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RESEARCH ARTICLE Open Access

Distinct polymer physics principles govern
chromatin dynamics in mouse and
Drosophila topological domains
Vuthy Ea1, Tom Sexton2, Thierry Gostan1, Laurie Herviou1, Marie-Odile Baudement1, Yunzhe Zhang3, Soizik Berlivet1,
Marie-Noëlle Le Lay-Taha1, Guy Cathala1,4, Annick Lesne1,4,5, Jean-Marc Victor1,4,5, Yuhong Fan3, Giacomo Cavalli2,4

and Thierry Forné1,4*

Abstract

Background: In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs)
in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has
received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics
within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells,
gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place.

Results: Here, we use data from diverse 3C-derived methods to explore chromatin dynamics within mouse and
Drosophila TADs. In mouse Embryonic Stem Cells (mESC), that possess large TADs (median size of 840 kb), we show
that the statistical helix model, but not globule models, is relevant not only in gene-rich TADs, but also in
gene-poor and gene-desert TADs. Interestingly, this statistical helix organization is considerably relaxed in mESC
compared to liver cells, indicating that the impact of the constraints responsible for this organization is weaker in
pluripotent cells. Finally, depletion of histone H1 in mESC alters local chromatin flexibility but not the statistical helix
organization. In Drosophila, which possesses TADs of smaller sizes (median size of 70 kb), we show that, while
chromatin compaction and flexibility are finely tuned according to the epigenetic landscape, chromatin dynamics
within TADs is generally compatible with an unconstrained polymer configuration.

Conclusions: Models issued from polymer physics can accurately describe the organization principles governing
chromatin dynamics in both mouse and Drosophila TADs. However, constraints applied on this dynamics within
mammalian TADs have a peculiar impact resulting in a statistical helix organization.
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Background
During the last decade, the advent of Chromosome Con-
formation Capture (3C) [1] and its derived technologies
(4C, 5C, Hi-C) [2] allowed to explore genome organization
with unprecedented resolution and accuracy. By capturing
all chromatin contacts present at a given time in their
physiological nuclear context, and then by averaging these
events over several millions of cells, the quantitative 3C

method [3] allows to access the relative contact frequencies
between chromatin segments in vivo. This feature is key to
understanding chromatin dynamics in vivo because it de-
pends not only on fundamental biophysical parameters of
the chromatin (such as compaction and stiffness) that de-
termine its local organization at the nucleosomal scale, but
also on constraints that impact its higher-order/supranu-
cleosomal organization. These latter constraints can result
either from nuclear determinants that organize chromatin
at higher scales (“top-down” constraints) or from some
intrinsic locus-specific components of the chromatin
that are controlling genomic functions, like epigenetic
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modifications or the binding of specific factors (“bottom-
up” constraints) [4].
Hi-C approaches (that combine 3C assays with high-

throughput sequencing) provided genome-wide profiling of
contact frequencies in the yeast (Saccharomyces cerevisiae)
[5], fly (Drosophila melanogaster) [6], mouse (Mus muscu-
lus domesticus) [7] and human [8, 9] genomes. While these
data confirmed that higher-order chromatin dynamics
appears to be globally unconstrained in yeast, they
showed that this organization level is constrained in
higher eukaryotes where the chromatin is compartmental-
ized into chromosomal territories that are themselves
further partitioned into the so-called “Topologically
Associating Domains” (TADs) [10] or contact domains
[9]. TADs and contact domains are defined as chromo-
somal sub-compartments that display preferential con-
tacts in cis. However, they are restricted to interphase
cells and disappear in mitotic chromosomes [11], to be
re-acquired in the early G1 phase [12]. They are physic-
ally delimited by borders that are gene-rich regions
enriched in specific factors like the insulator protein
CTCF [7, 9, 13, 14]. Noticeably, the location of TAD
borders appears to be quite stable across cell types. It is
commonly accepted that, within TADs, chromatin is
organized into chromatin loops, via locus-specific interac-
tions, and that this organization is tightly related to gen-
ome function [9, 15–17]. It has recently been evidenced
that such interactions occur in the context of fluctuating
structures rather than being stable loops [18], and we pre-
viously showed that, in the absence of strong long-range
locus-specific interactions, this underlying dynamics of the
chromatin undergo constraints in gene-rich regions result-
ing in modulated contact frequencies over large genomic
distances [4]. While the involvement of locus-specific fac-
tors in chromatin-loop formation, within TADs, is now
well established [9], the physical properties that govern
the underlying chromatin dynamics at that scale remains
unknown.
Here, using quantitative 3C experiments, we report that

