points that represent a terrain is given
(such as a point cloud obtained from either a laser rangefinder
or a 3D RGB sensor) and find its corresponding elevation map.
Then, the elevation map is B-splined with the purpose to con-
sider the terrain domain as a continuous space, as was imple-
mented for the first time in this context by [22].

Afterwards, the terrain traversability is studied in two steps:

1FRAUDO is an acronym in French language for Franchissement
Automatique d’Obstacles, which means automatic obstacle crossing.

1) the B-splined terrain map’s roughness is estimated using
the simple microrelief factor [23, 24] to rapidly filter out the
regions of the terrain that are impossible to be traversed such as
walls, cliffs, steep hills or deep pits;

2) for feasible regions in the terrain map, the robot’s
traversability is studied using the force-angle stability measure
for the quasi-static case, assuming the fact that the robot moves
slowly when dealing with uneven terrains for safety. The force-
angle stability measure can be computed in turn if the robot’s
pose is known. To this end, the pose of the tracked mobile
robot, for which the location of the robot body contact points
are unknown a priori, is estimated by formulating the problem
as a linear complementarity problem (LCP) [25] and then by
solving this problem with the Lemke’s method [25].

In the literature, one can find various off-road motion-
planning works, which mainly adopt either kinematic (e.g.,
[26]) or dynamic approaches (e.g., [22, 27]). For this work we
have chosen the kinematic approach because of the difficulty to
efficiently model the dynamics of the robot negotiating terrains
with generic uneven terrains (often composed by stairs, steps,
ramps and rough terrains). Our work differs from the work pre-
sented in [26] in the aspect that [26] uses the A∗ algorithm for
path planning, a grid-based search algorithm, which can be in-
efficient depending on the map size and the cell size, whereas
our work is based on the sampling-based motion planning ap-
proach (as described below).

Second, the choice of algorithms to solve path planning prob-
lems is critical to efficiently know whether a solution exists,
and, if multiple solutions exist, to choose the optimal one. In
path-search problems, an algorithm that finds a solution or in-
dicates that no solution can be found in a finite amount of time
is called complete [28, 29]. However, such completeness re-
quirement, although a desirable property, may easily become
computationally intractable (even for a simple problem such as
the piano mover’s problem [30]). As a result, the probabilistic-
completeness problem, a relaxed version of the original prob-
lem, has often been addressed instead. This problem consists
of finding a solution (if a solution exists) with probability one
as time goes to infinity [28, 29] and can be solved using algo-
rithms known as the sampling-based planning algorithms.

Among many types of sampling-based planning algorithms,
the rapidly-exploring random tree (RRT) [31] is an efficient
single-query method that does not require preprocessing like
multiple-query methods do (e.g., the Probabilistic Roadmap
(PRM) [32]). RRT is characterized by its nature of quickly ex-
ploring unexplored regions since the tree tends to grow through
the nodes that have larger Voronoi regions associated [33].
Nonetheless, the RRT algorithm uniformly samples in the con-
figuration space and does not consider any cost function, which
could be used to bias the sample space and find a desirable so-
lution with more efficiency. Recently, an RRT-based algorithm
has been proposed to bias the search space to low-cost regions
with a gradual incorporation of higher-cost regions as the num-
ber of rejected samples increases. This approach is known as
the Transition-based RRT (T-RRT) algorithm [34] and can sig-
nificantly increase the planning efficiency [35, 36], especially
when it is used bidirectionally [36]. Although this approach
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does not guarantee the solution optimality as RRT∗ does [37]
(hence, offering most likely sub-optimal solutions), it can ef-
ficiently give good-quality solutions [36, 38]. Whereas, even
though RRT∗ has its computational complexity within a con-
stant factor of that required by RRT [37], it might converge
slowly [36, 38].

On the other hand, the RRT-like algorithms might suffer from
slow exploration if the sample domain is not well suited to a
given problem, especially when the number of frontier nodes
(i.e., nodes with the corresponding Voronoi regions growing
with the size of the environment) that are also boundary nodes
(i.e., nodes that lie in some proximity to obstacles) is significant
[39]. This efficiency problem might be solved by dynamically
restricting the sample domain associated to each of the bound-
ary nodes in the tree, which is equivalent to reducing the prob-
ability that a boundary node in the tree will be chosen as the
nearest node to a new sample [39]. This algorithm is known as
the Dynamic-domain-RRT (DD−RRT) [39, 40].

In the present work, a novel path-planning algorithm is
proposed for a tracked mobile robot to traverse uneven ter-
rains, by combining two RRT algorithms (the Transition-based
RRT (T-RRT) [34] and the Dynamic-Domain RRT (DD-RRT)
[39]) to increase the planning efficiency and by representing
the robot-terrain interaction with the tip-over stability mea-
sure. Its efficiency can further be improved by using it bidi-
rectionally [36]. The algorithm proposed in the present work
is coined as the bidirectional dynamic-domain transition-based
RRT (BiDDTRRT). Then, the performance of this planning algo-
rithm is compared to other RRT-like algorithms such as the bidi-
rectional RRT (BiRRT) and the bidirectional T-RRT (BiTRRT)
algorithms in terms of the average planning time, path cost,
path length and number of configurations. Moreover, the re-
sults obtained using two types of cost functions are compared:
the Minimal Work (MW) [34] and the tip-over stability-related
cost function.

The rest of the present work is structured as follows. In Sec-
tion 2, we describe our robotic platform, and give details on
how we solve the problem of pose estimation and compute the
quasi-static tip-over stability. In Section 3, we describe our
pose estimation-based motion planning algorithm for travers-

Figure 1: A Cameleon EOD, a tracked mobile robot from Eca Robotics [41].
It consists of one main base, two tracks and two coupled frontal flippers. The
details on the robot specification are given in the text.

(a) Front view of the robot model

(b) Side view of the robot model

Figure 2: Tracked mobile robot model is shown in front and side views. The
robot body consists of one main base, two tracks and two coupled frontal flip-
pers. The center of mass is located slightly forward from its geometric center.
All the values are given in mm.

ing uneven terrains. In Section 4, we show and analyze the
results obtained using the path planning algorithm proposed in
the present work. Finally, in Section 5, we provide concluding
remarks and guide future work.

2. Robot model, terrain representation, pose estimation,
and tip-over stability

2.1. Description of the robotic platform

The robotic platform employed in the present work is a
Cameleon EOD [41] (see Figure 1), a tracked mobile robot that
weighs about 27 kg and has a 25 kg payload. It has as dimen-
sion 0.67 m (L) × 0.5 m (W) × 0.19 m (H), and the center of
mass is slightly forward from its geometric center. It can move
at up to 6 km/h with about 4 hours of autonomy. In addition, it
has two flippers of about 0.4 m of length, which allow the robot
to cross over obstacles with up to 0.25 m of height. It has a
3D RGB sensor (ASUS Xtion) to build maps and self-localize,
two motor encoders that return the robot’s odometry, and two
inclinometers to measure the roll and pitch of the robot. Two
DC motors attached to the front sprockets give mobility to the
robot. The two front flippers are coupled and driven by the third
DC motor.

In our planner, the robot is modeled as a multi-rigid body
where its main frame and the tracks are modeled with their re-
spective bounding boxes, whereas the flippers are modeled with
bounding trapezoids because their dimensions are not symmet-
ric in the frontal plane (see Figure 2).

2.2. Terrain representation

While in reality the world perceived by sensors is represented
in a discrete fashion (e.g., point cloud), the employed plan-
ning algorithms work in a continuous space. Therefore, in the
present work the terrain is represented as a uniform bicubic B-
spline surface (which can be done offline or online with lower
sampling frequency), as was implemented for the first time in
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this context by [22], using the terrain map data points as control
points as follows

s(u, v) = UTMDMTV, (1)

where u ∈ [0, 1], v ∈ [0, 1], U=(u3, u2, u, 1)T, V=(v3, v2, v, 1)T,
M is a (4 × 4) constant matrix to construct bicubic B-spline
patches, and D is a (4×4) matrix composed by 16 control points
given by [42]. The resolution of control points is about 5.7% of
the robot length. As a result, a B-splined terrain elevation map
is obtained.

On the other hand, the roughness of the terrain is charac-
terized using the simple microrelief factor [23, 24] in order to
quickly discard regions with two features: large gradients and
significant height changes. Some examples of these regions are
walls, cliffs, steep hills and deep pits.

Hence, a binary occupancy map composed by traversable and
non-traversable regions is generated by thresholding the simple
microrelief factor for the entire terrain map. This binary map
then goes through an erosion-and-dilation filtering procedure
to reduce the noise level. Next, each non-traversable region
is segmented using the watershed transformation [43], and the
boundary of each non-traversable region is detected by using
the border following algorithm proposed in [44]. In general, the
non-traversable regions are nonconvex two-dimensional poly-
gons, and, therefore, the convexity assumption can not be made.
The detection of collision between these regions and the robot
body is performed by formulating the problem as a nonconvex
polygon interior problem and is efficiently solved by using the
algorithm proposed in [45].

2.3. Robot pose estimation

As detailed in Section 1, the robot pose is estimated with the
purpose to compute its tip-over stability, which in turn is used
in the path planner to search for stable paths.

The pose of a tracked mobile robot depends on its interac-
tion with the terrain and can be estimated by studying how it
makes contact with the terrain. Therefore, the problem of the
robot pose estimation can be considered as a contact problem
between the robot body and the terrain. The contact between
two objects can be mainly modeled using either compliant con-
tact models [46, 47] or impulse-based models formulated as
linear complementarity problems (LCP) [48, 49]. In the present
work, we formulate the contact between the robot body and the
terrain as an LCP because of its fast convergence [50] and be-
cause this method seems to be appropriate for applications that
involve sustained contacts [51].

When the contact problem is formulated as an LCP, three
types of complementarity constraints are typically considered:
non-penetration constraint, constraint between frictional forces
and tangential velocities, and constraint on the net frictional
force being inside the frictional cone or on this cone [48, 52]. In
the present work, only the non-penetration constraint is consid-
ered for estimating the robot pose, and no slippage is assumed.

A rigid-body robot pose in the world W ⊂ R3 can be ex-
pressed as (X,Y,Z, α, β, γ), where (X,Y,Z) are the coordinates
of the center of gravity of the robot in the terrain frame, and

(α, β, γ) are the roll, pitch, and yaw angles formed from the ter-
rain frame to the robot-body frame. In the present work (as de-
scribed in Section 3), the motion planner chooses c=(X,Y, γ)T

(i.e., the planner fixes c=(X,Y, γ)T), and, therefore, the prob-
lem of robot pose estimation consists of finding q=(Z, α, β)T

for given c=(X,Y, γ)T and a terrain elevation map.
A method to solve this problem can be an approach similar

to the one suggested by [53]. Initially, the robot is suspended in
the air (but close enough to the terrain for a fast convergence)
and falls to the terrain driven by the earth gravitational acceler-
ation. The robot motion can be described as

Mq̈ = WnAf + Qco, (2)

with
M = diag(m, Iα, Iβ),

A = diag(a1, a2, · · · , ap),

f = ( f1, f2, · · · , fp)T ,

where: M is the diagonal inertial matrix; (m, Iα, Iβ) are the body
mass, the moments of inertia about the roll and the pitch axes,
respectively; q̈ is (Z̈, α̈, β̈)T ; p is the number of potential con-
tact points uniformly distributed along the tracks and flippers;
Wn is the (3 × p) Jacobian or Wrench matrix that maps contact
forces normal to the splined surface to wrenches in the robot’s
body frame; f is the (p×1) vector of contact forces normal to the
splined surface; Qco is the (p×1) generalized conservative force
(gravitational force) vector; and A is the (p × p) activation ma-
trix that indicates whether each of the potential contact points
is active (i.e., whether each of the potential contact points has
made contact with the terrain), and its diagonal elements have
the following expression

ai =

{
1, if the i-th potential contact point collided,
0, otherwise.

The system of equations of motion (2) has two unknown vec-
tors: q and f. Hence, we have a system of three equations with
p + 3 unknowns. q and f can be computed by noticing the com-
plementarity relationship that exists for each potential contact
point between its contact force and its distance with respect to
the terrain. This relation can be formulated as p non-penetration
complementarity constraints and can be expressed as

0 ≤ d ⊥ f ≥ 0, (3)

where d = (d1, · · · , dp)T are the vector whose elements are the
distance between the potential contact points on the robot body
and the projection of these points on the terrain along the verti-
cal direction, f = ( f1, · · · , fp)T are the contact forces normal to
the splined surface, and⊥ represents the complementarity oper-
ator [25]. The complementarity constraint expressed in (3) says
that, for any i, either di is zero or fi is zero but not both at the
same time. In other words, if the distance between a potential
contact point on the robot body and its projection on the ter-
rain is non-zero, then its associated contact force must be zero.
On the other hand, if this distance is zero, then the associated
contact force must be non-zero.
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Hence, the non-penetration LCP can be formulated from (2)
and (3), and this problem can be solved for q and f as follows.
First, the discrete-time version of (2) is expressed using the Eu-
ler approximation as

M
(

v`+1 − v`

h

)
= WnAf`+1 + Qco, (4)

where v is q̇, ` is the iteration index, and h is the discretization
time step. From (4), one can obtain the velocity expression as

v`+1 = v` + hM−1WnAf`+1 + hM−1Qco. (5)

On the other hand, the distance between the potential con-
tact points on the robot body and their projection on the terrain
along the vertical direction at the iteration ` are expressed as

d`+1 = d` + hḋ`+1 = d` + hATWT
n v`+1. (6)

Now d`+1 can be related to f`+1 in (6) by replacing v`+1 with
the expression given in (5), and the non-penetration LCP given
by (2) and (3) can be rewritten as

d`+1 = Bf`+1 + b,

0 ≤ d`+1 ⊥ f`+1 ≥ 0,
(7)

where
B = h2ATWT

n M−1WnA,

and
b = d` + hATWT

n

[
v` + hM−1Qco

]
.

Further, (7) can be solved using a pivoting method known as
the Lemke’s method [25].

2.4. Tip-over stability-related cost function

The path planner specific in the present work aims to search
for stable paths by introducing the notion of stability in the
planning problem. There are several stability definitions em-
ployed in the literature specific for ground mobile robots
traversing uneven terrains (see for instance [14]). Among these
definitions, the tip-over stability proposed by [13] (also known
as the force-angle stability measure) is chosen for its good per-
formance, as reported in [14].

The force-angle stability measure is defined as the product
between the magnitude of the net force acting on the robot’s
center of mass and the smallest angle (min

i
(θi)) formed by this

net force vector (fr) and the tip-over-axis normals (li). There-
fore, the force-angle stability measure is

ξ = min
i

(θi)‖fr‖, i = {1, · · · , n}, (8)

where n is the number of tip-over axes of the support polygon
as shown in Figure 3.

Notice that, according to this expression, the stability can be
augmented by increasing min

i
(θi) and/or ‖fr‖ values. On one

hand, min
i

(θi) can be increased by 1) increasing the support

𝜽𝒊 
𝒍𝒊 

𝐟𝐫 

Figure 3: In the present work, the robot’s tip-over stability is defined as the
force-angle stability measure [13]. When the robot pose is estimated as de-
scribed in Section 2.3, its support polygon can easily be found. The tip-over
axes are the vectors that define the polygon boundary, and the force-angle sta-
bility measure can be computed as the product between the magnitude of the
net force and the smallest angle obtained among all the angles formed between
the tip-over-axis normals (li’s) and the net force vector (fr). A tip-over-axis
normal is a vector that is perpendicular to its corresponding tip-over axis, and
it passes through the robot’s center of mass. The details on the definition of the
force-angle stability measure are given in the text.

area, 2) lowering the height of the CoM with respect to the ter-
rain, and/or 3) shifting the force vector to the innermost point
in the support polygon. On the other hand, ‖fr‖ can be aug-
mented by 1) increasing the mass or inertia of the robot, and/or
2) increasing the acceleration normal to the terrain.

Next, the expression given in (8) is normalized by its max-
imum value (ξmax), which is obtained when the mobile robot
is in its most stable configuration. Therefore, the normalized
force-angle stability measure (ξ̂) can be expressed as

ξ̂ =
ξ

ξmax
. (9)

This scalar is bounded, and the positive and negative values
of ξ̂ indicate stable and unstable configurations in the tip-over
stability sense, respectively. The robot is critically stable when
ξ̂ = 0.