the modulation of contact frequencies previously de-
scribed in liver cells [4] is also present in pluripotent
mouse Embryonic Stem Cells (mESC), not only in gene-
rich TADs, but also in gene-poor and gene-desert do-
mains. Therefore, the constraints that affect higher-order
chromatin dynamics in mammals appear to widely affect
TADs in diverse genomic contexts. We show that the
equilibrium/crumpled globule models do not reproduce
chromatin dynamics within mammalian TADs. In con-
trast, models derived from polymer physics can accurately
describe chromatin dynamics at that scale in both mouse
and Drosophila TADs. In the mouse, we found that chro-
matin dynamics is less constrained in ESC than in liver
cells, and that this constraint is also strongly attenuated in
a TAD spanning a gene-desert compared to gene-poor or

gene-rich TADs. In Drosophila melanogaster, using Hi-C
data obtained from embryos, we show that, on a local
scale, chromatin dynamics is finely tuned according to the
epigenetic landscape: the nucleofilament is less compact
and more flexible in active than in heterochromatic do-
mains. However, in contrast to mammals, the higher-
order chromatin dynamics in Drosophila appears largely
unconstrained.

Results
To explore the influence of the genomic context on chro-
matin dynamics, we first investigated mouse ESC, for
which TADs have been finely defined [7]. We focused on
three types of domains: five gene-rich TADs, two gene-
poor TADs [19] and one gene-desert TAD (Additional file
1a and b). The regions investigated in the two gene-poor
TADs (Additional file 1b) are devoid of any known genes
or putative regulatory elements, and their homozygous
deletion in mouse results in fully viable pups, with no
obvious alteration [19]. These TADs actually do contain
several genes, but the closest from the regions analysed
are located around 300 kb away. In contrast, the gene-
desert TAD is containing a single gene located more than
1.5 Mb away from the region analysed (Additional file 1a).

Equilibrium/crumpled globule models do not reproduce
chromatin dynamics within mammalian TADs
Equilibrium and crumpled/fractal globule models, have
been developed to describe chromatin dynamics in vivo.
It was shown that, when one looks at decreasing contact
frequencies as a function of increasing genomic dis-
tances in a Log-Log plot, the equilibrium globule model
follows a power-law scaling associated to a slope of −3/2
over two orders of magnitude while the crumpled glob-
ule model has a slope of −1 [20]. Using Hi-C data, it was
shown that crumpled globule features are characteristic
of chromatin dynamics above 1 Mb (chromosome terri-
tory/inter-TADs dynamics) but that they may not be
valid for separation distances shorter than 100 kb [8].
To assess whether such organization principles apply

to chromatin dynamics within TADs, we thus performed
quantitative 3C experiments in the different TADs de-
scribed above and, using Log-Log plots, we showed that
gene-rich, as well as gene-poor and gene-desert TADs
display slopes superior to −1 (−0.60 to −0.48) (Fig. 1)
which are incompatible with the equilibrium or crum-
pled globule models. Therefore, neither the equilibrium
nor the crumpled globule models accurately reproduce
chromatin dynamics within mammalian TADs.

Chromatin dynamics is less constrained in pluripotent
mESC than in liver cells
We then fitted our data to two models, derived from
polymer physics, that were previously used to describe
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chromatin dynamics in the yeast Saccharomyces cerevi-
siae [1, 21] and in mammals [4]. The first model [see
equations (eqs.) 1 and 2 in Methods] provides measure-
ments of three key parameters of local chromatin dynamics
(nucleosomal scale): K reflects features of the experimental
setting (mainly cross-linking efficiency); L is the length of a
chromatin segment (in nm) containing 1 kb of genomic
DNA, thus reflecting chromatin compaction (in nm/kb); S
(the Kuhn’s statistical segment, in kb) is a measure of chro-
matin flexibility [1, 21]. The higher cross-linking efficiency,
chromatin compaction and flexibility, the lower the values
of parameters K, L and S will be. This model assumes that,
at higher-order organization levels, chromatin does not
undergo any special constraints. Therefore, we define it as
“unconstrained chromatin” model. The second model is
named “statistical helix” model. It provides measurements
of the same parameters of local chromatin dynamics, but it
also takes into account constraints that may impact chro-
matin dynamics at the higher-order level (supranucleoso-
mal scale). In this model, the higher-order chromatin
dynamics is described as if constraints imposed onto chro-
matin were folding, statistically, the chromatin into a helical
shape that can be characterized by two parameters: its