In the present work, the robot is assumed to move slowly
over uneven terrains in order to avoid dangerous situations such
as the stability loss due to slippage or sliding effects, as this
is the case in other previous works (e.g., [54]). Under these
circumstances, we only consider the quasi-static stability case
with the net force formed by the gravitational force alone.

In Figure 4, the tip-over stability is related to changes in
pitch, roll, and pitch-and-roll. First, all three graphs have the
bell shape, and their respective maximum value is achieved
around 0 [deg]. The graph corresponding to roll changes is
shallower than that of pitch changes because the robot is long
(along the x-direction) and narrow (along the y-direction). The
results corresponding to roll-and-pitch changes are located in
between the results corresponding to changes in pitch and roll
alone. The pitch changes induce a non-symmetric graph with
respect to the vertical line about the flat configuration because
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Figure 4: The normalized tip-over stability (ξ̂) (see (9)) corresponding to
changes in pitch, roll, and pitch-and-roll.

the robot’s center of gravity (CoG) is located slightly forward
along the robot length (as explained in Section 2.1). On the
contrary, the graph corresponding to roll changes is symmetric
because the CoG is located on the midline of the body along the
y-direction (lateral direction). Notice that these values are ob-
tained after estimating the robot pose, hence numerical errors
are also present in the representation of the tip-over stability
measures.

Finally, the tip-over stability-related cost function is defined
as follows

J =


1 − ξ̂, ξ̂ > 0 ,

∞, ξ̂ ≤ 0 ,
(10)

where ξ̂ is the normalized tip-over stability measure defined in
(9). This cost function is used in the planning algorithm (which
is described in Section 3.1) in order to search paths that improve
the robot stability.

3. Pose estimation-based path planning over uneven ter-
rains

A general overview of the path-planning algorithm that is de-
scribed in the subsequent subsections is first given as follows.
At a given time instant in the path-planning procedure, a sample
with (X,Y)-coordinates is randomly chosen within the feasible
region in the terrain map. Then, a yaw angle (γ) is picked based
on the motion primitive that suits the most, depending on the
location of the nearest valid sample to this new sample while
avoiding possible collisions to connect these two samples2. At
this moment, c=(X,Y, γ)T is fixed. Then, q=(Z, α, β)T of the
robot is estimated using (2), and the associated stability-related
cost value is computed using (10) to evaluate whether the con-
nection between the two samples can be made. Details on the
proposed path-planning algorithm is given in the subsequent
subsections.

3.1. Problem statement
The pose estimation-based path planning problem addressed

in the present work is stated as follows.

2The concept of motion primitives is used to increase the planning efficiency
and to reduce the amount of yaw motion while interpolating two nearest con-
figurations in the tree. Details are given in Section 3.3.

Let the worldW ⊂ R3 be an uneven terrain represented as an
elevation map (described in Section 2.2). Let a semi-algebraic
robotA be defined inW consisting of a main base, two tracks
and two flippers (as described in Section 2.1).

Let C ⊂ R3 be the configuration space, and c= (X,Y, γ)T ∈ C
be the configuration of A, where (X,Y) are the Cartesian coor-
dinates of the robot’s center of gravity on the horizontal plane
in the terrain frame, and γ is the yaw angle of the robot body.
In this work, the first two components of c (i.e., s= (X,Y) ∈
Straversable) are randomly sampled by the planner, with indepen-
dent and uniform distribution, where Straversable ⊂ R2 is defined
to be the traversable sample space, which in turn can be de-
fined by using the two-dimensional occupancy map built with
the simple microrelief factor, as described in Section 2.2. On
the other hand, γ is chosen based on the motion primitive (de-
fined in Section 3.3) that suits the most, depending on the lo-
cation of the nearest valid sample to this new sample, while
avoiding possible collisions to connect these two samples.

Let cstart ∈ C and cgoal ∈ C be some given start and goal
configurations, respectively. In addition, let σ denote a path
in C and be defined as σ : [0,N] → C, where σ(0)=cstart and
σ(N)=cgoal. A path is said to be goal-reachable if J (σ(τ)) is
finite for τ ∈ [0,N], where J(·) is the tip-over stability-related
cost function given in (10).

Then, the problem of pose estimation-based path planning is
defined as to find a goal-reachable path that connects a given
pair of start and goal configurations, estimating the robot pose
at each sampling (i.e., by solving (2)) and then computing the
cost value using (10) for each sample.

3.2. Path planning algorithms

In the present work, a novel path-planning algorithm is pro-
posed for a tracked mobile robot to traverse uneven terrains, by
first combining two RRT-like algorithms (the Transition-based
RRT (T-RRT) [34] and the Dynamic-Domain RRT (DD-RRT)
[39]) and by representing the robot-terrain interaction with the
tip-over stability measure. As described in Section 1, the T−RRT
can plan paths efficiently by biasing the search space to low-cost
regions with a gradual incorporation of higher-cost regions as
the number of rejected samples increases [34]. Its efficiency can
further be improved by using it bidirectionally [36]. But, this
approach might suffer from slow exploration when the number
of frontier nodes (i.e., nodes with the corresponding Voronoi
regions growing with the size of the environment) that are also
boundary nodes (i.e., nodes that lie in some proximity to ob-
stacles) is significant [39]. The DD−RRT addresses this prob-
lem by restricting the sample domain associated to each of the
boundary nodes in the tree, which is equivalent to reducing the
probability that a boundary node in the tree will be chosen as
the nearest node to a new sample [39]. In the present work, we
combine the two algorithms and adapt the resulting algorithm
for planning paths for a tracked mobile robot to traverse uneven
terrains constructing a cost function related to the robot’s stabil-
ity (shown in (10)). The algorithm proposed in the present work
is coined as the bidirectional dynamic-domain transition-based
RRT (BiDDTRRT).
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Algorithm 1: For BiRRT [33] / BiTRRT [36] / BiDDTRRT

(Ta,Tb, Path)← BuildTree(cstart, cgoal)

1 Va ← {cstart}; Ea ← ∅; Ta ← (Va,Ea);

2 Vb ←
{
cgoal

}
; Eb ← ∅; Tb ← (Vb,Eb);

3 Path← ∅; i← 0;
4 while i < L do
5

[Ta, cnewa , extended
]← Extend(Ta);

6 if (extended) then
7

[Tb, cnearestb , status
]← Connect(Tb, cnewa );

8 if (status) then
9 Path←

ObtainPath(Ta,Tb, cnewa , cnearestb );
10 return (Ta,Tb, Path);

11 Swap(Ta,Tb);
12 i← i + 1;

13 return (Ta,Tb, Path);

Algorithm 2: For BiRRT [33]
(T , cnew, status)← Extend(T )

1 crand ← RandomSample();
2 cnearest ← SearchNearest(T , crand);
3 [cnew, status]← ObtainNewConfig(T , cnearest, crand);
4 if (status) then
5 T .addNode(cnew);
6 T .addEdge(cnearest, cnew);

7 return (T , cnew, status);

With the purpose to compare the performance of this algo-
rithm to that of other RRT-like algorithms, all the considered
algorithms are described to the below. Besides the BiDDTRRT,
two other RRT-like algorithms are considered: the bidirectional
RRT (BiRRT) [55], and the bidirectional transition-based RRT
(BiTRRT) [36]. The bidirectional algorithms are considered in-
stead of unidirectional ones because the former ones are more
efficient as shown in [36, 55].

For all the considered algorithms, the BuildTree function is
the main function that builds trees and returns a path that con-
nects a given pair of start and goal configurations, if such a path
is found within L iterations. The structure of the BuildTree
function is shared by the BiRRT, BiTRRT, and BiDDTRRT algo-
rithms (Algorithm 1).

A tree T=(V,E) is a graph that has no cycle and consists
of a set of vertices (V) and a set of edges (E). A vertex con-
tains the information of a robot configuration, the associated
cost value and a pointer that points to its parent vertex. Along
the presentation of the present work it will be referred as a
node indistinguishably. The BiRRT, BiTRRT, and BiDDTRRT
consist of two trees, and they are denoted as Ta=(Va,Ea) and
Tb=(Vb,Eb). Va initially consists of a node with a given start
configuration (cstart), and Vb initially has a node with a given
goal configuration (cgoal). Both Ea and Eb are initially empty
sets. A sample is randomly picked from the sample space

Algorithm 3: For BiTRRT [36]
(T , cnew, status)← Extend(T )

1 crand ← RandomSample();
2 cnearest ← SearchNearest(T , crand);
3 [cnew, status]← ObtainNewConfig(T , cnearest, crand);
4 if (status) then
5 Jnew ← ComputeCost(cnearest, cnew);
6 if (TestTransition(Jnearest,Jnew)

and ControlRefinement(T , cnearest, crand)) then
7 T .addNode(cnew);
8 T .addEdge(cnearest, cnew);

9 return (T , cnew, status);

Algorithm 4: For BiDDTRRT
(T , cnew, status)← Extend(T )

1 repeat
2 crand ← RandomSample();
3 cnearest ← SearchNearest(T , crand);
4 until
ComputeDistance(cnearest, crand) < cnearest.radius;

5 [cnew, status]← ObtainNewConfig(T , cnearest, crand);
6 if (status) then
7 Jnew ← ComputeCost(cnearest, cnew);
8 if (TestTransition(Jnearest,Jnew)

and ControlRefinement(T , cnearest, crand)) then
9 T .addNode(cnew);

10 T .addEdge(cnearest, cnew);
11 cnew.radius← ∞
12 else
13 cnearest.radius← R

14 else
15 cnearest.radius← R

16 return (T , cnew, status);

(srand ∈ Straversable) with independent and uniform distribution
in the RandomSample procedure.

Then the tree goes through the Extend procedure (Algo-
rithm 2, Algorithm 3, and Algorithm 4). For the BiRRT, BiTRRT
and BiDDTRRT algorithms, every time a tree is extended the
planner verifies whether the two trees can be connected in the
Connect procedure (as implemented in [33]). If they are con-
nectable, then the resulting path is returned together with the
associated trees by the ObtainPath procedure. Otherwise, the
trees are swapped (as proposed in [33]), and the previous steps
are repeated until either a path is found or the maximum number
of iterations is reached.

The tree extension procedure differs from each other for all
the three algorithms. The only aspects that are shared by all
the algorithms in the Extend procedure are how a new node is
added to V, and the edge between the nearest node and the
new node is added to E, when the tree can be extended to
the new node from its nearest node. The algorithms BiTRRT
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Algorithm 5: For BiRRT/BiTRRT/BiDDTRRT
(cnew, status)← ObtainNewConfig(T , cnearest, crand)

1 dist← ComputeDistance(cnearest, crand);
2 if dist > η then
3 cnew ← Interpolate(cnearest, crand, η/dist);

4 else
5 cnew ← crand;

6 status← IsTraversable(T , cnearest, cnew);
7 return (cnew, status);

Algorithm 6: For BiTRRT [36] / BiDDTRRT

status← TestTransition(Jnearest,Jnew)

1 if Jnew > Jmax then
2 return False;

3 if Jnew ≤ Jnearest then
4 return True;

5 if exp
(
− (Jnew−Jnearest )

T

)
> 0.5 then

6 T ← T

2

( Jnew−Jnearest
0.1·K

) ;

7 return True;

8 else
9 T ← T · 2Trate ;

10 return False;

and BiDDTRRT differ from the BiRRT in that in the former
algorithms not every new node from the nearest node is ac-
cepted but only if it satisfies the conditions imposed in the
TestTransition and ControlRefinement functions, shown
in Algorithm 6 and Algorithm 7, respectively. Further, the al-
gorithm BiDDTRRT differs from BiTRRT in that, with the for-
mer algorithm, a boundary node can be the nearest neighbor to
a new sample only if this sample is within a ball around the
boundary node with some finite radius value R (Algorithm 4),
whereas, with the latter algorithm, there is no distinction be-
tween boundary and non-boundary nodes. These algorithms
will be described afterwards in more detail.

The search for a new node from a randomly sampled node
is performed in the ObtainNewConfig function (Algorithm 5).
First, the Euclidean distance is calculated between the nearest
node and the randomly sampled node. If this value is larger than
a planning parameter η, then a configuration that interpolates
between the nearest node and the randomly sampled node with
distance η from the nearest node is chosen. Afterwards, one
checks whether the robot can traverse from the nearest node
to the new node by using the motion primitives described in
Section 3.3, avoiding non-traversable regions and using the tip-
over stability measure.

As mentioned earlier, both the BiTRRT and BiDDTRRT algo-
rithms control the acceptance of new configurations based on
their associated costs through the TestTransition function
and the controlRefinement function.

The transition test from the nearest node to the new node is

Algorithm 7: For BiTRRT [36] / BiDDTRRT

status← ControlRefinement(T , cnearest, crand)

1 dist← ComputeDistance(cnearest, crand);
2 if dist < δ then
3 if n refine nodes > ρ · n total nodes then
4 return False;

5 else
6 n refine nodes← n refine nodes + 1;

7 n total nodes← n total nodes + 1;
8 return True;

based on the Metropolis criterion (line 5 in Algorithm 6) which
is typically used in Monte Carlo optimization methods [36]. In
the present work, the method proposed in [36] is used instead
of the method originally proposed in [34] due to its outperfor-
mance reported in [36]. The acceptance of a new configuration
depends on the cost difference between the new node and the
nearest node, and the “temperature” (T ), a planning parameter.
The initial temperature value (To) is chosen to be low, hence a
small cost increase from the nearest to the new node will im-
mediately cause the rejection of the new node. However, each
rejection will increase the temperature value, which will permit
the acceptance of new nodes that involve larger cost differences.
On the other hand, each acceptance of new nodes will cause the
temperature value to decrease. The parameter K shown in line
6 in Algorithm 6 is the range of the cost values attainable as the
robot interacts with a terrain. For the cost functionJ , described
in (10), the K is unity3.

In addition, one can bias the inherent exploration be-
havior that RRT-based algorithms have by using the
ControlRefinement function proposed in [34]. If a randomly
sampled configuration is close to any tree node, and the number
of refinement nodes is above a threshold (ρ), then such nodes
will be rejected.

Finally, assuming that cstart and cgoal lie in the same noncon-
vex, bounded, open, connected configuration space, the RRT
(analogously, the BiRRT) algorithm guarantees the probabilis-
tic completeness since the probability that the RRT (BiRRT)
contains both cstart and cgoal approaches 1 as the number of
vertices approaches infinity [33]. Next, the TRRT (analo-
gously, the BiTRRT) must also guarantee the probabilistic com-
pleteness because the only difference from the RRT (analo-
gously, the BiRRT) is that new samples may be rejected by the
TestTransition and ControlRefinement functions, and
the transition-success probability is strictly positive since the
cost function is finite with subsequent bounded cost variations
[34]. Further, the DDRRT (analogously, the BiDDRRT) also guar-
antees the probabilistic completeness because the lower bound
(R) on the dynamic-domain radius value always ensures the
possibility for a node to be extended [40]. For the same reasons
that the BiTRRT and BiDDRRT are probabilistically complete,

3In the present problem, K is the range of the cost defined in (10) and ranges
from 0 to 1.
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(b) Backward motion

Figure 5: Two motion primitives are defined for the tracked mobile robot: linear
and turn-in-place motions. With these primitives, the robot can move from c1
to c2 either forwardly or backwardly with clockwise or counterclockwise rota-
tional motions about E and/or F to achieve the desired c1 and c2 configurations.

the BiDDTRRT must also be probabilistically complete.

3.3. Motion primitives

As indicated in Section 3.1, the yaw angle is not included
in the definition of samples picked in the path-planning proce-
dure. This is because when the sampling-space dimension is
increased by including the yaw angle, the paths found using
the algorithms described in Section 3.2 generally involve large
variations in yaw motions. To remedy this drawback, the con-
cept of motion primitives composed by forward/backward lin-
ear motions and clockwise/counterclockwise angular motions
is incorporated in the planning algorithm, which significantly
reduces the variations in yaw motions and also increases the ef-
ficiency due to the reduction of the sampling-space dimension.

The set of the simplest motion primitives for a tracked mobile
robot to move between two given configurations is the linear
and turn-in place motions. As shown in Figure 5, for a given
pair of configurations (c1, c2), the robot can move either for-
wardly (Figure 5(a)) or backwardly (Figure 5(b)) from c1 to c2.
In each case, the robot can rotate clockwisely or counterclock-
wisely about the points E and/or F to achieve the desired robot
poses while avoiding collision with non-traversable regions.