mean Diameter (D) (in nm) and its mean Pitch (P) (in nm)
[eq.2] [4]. These two parameters are thus describing the
presence of constraints that impact higher-order chromatin
dynamics. The weaker the effects of the constraints, the less
pronounced the parameters of the statistical helix will be
(i.e. large diameter and/or large Pitch).
As previously found in mouse liver cells [4], gene-rich

TADs display modulated contact frequencies and the
statistical helix model [eqs.1 and 3] can be very well fit-
ted to our experimental data while the unconstrained
chromatin model [eqs.1 and 2] does not fit for site sep-
aration larger than 35 kb (Fig. 2a). This confirms that, in
both liver cells and mESC, chromatin dynamics in gene-
rich TADs undergoes constraints that can be described
by polymer models as if, at the supranucleosomal scale,
the chromatin was statistically folded into a helix.
However, close examination of best-fit parameters in-

dicates that the statistical helix organization of the chro-
matin in gene-rich TADs is considerably more relaxed in
mESC compared to liver cells (Table 1, compare first
and second rows). The mean Pitch (P) of the statistical
helix is 201 ± 13 nm in mESC while it is only 160 ± 9 nm
in liver cells, and the mean diameter (D) is 255 ± 8 nm

Fig. 1 Fitting globule models to contact frequencies quantified in mESC. Experimental 3C-qPCR data obtained for wt mESC in gene-rich TADs
(Fig. 2) have been displayed into a Log-Log plot and globule models were fitted to the following power-law: X(s) = k*sα (adapted from Eq. 6 and
Eq. 9 from ref. [20]), where X(s) is the cross-linking frequency, s (in kb) is the site separation along the genome, K is representing the efficiency of
cross-linking and the exponent α is the slope associated to this power-law. Best-fits (using the nls object of the R software) show that the slope
associated to our experimental data (red line) is approximately α = −1/2 (−0.52) with a correlation coefficient R2 = 0.47, while correlation
coefficients associated to the equilibrium (α = −3/2) (black line) or crumpled globules (α = −1) (green line) are much lower
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and 287 ± 5 nm respectively. Consequently, one turn of
the statistical helix (Sh) contains 97 ± 1 kb of genomic
DNA in liver cells while it encompasses only 85 ± 2 kb
in mESC. Therefore, higher-order chromatin dynamics
is less constrained in pluripotent mESC than in liver
cells. Remarkably, this clear difference is not linked to
local chromatin flexibility since the S parameter is iden-
tical (S = 2.7 ± 0.1 kb) in both cell types (Table 1, upper
part). Finally, the values of the K parameter suggest that
cross-linking efficiency is higher in liver cells than in
mESC (Table 1, compare first and second rows).

Effects of constraints on chromatin dynamics correlate
with gene density in mESC TADs
Interestingly, inside both gene-poor and gene-desert TADs,
chromatin also displayed modulated contact frequencies
(see mean contact frequencies in Fig. 2b/c), indicating that

the constraints that impact higher-order chromatin dy-
namics are present in all genomic contexts investigated.
However, while the statistical helix model fits again better
than the unconstrained chromatin model to gene-poor
TAD data (Fig. 2b), both models could be equally well fitted
to the gene-desert data (Fig. 2c), indicating that chromatin
dynamics in this latter TAD is not subject to strong
constraints. Indeed, the statistical helix is relaxed in
gene-desert TADs since one helix turn contains only 72 kb
of genomic DNA while it encompasses more than 85/87 kb
in gene-rich or gene-poor TADs (Table 1, compare the
fourth row with the second and third rows). Globally, these
results indicate that the shape of the statistical helix is
progressively more elongated as we go from gene-rich
and gene-poor to gene-desert TADs approaching an un-
constrained chromatin configuration. Therefore, while the
constraints impacting chromatin dynamics can be detected