For the tree extension, the yaw angle of the cnearest configu-
ration is given from the previous tree extension, while the yaw
angle for the cnew configuration needs to be chosen. The choice
will be made based on the one that allows the robot to avoid
collision with non-traversable regions along its whole motion
between cnearest and cnew, giving priority to the one that involves
the smallest motion range. If a tree is start tree, the robot
moves from the cnearest to cnew. At cnew, the robot can stay along
the same motion direction (Figure 6(a)) or opposite to it (Figure
6(b)). Between these two possibilities, the first one is preferable
for subsequent tree extensions having its nose forwardly. Fur-
ther, the first case (Figure 6(a)) can even be achieved with either
forward motion or backward motion with a rotational motion
about the point F.

On the other hand, if the considered tree is goal tree, the
robot moves from the cnew to cnearest (that is, in the opposite
direction done in start tree). Once again, the yaw angle of
cnew can be either along the same motion direction (Figure 6(c))
or opposite to it (Figure 6(d)), and the choice is made based
on the one that avoids collisions with non-traversable regions
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(a) forward nose (start tree)
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(b) backward nose (start tree)
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(c) forward motion (goal tree)
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(d) backward motion (goal tree)

Figure 6: In tree extension, the robot moves from cnearest to cnew, if the tree is
start tree ((a) and (b)). During the tree extension, the yaw angle for the cnew
is subject to be determined. For the case of start tree, the robot can move
forwardly or backwardly with clockwise or counterclockwise turn-in-place mo-
tion (depending on the results of collision checking), while the forward-nose
case is preferred. If it moves backwardly, then it rotates about F to have the for-
ward yaw angle for cnew, if possible. If this is not possible (due to collision with
non-traversable regions), then it stays in the back-nose configuration (shown in
(b)). In its next extension, the planner will try to assign the forward-nose con-
figuration (shown in (a)). On the other hand, for the case of goal tree, the
robot moves from cnew to cnearest ((c) and (d)). This can be achieved by moving
either forwardly (c) or backwardly (d) with clockwise or counterclockwise turn-
in-place motion (depending again on the results of collision checking), while
the forward motion is preferred.

along the whole motion from cnew to cnearest. Between these two
possibilities, the former one is preferable for the same reason
given for the case with the start tree.

3.4. Comments on the flipper motion planning

The ability of tracked mobile robots to cross over obstacles is
limited by their track sprocket radius, and this limitation can be
improved by attaching flippers in the frontal side of the robot.
Moreover, when tracked mobile robots interact with uneven ter-
rains, they might experience sudden downward pitch motion
which might cause large body impacts with possible damages.
In these situations, the frontal flippers can be used to mitigate
the body impacts by lowering them before the body pitch ve-
locity becomes large.

Although it is true that the flippers’ position that optimizes
the tip-over stability measure might be different from when they
are parallel to the main base, its value should not be too far from
the flat configuration, especially when the length gained by the
inclusion of the flippers is not large. In the view of the fact that
the incorporation of the flippers to the robot is not mainly to
increase the robot stability but to enlarge the robot’s ability to
cross over taller obstacles and to mitigate the robot body im-
pact, the flipper position is not included in the sample space de-
fined in the present path planning procedure, with the purpose
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(a) Terrain I (4m × 4m) (b) Terrain II (7m × 7m) (c) Terrain III (8m × 8m) (d) Terrain IV (8.4m × 10.1m)

Figure 7: Four terrain maps are considered in the present work in order to evaluate the performance of the pose-estimation based path planner: (a) a narrow passage
with a stair on one extreme and a crossing on the other (Terrain I); (b) a two-level flat terrain connected by a stair and a ramp, with a cliff, a deep pit, two crossable
small steps and two parking lots (Terrain II); (c) a rough terrain with two passages: one being wide and the other, narrow (Terrain III); and, (d) a real 3D map of a
two-level flat terrain connected by a stair, obtained by merging several point clouds captured using a 3D RGB sensor (Terrain IV).

to ease the path search and increase the planning efficiency (by
the reduction of the sample space dimensionality).

Therefore, the initial setting of the flippers is parallel to the
main base of the tracked mobile robot if possible. When the
robot needs to cross objects that are higher than the sprocket’s
radius but within the reachable region with flippers, or when
significant pitch motion is expected in the planning process,
then the flippers’ motion can be planned accordingly. This can
be done by relating the desired flipper motion to the robot’s
body pitch angle change. Notice that the roll change is not con-
sidered because the flippers are coupled, and, therefore, their
main function is to influence on the body pitch motion and not
the roll motion. If the objective is also to affect the robot’s roll
motion, then the flippers must be independent from each other
but this is not the case with Cameleon (see Figure 1).

4. Results and discussion

The pose estimation-based path-planning framework de-
scribed in Section 3 is implemented in C++ using a PC with
an Intel Xeon CPU (E5607) 2.27GHz with 24GB of memory
RAM.

Four terrains (Figure 7) are considered to study the in-
fluence of the pose-estimation parameters, the BiTRRT and
BiDDTRRT parameters, and the choice of the algorithm (be-
tween the BiRRT, BiTRRT and BiDDTRRT) on the planning per-
formance. The search for a solution is terminated either when
the first path that connects a given pair of the start and goal
configurations is found or if no such path is found within 106

iterations.
The first terrain consists of a narrow passage with a stair and

a crossing in its extremes, with the robot start configuration be-
ing in the narrow passage facing backwardly to the stair and its
goal configuration being at the top level of the stair (Terrain I
(Figure 7(a))). The passage width is not wide enough for the
robot to make turn while it is in the passage. The aim for the
consideration of such a terrain is to show that our planner can
find solutions by using the crossing with its orthogonal passage.

The second terrain consists of a two-level flat terrain con-
nected by a stair and a ramp, with a cliff, a deep pit, two cross-

able small steps and two parking lots (Terrain II (Figure 7(b))).
The robot is initially parked in the right parking lot, and the
goal is to park the robot in the parking lot of the left side in the
map. This terrain map is considered to see whether the planner
can generate a path that connects the start and the goal config-
urations through the stair and the ramp, while avoiding the pit,
cliff, parking-lot walls and crossable small steps.

The third scenario is a rough terrain with two passages: one
being wide and the other, narrow (Terrain III (Figure 7(c))).
Initially, the robot starts from the right-down position in the
map, and it has to reach the left-top position in the map. The
aim of this study is to see whether the planner can plan a
path that connects the start and the goal configurations through
the longer-but-wider passage and not through the shorter-but-
narrower passage (that involves changes in the robot’s roll and
pitch), while avoiding the dangerous mountainous regions.

Finally, the fourth case consists of a real 3D map built from
a series of point cloud data captured using a 3D RGB sensor.
This map consists of a two-level flat terrain connected by a stair
(Terrain IV (Figure 7(d))). The robot starts from a position in
the low flat level, and it has to reach a position on the high flat
level. The goal of this study is to show that the planner is robust
even with a real 3D map.

4.1. Influence of the robot pose-estimation parameters on the
planning performance

In this section, the influence of the robot pose-estimation pa-
rameters on the planning performance is studied. The aim of
this study is to find the smallest number of potential contact
points (p) and the largest LCP discretization time step (h) with
which the planner can quickly return a solution while guaran-
teeing an acceptable accuracy of the robot pose estimation.

First, the influence of the number of potential contact points
(p) on the robot pose estimation is studied for a fixed LCP dis-
cretization time step (h=10ms). In this study, the robot pose is
estimated as the robot model is asked to climb a stair follow-
ing a piecewise-linear path with a uniform length step along
the longitudinal direction of the stair (Figure 9). The height,
roll and pitch angles are respectively represented in Figure 8(a),
Figure 8(b), and Figure 8(c), for various numbers of potential
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(a) Height with h=10ms (b) Roll with h=10ms (c) Pitch with h=10ms

(d) Height with p=12 (e) Roll with p=12 (f) Pitch with p=12

Figure 8: The results of solving the robot pose estimation problem are shown when the robot model climbs the stair shown in Figure 9. (a) - (c) are the height, roll
and pitch angles against the X-direction for various numbers of potential contact points (p) and for h=0.01s, as of the LCP discretization time step. (d) - (f) are the
height, roll and pitch angles against the X-direction for various LCP discretization time steps and for p=12, as of the number of potential contact points.

contact points (p ∈ {6, 8, 12, 16, 20, 24}). Among these poten-
tial contact points, two are attributed to the flippers (one per
flipper on the mid-point of their respective longitudinal mid-
axis), and the rest, to the two tracks.