Fig. 2 Fitting the statistical helix model to contact frequencies quantified in mESC. Quantitative 3C data were obtained from wild-type mouse
ESC in five gene-rich TADs (a), two gene-poor TADs (b) and one gene-desert TAD (c) (see genomic maps in Additional file 1). For each type of
TAD, data obtained from all the anchor primers used for each locus (Additional file 7) were compiled in a single graph (each locus is represented
by a specific color). Error bars are standard error of the mean of three independent quantitative 3C assays each quantified at least in triplicate.
Dashed lines delimit supranucleosomal domains that encompass separation distances where contact frequencies are alternatively lower and
higher (see Methods). The graphs show the best fit analyses obtained with the unconstrained chromatin model [eqs. 1 and 2] (black curves) or
the statistical helix model [eqs. 1 and 3] (red curves). Correlation coefficients (R2) are indicated on the graphs. Best fit parameters, and the
genomic distance contained within one statistical helix turn (Sh in kb), are given in the upper part of Table 1. For each supranucleosomal
domains, the mean contact frequencies and the number (n) of experimental points are indicated on the graphs. p-values (Mann–Whitney U-test)
account for the significance of the differences observed between the experimental means of two adjacent domains (double asterisks indicate a
p-value < 0.05 and > 0.01 and triple asterisks a p-value < 0.01)

Table 1 Fitting the statistical helix model to the relative contact frequencies observed in wild-type (upper part, rows 2–4) and triple
KO (lower part, rows 5–7) mouse ES cells (mESCs)

WT vs H1 TKO mESC K *103 S (kb) <D > (nm) <P > (nm) Sh (kb)

1 mouse liver gene-rich 890 ± 70 2.7 ± 0.1 287 ± 5 160 ± 9 97 ± 1

2 WT mESC gene-rich (Fig. 2a) 1,070 ± 80 2.7 ± 0.1 255 ± 8 201 ± 13 85 ± 2

3 WT mESC gene-poor (Fig. 2b) 1,880 ± 360 3.7 ± 0.3 262 ± 18 213 ± 31 87 ± 5

4 WT mESC gene-desert (Fig. 2c) 1,380 ± 370 3.8 ± 0.3 208 ± 44 264 ± 77 72 ± 13

5 H1TKO gene-rich (Fig. 3a) 1,810 ± 140 3.1 ± 0.1 268 ± 8 230 ± 14 83 ± 2

6 H1TKO gene-poor (Fig. 3b) 2,270 ± 430 3.7 ± 0.3 269 ± 19 224 ± 30 83 ± 5

7 H1TKO gene-desert (Fig. 3c) 2,620 ± 840 3.9 ± 0.4 264 ± 105 380 ± 162 86 ± 28

Parameters obtained for mouse liver cells [4] are indicated for comparisons (row 1). Remarkable values are indicated in bold (see text)
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in all genomic contexts investigated, their effects are clearly
stronger in gene-rich and in gene-poor than in gene-desert
TADs.
The models also show that, at the nucleosomal scale, the

chromatin is much less flexible in gene-poor (S = 3.7 ±
0.3 kb) and gene-desert (S = 3.8 ± 0.3 kb) TADs than in
gene-rich TADs (S = 2.7 ± 0.1 kb) (Table 1, compare the
third and fourth rows with the second row). However, these
changes in chromatin flexibility do not necessarily translate
into changes in higher-order chromatin dynamics. Indeed,
gene-poor and gene-desert TADs have similar flexibility but
different statistical helix organization: one helix turn en-
compasses 85/87 kb of genomic DNA in gene-poor TADs
but only 72 kb in the gene-desert TAD (Table 1, compare
third and fourth rows). Conversely, gene-rich and gene-
poor TADs have different chromatin flexibility but very
similar statistical helix: Pitch (P) is around 200 nm, diam-
eter (D) is about 250 nm and one helix turn encompasses
85/87 kb of genomic DNA (Table 1, compare second and
third rows). Finally, as we noted above, the statistical helix
in gene-rich TADs is in a much more open configuration in
mESC than in liver while chromatin flexibility is identical
in both cell types (Table 1, compare first and second rows).
Therefore, the variations of the higher-order chromatin
dynamics observed in vivo in different genomic contexts
appear to be largely independent of chromatin flexibility.