Figure 8(a) shows that the progress of the robot’s CoM height
is similar for all the p values except for p=(6, 8). While the
progress of the roll angle is invariant from p (Figure 8(b)), sig-
nificant pitch angle difference can be observed for p=6, espe-
cially at the end of the stair. More detailed results are presented
in Table 1. The results shown in this table are the root mean
square (RMS) of the difference between the reference height-
roll-pitch (p=24) and the height-roll-pitch of the remaining
numbers of potential contact points. These results indicate that
in effect the RMS errors are significantly larger for the height
when p=(6, 8) than for the rest of the cases. On the other hand,
the errors along the roll direction are nearly zero because in this
study the robot model is asked to move along the longitudinal
direction of the stair.

Figure 9: Stair climbing following a piecewise linear path for evaluating the
performance of robot pose estimation for various p and h values.

In addition, the influence of the LCP discretization time step
(h) on the robot pose estimation is studied for a fixed number
of potential contact points (p=12) while the robot is asked to
climb the stair. The corresponding height, roll and pitch an-
gles are respectively shown in Figure 8(d), Figure 8(e), and
Figure 8(f), for various LCP discretization time step values
(h ∈ {5, 10, 15, 25}ms). Contrary to the previous study (in
which the number of potential contact points is varied having
the LCP discretization time step fixed), when the discretiza-
tion time step is varied having the number of potential contact
points fixed, the progress of height-roll-pitch values seems to
be very similar for all the considered time steps. In effect, Ta-
ble 2 shows that the RMS errors of the height-roll-pitch values
for h ∈ {10, 15, 25}ms computed with respect to the reference
height-roll-pitch values (h=5ms) are small in general. These
results indicate that the robot pose estimation is more robust
in the changes of the LCP discretization time steps than in the
changes of the number of potential contact points.

Next, the influence of the combination of the number of
potential contact points (p) and the LCP discretization time
step (h) on the path-planning time is studied. For this study,
p ∈ {6, 8, 12, 16, 20, 24} and h ∈ {5, 10, 15, 20}ms are consid-

Table 1: Root mean squared error of the robot pose estimation with
respect to the case of (p=24, h=10ms)

PPPPPPPError
p

6 8 12 16 20

heightRMS [m] 0.034 0.027 0.012 0.006 0.005

rollRMS [rad] 0.000 0.000 0.000 0.000 0.000

pitchRMS [rad] 0.099 0.066 0.072 0.056 0.058
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Table 2: Root mean squared error of the robot pose es-
timation with respect to the case of (p=12, h=5ms)

PPPPPPPError
h

10ms 15ms 20ms

heightRMS [m] 0.0029 0.0031 0.0044

rollRMS [rad] 0.0000 0.0002 0.0000

pitchRMS [rad] 0.0098 0.0153 0.0212

ered over Terrain II shown in Figure 7(b). The path search is
performed using the BiTRRT algorithm with Trate = 0.05 and
To = 1e−6, and the search is repeated one-hundred times with
different seeds for random number generation for each p and h
values. The results shown in Figure 10 indicate that the plan-
ning time increases as the number of potential contact points
increases for all the considered LCP discretization time steps.
They also manifest that the planning time decreases as the LCP
discretization time step increases for all the considered numbers
of potential contact points. Further, these results suggest once
more that the planning time is more sensitive to the changes
on the number of potential contact points than to the LCP dis-
cretization time step. Moreover, they show that for smaller h
values the planning time increases more quickly as the number
of potential contact points increases.

After all, the results shown in Figure 8, Figure 10, Table 1,
and Table 2 seem to suggest that p=12 and h=10ms are ac-
ceptable pose-estimation parameter values for quickly finding a
solution with an acceptable accuracy of the robot pose estima-
tion.

4.2. Influence of the BiTRRT algorithm parameters and of the
cost functions on the planning performance

In this section, the influence of the BiTRRT parameters and
of the cost functions on the planning performance such as the
planning time, number of trees’ nodes, path cost, path length
and the success rates4, with p=12 and h=10ms (as suggested
from Section 4.1).

First, as presented in Algorithm 6 (following the approach
proposed by [36]), the testTransition function uses one pa-
rameter and one initial value: Trate and To, respectively. The
initial value for the “temperature” (T ) is typically set to be
a small value with the purpose to initially restrict the sam-
ple region to be of low cost. To = 1e−6 is used for the
present study. On the other hand, the parameter related to the
controlRefinement (ρ) is fixed with the value suggested by
[34] and [36] (i.e., ρ = 0.1). Thus, the parameter Trate is left
to study its influence on the planning performance, as shown
posteriorly.

Second, two types of cost functions are used in the present
study: the Minimal Work (MW) proposed by [34] and the
tip-over stability-related cost function proposed in the present

4The success rate is defined as the ratio of the number of trials in which a
solution is found within L=106 iterations to the total number of trials.

Figure 10: Influence of the pose-estimation parameters (the number of potential
contact points (p) and the LCP discretization time step (h)) on the planning
time.

work. Recall from [34] that a path that minimizes the mechani-
cal work for a given query is called the MW path. The mechan-
ical work of a path is defined in [34] as

W(P) =
∑

i

∆v+
i + εl, (11)

where ∆v+
i is the positive cost difference between two configu-

rations in the path P. εl is an additive term considered to favor
shortest paths, where ε is a small positive real number and l
is the distance between two configurations in the path. In this
study, vi is considered as the robot height, and ε = 10−5 is used.

Therefore, in the present study, solutions are searched using
the BiTRRT algorithm over Terrain II (Figure 7(b)) and Terrain
III (Figure 7(c)) with the Minimal Work (11) and the stability-
related cost function (10), and with two Trate values: 0.1 and
0.05. One-hundred solution paths are found over Terrain II and
Terrain III for the following four scenarios (11): a) Minimal
Work with Trate = 0.10; b) Minimal Work with Trate = 0.05;
c) stability cost with Trate = 0.10; and d) stability cost with
Trate = 0.05.

For both Terrain II and Terrain III, the planner is able to
plan paths to connect the start and the goal configurations while
avoiding the crossable steps for all one-hundred simulations.

For Terrain II, at the first glance, the Trate does not seem to
affect the stability results for both cost functions (see the first
row of Figure 11 and Table 3). However, when one gives a
special attention around the corners of the stair and the ramp
in Terrain II, one can realize that the paths obtained using the
stability cost are further away from these corners than when the
Minimal Work is used. And, this difference is more accentuated
with Trate = 0.05 than with Trate = 0.10. This observation be-
comes more clear by the difference of the stability cost values
indicated in Table 3 for each of the cost functions and of the
Trate values. All the values given in Table 3 are the average of
the one-hundred solution paths for each case. The best stabil-
ity result is achieved when paths are planned using the stability
cost with Trate = 0.05, and the worst stability result is obtained
with the Minimal Work and Trate = 0.10.

For Terrain III, the difference of results obtained using the
Minimal Work and the stability cost becomes more evident.
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(a) Minimal Work with Trate = 0.10 (b) Minimal Work with Trate = 0.05 (c) Stability cost with Trate = 0.10 (d) Stability cost with Trate = 0.05

(e) Minimal Work with Trate = 0.10 (f) Minimal Work with Trate = 0.05 (g) Stability cost with Trate = 0.10 (h) Stability cost with Trate = 0.05

Figure 11: One-hundred solution paths obtained using the BiTRRT algorithm (with different seeds for random number generation) are shown over Terrain II and
Terrain III, using both the Minimal Work (MW) and the tip-over stability-related cost function with two temperature rate (Trate) values: 0.1 and 0.05.