Histone H1 depletion alters chromatin flexibility but not
statistical helix organization
To ascertain that variations of chromatin flexibility do
not necessarily impact higher-order chromatin dynam-
ics, we performed quantitative 3C experiments in mESC
that are Triple Knock-Out (H1 TKO) for histone H1
genes H1c, H1d and H1e [22]. Indeed, since it binds be-
tween nucleosomes, the linker histone H1 is thought to
be a major factor regulating chromatin compaction and
flexibility at the nucleosomal scale [23, 24], but a precise
evaluation of its potential role for chromatin dynamics
at the supranucleosomal scale is missing. Its depletion
should thus allow us to assess whether altering chromatin
stiffness will impact higher-order chromatin dynamics.
Mice lacking the H1c, H1d and H1e die during embryonic
development, but H1 TKO mESC lines can be established,
which bear various chromatin structure changes [22].
Identical experiments as described above were thus
performed in H1 TKO mESC (Fig. 3) and best-fit pa-
rameters of the statistical helix model were obtained
for each category of TADs (Table 1, lower part).
In both gene-poor and gene-desert TADs (Fig. 3b and c

respectively), where histone H1 density is very high [25],
identical results were obtained in both H1 TKO and wild-
type (WT) mESC (Table 1, compare third with sixth rows
and fourth with seventh rows respectively). In these TADs,
histone H1 depletion was apparently not sufficient to alter

chromatin flexibility. One can note, however, that the
values of the K parameter are higher in H1 TKO than in
WT mESC (Table 1, compare third with sixth rows and
fourth with seventh rows) indicating that cross-linking ef-
ficiency is lower upon partial histone H1 depletion.
In gene-rich TADs (Fig. 3a), where histone H1 density

is lower [25] histone H1 depletion in mouse mESC re-
sulted in a very significant decrease in chromatin flexi-
bility compared to WT mouse mESC (S = 3.1 ± 0.1 kb
and 2.7 ± 0.1 kb respectively) (Table 1, compare fifth and
second rows). This result is in agreement with previous
finding indicating that the stiffness of a disordered and
poorly condensed chromatin fiber (as in H1 TKO mESC)
is large, being directly influenced by the high stiffness of
the embedded DNA stretch, while a more organized and
condensed fiber (as in WT mESC) is far more flexible
[26], provided that nucleosome stacking does not occur
(as in gene-deserts where histone H1 density is very high)
[27]. However, despite the significant decrease in chroma-
tin flexibility observed in gene-rich TADs, the parameters
of the statistical helix (diameter D, pitch P, DNA in helix
turn Sh) were not significantly altered. The shape of the
statistical helix tends to be slightly more elongated in
H1 TKO mESC than in WT mESC, but this apparent
tendency is not sufficiently strong to be considered as
really significant. Therefore, the results presented in
Fig. 3a demonstrate that altering chromatin flexibility
at the nucleosomal scale in gene-rich TADs, where the
statistical helix is prominent, does not necessarily impact
significantly the higher-order chromatin organization of
these regions.
This indicates that chromatin dynamics at the nu-

cleosomal and supranucleosomal scales are somewhat
uncoupled, suggesting that the constraints imposed on
higher-order chromatin dynamics within TADs may
not necessarily rely on intrinsic local features of the
chromatin, like the presence of H1 linker histone or
histone epigenetic modifications, which would affect
its nucleosomal organization and oligonucleosome com-
paction [22]. Therefore, this raises the question of the role
of the epigenetic landscapes on chromatin dynamics.

Higher-order chromatin dynamics within Drosophila TADs
is unconstrained
To investigate the influence of the epigenetic contexts
on chromatin dynamics, we generated and used Hi-C
data from the fly Drosophila melanogaster for which
epigenetic domains have been extensively described [6].
The Drosophila genome is relatively small in size allowing
ultra-high genomic resolution of chromatin contacts. Five
billion paired-end Hi-C reads were obtained from late Dros-
ophila embryos [28] and normalized Hi-C data were proc-
essed in order to produce thousands of “virtual 3C” profiles
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providing relative contact frequencies at 5 kb resolution
throughout the Drosophila genome (see Methods).
To check whether some constraints impact chromatin

dynamics in the Drosophila, we first focused our analyses
on a subset of “virtual-3C” profiles spanning separation
distances of at least 65 kb without crossing any TAD
borders. Among the 2236 “virtual-3C” profiles that could
be appropriately fitted to the unconstrained chromatin
model [eqs. 1 and 2] (0 < R2 < 1), 66 % had a correlation
coefficient (R2) above 0.5. This result indicates that the
unconstrained chromatin model fits appropriately to
most “virtual 3C” profiles and thus, in contrast to previous
observation made in mammals [4] (Fig. 2), chromatin dy-
namics within Drosophila TADs appears as globally un-
constrained, and hence non-helical, at the scale of several
tens of kilo-bases.

Local properties of Drosophila chromatin are finely tuned
according to the epigenetic landscape
“Virtual 3C” generated were then classified according to
chromosomal location and to the previously defined epi-
genomic domains (D1 to D4) [6]: D1 (“red chromatin”)
corresponds to domains with “active” epigenetic marks,
D2 (“black chromatin”) displays no specific epigenetic
modifications, D3 (“blue chromatin”) is Polycomb (PcG)
associated chromatin and D4 (“green chromatin”) is
HP1/heterochromatin. Finally, for each “virtual 3C”, the
unconstrained chromatin model was fitted and the three
best-fit parameters were extracted (see Additional file 2
for representative examples). For each chromosome,
statistical analyses of best-fit parameters were performed
separately according to the epigenetic domains.
Box-plots in Fig. 4 show the results of statistical analyses

of best-fit parameters obtained for chromosome 2 L.
We found that “active” domains (D1, “red chromatin”)

are less compact (median value of L parameter = 10.81 nm/
kb), more efficiently cross-linked (median value of K
parameter = 0.85) and more flexible (median value of S
parameter = 4.15 kb) than the other domains (L =
10.56/10.66/10.32 nm/kb for D2/D3/D4 respectively
while K = 1.49/1.34/2.40 and S = 4.92/4.84/5.30 kb for
D2/D3/D4 respectively) (Fig. 4). As expected, we found
that HP1/heterochromatin (D4) is much less flexible and
more compact than any other type of chromatin. However,
“black” (D2) and PcG (D3) chromatins have very similar
flexibility and compaction, suggesting that PcG proteins
do not significantly impact on local chromatin dynamics
(Fig. 4). Identical results were found for all the other Dros-
ophila chromosomes, except for the tiny chromosome 4,
which displayed quite flexible and poorly compacted chro-
matin despite being entirely heterochromatic (Table 2)
(full data are in Additional file 3. Additional file 5 gives
Wilcox p-values of differences observed between the
different epigenetic domains for parameters shown in
Table 2). This finding is consistent with a recent work
demonstrating that chromosome 4 displays distinct epigen-
etic profiles compared to both pericentric heterochromatin
and euchromatic regions and that enrichment of HP1a
on chromosome 4 genes creates an alternate chromatin
structure which is critical for their regulation [29]. Glo-
bally, these experiments confirm that the epigenetic
contexts influence significantly the local chromatin dy-
namics in vivo. However, quantitatively, their effects on
chromatin compaction and flexibility appear as being
quite limited. Indeed, the largest variations observed
(between the “active” and HP1/heterochromatin do-
mains) for chromatin compaction and flexibility are
10.76 to 9.99 nm/kb, i.e. about 7 %, on chromosome 2R,
and 4.090 to 5.382 kb, i.e. about 24 %, on chromosome
3 L, respectively (Table 2). Therefore, the epigenetic

Fig. 3 Fitting the statistical helix model to contact frequencies quantified in mouse H1 TKO ESC. Quantitative 3C data were obtained from mouse
ESC that are Triple Knock-Out for Histone H1 genes (H1 TKO), for five gene-rich TADs (a), two gene-poor TADs (b) and one gene-desert TAD (c).
The graphs show the best-fit analyses obtained with the unconstrained chromatin model [eqs. 1 and 2] (black curves) or the statistical helix
model [eqs. 1 and 3] (red curves). The data (see Additional file 8) were analyzed and are depicted as described in the legend of Fig. 2. Best-fit
parameters, and the genomic distance contained within one statistical helix turn (Sh in kb), are given in the lower part of Table 1
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landscape in the fly appears to be involved in fine-
tuning the local chromatin dynamics.