Table 3: Influence of Trate and of the cost functions on the planning performance

Terrain Cost Trate Iterations # Nodes Time[s] Path length[m] J(= (1 − ξ̂)) [-] MW Success rate [%]a

Hybrid MW 0.10 9068.744 766.611 1.086 18.931 4.202 0.506 100.0
MW 0.05 14404.867 1065.144 1.671 19.210 4.356 0.503 100.0
Stability 0.10 12179.644 815.789 1.343 18.872 3.353 0.546 100.0
Stability 0.05 16929.478 1293.067 2.104 19.042 3.360 0.548 100.0

Rough MW 0.10 941.422 387.278 0.662 11.421 20.437 0.845 100.0
MW 0.05 1255.356 351.778 0.748 11.801 8.433 0.538 100.0
Stability 0.10 1145.278 375.756 0.868 12.778 3.800 1.034 100.0
Stability 0.05 1387.611 328.867 0.929 12.732 2.610 0.921 100.0

a The success rate is defined as the ratio of the number of trials in which a solution is found within L=106 iterations to the total number of trials.

When the planner uses the Minimal Work as its cost function, it
seems to generally choose the paths along both the wide and the
narrow passages, whereas when it uses the stability cost func-
tion, the planner generally chooses the paths along the wide
passage. The robot suffers from roll and pitch changes when
it passes through the narrow passage. On the other hand, the
planning performance is clearly sensitive to the choice of Trate.
For both types of cost function, the smaller Trate is, the lower
Minimal Work corresponds to the solution path and the more
stable is the solution path (see Figure 11(e) - 11(h) and Table
3).

In addition, notice that the smaller Trate is, the more refined
is the path search. This is because, as indicated in Algorithm 7,
the smaller Trate is, the more slowly the temperature raises, and,
therefore, overconstrains the growth of the path search area in
the traversable sample space than when the Trate is larger. The
solutions found with a lower Trate value are stabler (but longer
in length in this case) requiring longer time to plan than those

found with a higher Trate value.
Finally, the results obtained using the proposed stability cost

function seem to give better planning-performance results than
using the Minimal Work, and this aspect becomes more clear
with the smaller Trate value.

4.3. Comparison between the results obtained using the BiRRT,
BiTRRT and BiDDTRRT algorithms

In this section, the planning-performance results obtained
using the BiRRT, BiTRRT and BiDDTRRT algorithms are com-
pared for the considered four terrain maps in terms of the plan-
ning time, number of trees’ nodes, path cost, path length and
the success rates. While the BiRRT algorithm does not con-
sider cost function in the planning procedure, both the BiTRRT
and BiDDTRRT algorithms use the tip-over stability-related cost
function to instantaneously restrict the sample region for the
solution search. These algorithms are employed to plan the
robot’s motion path over the four terrains shown in Figure 7.
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(a) Terrain I (BiRRT) (b) Terrain II (BiRRT) (c) Terrain III (BiRRT) (d) Terrain IV (BiRRT)

(e) Terrain I (BiTRRT) (f) Terrain II (BiTRRT) (g) Terrain III (BiTRRT) (h) Terrain IV (BiTRRT)

(i) Terrain I (BiDDTRRT) (j) Terrain II (BiDDTRRT) (k) Terrain III (BiDDTRRT) (l) Terrain IV (BiDDTRRT)

Figure 12: The solution paths obtained using the BiRRT, BiTRRT and BiDDTRRT algorithms are represented over each of the four terrain elevation maps. The results
shown in each row correspond to those obtained using three different RRT-based algorithms: (a) - (d) BiRRT, (e) - (h) BiTRRT, and (i) - (l) BiDDTRRT.

Due to the fact that all these algorithms do not guarantee the
optimality of the solutions, for each algorithm the path search
is performed one-hundred times with different random seeds,
and the results shown in Table 4 represent the averaged val-
ues. For the BiDDTRRT algorithm, R=λε is used as suggested
by [39, 40], where ε is the interpolation step with λ=10.

First, the illustrations shown in each row of Figure 12 corre-
spond to the solution paths found over the considered four ter-
rain maps using the BiRRT, BiTRRT and BiDDTRRT algorithms,
respectively. Figure 12 does not show a clear difference be-
tween the solutions found by the three algorithms on Terrain
I and Terrain IV due to the fact that the path-search regions
on these terrain maps are restricted (i.e., narrow passages and
stairs)5. However, the results obtained for Terrain II and Ter-

5Nonetheless, the planning-performance results obtained for Terrain I and

rain III show a clear difference in terms of the solution quality
depending on the employed path-planning algorithm.

On one hand, the study with Terrain II shows that the BiTRRT
and BiDDTRRT algorithms can always find paths that avoid
crossable steps (i.e., steps with height values that are within the
reachability range using the flippers). Whereas, the BiRRT al-
gorithm can not guarantee to obtain paths that avoid these steps.
On the other hand, the study on Terrain III shows that both the
BiTRRT and BiDDTRRT are again always able to avoid danger-
ous regions for the choice made for the parameter values (in-
dicated in Section 4.2), while the BiRRT always fails to avoid
the dangerous regions since this algorithm does not take into
account any cost function.

Terrain IV are clearly different, as shown in Table 4 and in Figure 13
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Table 4: Comparison of the planning performance results between the BiRRT, BiTRRT, and BiDDTRRT

Terrain Algorithm Iterations [-] # Nodes [-] Time [s] Path length [m] J(= (1 − ξ̂)) [-] Success rate [%]a

BiRRT 67352.106 291.847 2.500 4.361 1.801 95.0
Terrain I BiTRRT 107083.180 346.281 4.443 4.264 1.782 99.0

BiDDTRRT 19336.600 132.000 1.852 4.290 1.031 100.0

BiRRT 5214.678 444.356 0.545 17.689 6.311 100.0
Terrain II BiTRRT 16929.478 1293.067 2.104 19.042 3.360 100.0

BiDDTRRT 10809.400 1887.400 4.813 18.091 2.506 100.0

BiRRT 339.522 311.989 0.335 9.981 34.752 100.0
Terrain III BiTRRT 1387.611 328.867 0.929 12.732 2.610 100.0

BiDDTRRT 1326.400 242.000 2.209 12.250 0.907 100.0

BiRRT 7875.644 1214.611 1.193 15.042 31.674 100.0
Terrain IV BiTRRT 103657.221 1389.426 15.704 15.054 26.152 78.0

BiDDTRRT 8821.800 373.400 5.683 14.023 13.329 100.0
a The success rate is defined as the ratio of the number of trials in which a solution is found within L=106 iterations to the total number of trials.

Table 4 shows the planning-performance results obtained us-
ing the BiRRT, BiTRRT, and BiDDTRRT algorithms. The re-
sults show that the BiTRRT requires a larger number of itera-
tions, with a smaller ratio between the accepted nodes and the
sampled nodes (i.e., (number of nodes)/Iterations) to find
a solution. This is mainly due to the node-rejection mechanism
that the BiTRRT algorithm has by restricting the sample region
(using the TestTransition function) and by controlling the
refinement of the search tree (using the controlRefinement
function). As a result, all the paths obtained by the BiTRRT have
better tip-over stability-related cost values than those obtained
using the BiRRT, even though in some cases the length of the
obtained paths are larger than those obtained from the BiRRT
algorithm. The success rates obtained within L=106 iterations
are nearly 100% for all the cases, except for the case of Terrain
IV with the BiTRRT algorithm (see Table 4 and Figure 13). For
this last case, even the planning time is significantly larger than
when the BiRRT algorithm is employed. These poor results may
be due to the fact that many new samples have boundary nodes
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Figure 13: The tip-over stability-related cost values are plotted against the plan-
ning time for all the four scenarios using the BiRRT, BiTRRT and BiDDTRRT
algorithms. These values are precisely those shown in Table 4, which are aver-
aged values over one-hundred different simulations.

as their nearest neighbors (which have associated large Voronoi
regions) and that the mechanism of restricting the sample re-
gion with the TestTransition function does not suit well to
this type of problems. This observation motivated the authors
to consider the dynamic-domain aspect [39, 40], which reduces
the probability that a boundary node is chosen to be the near-
est neighbor to a new sample, by restricting its corresponding
sample region. The incorporation of this aspect to the BiTRRT
originated a new algorithm called hereby as BiDDTRRT, and it
significantly improved both the success rate and the planning
time for the Terrain IV.

In fact, both Table 4 and Figure 13 show that, in terms of
the average cost, the BiDDTRRT outperforms both the BiRRT
and BiTRRT. On the other hand, in terms of the planning time,
BiDDTRRT performs better than BiTRRT on Terrain I and Ter-
rain IV and even better than BiRRT on Terrain I. The relatively
small values for the average number of nodes for both the Ter-
rain I and Terrain IV clearly indicate the effect of the dynamic-
domain. This effect is more accentuated for Terrain I, where
most of the nodes in the corridor are in proximity with the non-
traversable regions (the walls).

Finally, Figure 13 shows three clustering regions for each
planning algorithm in terms of the stability-related cost and the
planning time. This is another way to visualize the key results
shown in Table 4. The results show that the BiRRT algorithm
returns solutions at lower planning-time values but with higher
stability-related cost values, while the BiTRRT algorithm re-
turns solutions with lower stability-related cost but at the price
of larger planning time in some cases. On the other hand, the
results obtained using the BiDDTRRT correspond to the lowest
cost values with the highest success rates, while compromising
the planning time.

5. Conclusion and future work

A novel path-planning algorithm is proposed in the present
work for a tracked mobile robot to traverse uneven terrains
by combining two RRT-like algorithms (the transition-basd
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RRT (T-RRT) [34] and the dynamic-domain RRT (DD-RRT)
[39]) and by representing the robot-terrain interaction with the
robot’s tip-over stability. In order to increase the planning ef-
ficiency, the resulting algorithm is used bidirectionally, and it
is called as the bidirectional dynamic-domain transition-based
RRT (BiDDTRRT). On the other hand, the robot’s tip-over stabil-
ity is computed quasi-statically by first solving the problem of
the robot pose estimation over uneven terrains (assuming that
the robot’s speed is low for safety), which is interpreted as a
contact problem, formulated as a linear complementarity prob-
lem (LCP) and solved using the Lemke’s method.

Then, the performance of the BiDDTRRT is compared to other
RRT-like algorithms such as the bidirectional RRT (BiRRT) and
bidirectional transition-based RRT (BiTRRT) algorithms over
various uneven terrains. The comparison study between these
three algorithms manifests that the BiRRT algorithm quickly
finds solutions, but the corresponding stability-related cost val-
ues are high, since it does not use the knowledge of the associ-
ated cost. On the other hand, the BiTRRT can find solutions with
better stability-related cost values than the BiRRT, but its suc-
cess rate can be poor if the number of boundary nodes is large,
requiring significant amount of planning time in some cases.
The drawbacks of the BiTRRT can be mitigated by incorporat-
ing the dynamic-domain aspect to the BiTRRT (i.e., BiDDTRRT),
as we suggest in the present work, in order to improve the suc-
cess rate, the solution quality (in terms of the stability of the
overall path) and the planning time.

Further, the performance of planning paths with a stability-
related cost function is compared to that of planning with the
cost consisting of the Minimal Work, and the results show that
the solutions found with the stability-related cost function have
a stronger bias towards safer regions.

In the near future, the framework described in the present
work will be implemented on a tracked mobile robot (Figure 1)
to traverse uneven terrains with the purpose to experimentally
validate the results shown hereby.
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[34] L. Jaillet, J. Cortés, T. Siméon, Sampling-based path planning on
configuration-space costmaps, IEEE Transactions on Robotics 26 (4)
(2010) 635–646.
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the sampling domain for dynamic-domain RRTs, in: Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.

[41] Cameleon EOD, Eca Robotics: http://www.eca-robotics.com/en/robotic-
vehicle/robotics-terrestrial-unmanned-ground-vehicles-(ugv)-cameleon-
eod-lightweight-eod-ugv/22.htm.

[42] M. Mortenson, Geometric Modeling, John Wiley and Sons, 1985.
[43] S. Beucher, C. Lantuejoul, Use of watersheds in contour detection, in:

Proc. of Int. Workshop Image Processing, Real-Time Edge and Motion
Detection/Estimation, 1979.

[44] S. Suzuki, Topological structural analysis of digitized binary images by
border following, Computer Vision, Graphics, and Image Processing 30
(1985) 32–46.

[45] T.-Y. Chyou, Country interior: Two solutions to the nonconvex polygon
interior problem, Wolfram Demonstrations Project.

[46] P. R. Kraus, V. Kumar, Compliant contact models for rigid body colli-
sions, in: Proc. of IEEE International Conference on Robotics and Au-
tomation, Albuquerque, NM, USA, 1997, pp. 1382–1387.

[47] D. Marhefka, D. Orin, A compliant contact model with nonlinear damp-
ing for simulation of robotic systems, IEEE Transactions on Systems,
Man & Cybernetics, Part A (Systems & Humans) 29 (6) (1999) 566–72.

[48] D. Stewart, J. Trinkle, An implicit time-stepping scheme for rigid body
dynamics with inelastic collisions and Coulomb friction, International
Journal for Numerical Methods in Engineering 39 (15) (1996) 2673–91.

[49] J. Trinkle, S. Berard, J. Pang, A time-stepping scheme for quasistatic
multibody systems, in: Proc. of IEEE International Symposium on As-
sembly and Task Planning, Montreal, QC, Canada, 2005, pp. 174–181.

[50] J. E. Lloyd, Fast implementation of Lemke’s algorithm for rigid body con-
tact simulation, in: Proc. of IEEE International Conference on Robotics
and Automation, Barcelona, Spain, 2005, pp. 4538–4543.

[51] A. T. Miller, P. K. Allen, GraspIt!: A versatile simulator for robotic grasp-
ing, IEEE Robotics and Automation Magazine 11 (4) (2004) 110–122.

[52] M. Anitescu, F. Potra, Formulating dynamic multi-rigid-body contact
problems with friction as solvable linear complementarity problems, Non-
linear Dynamics 14 (3) (1997) 231–247.

[53] K. Egan, S. Berard, J. Trinkle, Modeling nonconvex constraints using lin-
ear complementarity, Tech. Rep. 03-13, Rensselaer Polytechnic Institute,

Department of Computer Science (December 2003).
[54] K. Iagnemma, S. Dubowsky, Mobile Robots in Rough Terrain: Estima-

tion, Motion Planning, and Control with Application to Planetary Rovers,
Springer, 2004.

[55] J. J. Kuffner Jr., S. M. LaValle, RRT-connect: an efficient approach to
single-query path planning, in: Proc. of IEEE International Conference
on Robotics and Automation, 2000, pp. 995–1001.

17



Jae-Yun JUN’s short biography 
 
Jae-Yun Jun received the B.S. degree in Telecommunications in 2004 from Escola Tècnica Superior 
d’Enginyeria de Telecomunicació de Barcelona (ETSETB) at Universitat Politècnica de Catalunya (UPC), 
Spain. He received the M.S. degree in Electrical Engineering in 2005 from the University of Pennsylvania, 
USA, and the Ph.D. degree in Mechanical Engineering in 2011 from the Florida State University, USA. He 
is currently a Posdoctoral Researcher in the Institut des Systèmes Intelligents et de Robotique (ISIR) at 
Université Pierre et Marie Curie (UPMC), Paris, France. His research interests include robot motion 
planning, trajectory tracking, legged locomotion and dynamic modeling. 

Biography of Jae Yun JUN KIM



Jean-Philippe SAUT’s short biography 
 
Jean-Philippe Saut received the M.S. degree in robotics in 2003 from University Pierre et Marie Curie 
(UPMC), Paris, France. He received the Ph.D. degree in 2007 from UPMC. He continued his work in the 
field of robotic manipulation during a postdoctoral fellowship at the Laboratoire d’Analyse et 
d’Architecture des Systemes-Centre National de la Recherche Scientifique (LAAS-CNRS), France, and 
another at the Institut des Systemes Intelligents et de Robotique (ISIR) in UPMC. His research interests 
include dexterous manipulation, grasp planning, manipulation planning and assistive robotics. 

Biography of Jean-Philippe SAUT



Faïz BEN AMAR’s short biography 
 
Faïz Ben Amar was born in Sfax, Tunisia in 1965. He is graduate from the Ecole Nationale Supérieure 
des Arts et Métiers (France) and he received PhD degree in 1994 from the Université Pierre et Marie 
Curie - UPMC. He is currently full professor at UPMC. Dr. Faïz Ben Amar developed his researches in 
the field of design and control of high mobility locomotion systems and self-reconfigurable modular 
systems. He is interested in modeling and simulation of multibody systems interacting with complex 
environment. 
 
 
 

Biography of Faiz BEN AMAR



Photo of Jae Yun JUN KIM



Photo of Jean-Philippe SAUT



Photo of Faiz BEN AMAR