Discussion
Modulated contact frequencies, the statistical helix and
their relevance for genome functions
Our work shows that, in the mouse, a modulation in con-
tact frequency over large genomic distances can be detected
in all the three genomic contexts investigated: gene-rich,
gene-poor and gene-desert TADs. This demonstrates that
the constraints responsible for the emergence of the statis-
tical helix apply widely to the mammalian genome (Fig. 2;
Table 1, upper part). However, their effects on higher-order
chromatin dynamics are progressively attenuated as we
shift from gene-rich and gene-poor to gene-desert TADs
where, in this latter case, an unconstrained polymer model
can be fitted appropriately to contact frequency data (Fig. 2;
Table 1, upper part). This situation is reminiscent to experi-
ments performed in the yeast Saccharomyces cerevisiae [21]
where the unconstrained model could be fitted appropri-
ately in AT-rich regions while the statistical helix model
provides better fits in GC-rich regions [4].
Furthermore, the statistical helix organization, and its

underlying dynamics, seems to be finely tuned according

to the cell-type. Indeed, chromatin appears to be less
constrained in mESC than in mouse liver cells (the statis-
tical helix is more “elongated” in mESC) (Table 1, upper
part). This finding is in agreement with several pieces of
evidence indicating that, in mESC, chromatin is character-
ized by an abundance of active chromatin marks [30, 31]
and that it displays less compact heterochromatin domains
[30, 32, 33]. Therefore, the configuration of the genome
makes it more accessible in mESC than in differentiated
cells. It is assumed that this specific chromatin organization
is essential to establish pluripotency by maintaining the
genome in an open, readily accessible state, allowing for
maximum plasticity [16].
“Virtual 3C” profiles reconstructed from 5C data ob-

tained in mESC [10] also shows the presence of a very
significant modulation in contact frequencies in a 572 kb
gene-poor region displaying no apparent locus-specific
interaction (chrX:102,338,477-102,910,171) (Additional file
4). Interestingly, here again, the statistical helix model fits
better to these data (R2 = 0.52) than the unconstrained
chromatin model (R2 = 0.40). Therefore, 5C, as well as
quantitative 3C data (Fig. 2), are able to evidence, in
mESC, a long-range modulation in contact frequencies
which is best described by the statistical helix model.

Fig. 4 Epigenetic landscapes and chromatin dynamics of the Drosophila chromosome 2 L. “Virtual 3C”, obtained from Hi-C experiments in the
Drosophila, were classified according to the four previously defined epigenetic domains (D1 to D4) [6]: D1 (“red chromatin”) corresponds to
domains with “active” epigenetic marks, D2 (“black chromatin”) displays no specific epigenetic modifications, D3 (“blue chromatin”) is PcG
associated chromatin and D4 (“green chromatin”) is HP1/heterochromatin. The unconstrained chromatin model [eqs.1 and 2] was then fitted and
the three best-fit parameters (K = crosslinking efficiency; L = compaction; S = flexibility) were recovered from each “virtual 3C”. Statistical analyses of
best-fit parameters were performed separately according to the epigenetic domains. Box-plots show the results obtained for each type of
domains on the chromosome 2 L. Stars indicate statistically significant differences: single asterisk indicates a p-value < 0.05 and > 0.01, a double
asterisk a p-value < 0.01 and > 0.001 and a triple asterisk a p-value < 0.001 (all p-values are given in Additional file 5). The number of best-fits (n)
performed in each domain is as follows: D1: n = 990; D2: n = 2481; D3: n = 624; D4: n = 239). The results obtained from the other Drosophila
chromosomes are given in Additional file 3
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As previously indicated [4], the existence of a modulation
in contact frequencies has important functional implica-
tions, at least in the gene-rich TADs where it is prominent.
Indeed, locus-specific functional interactions in these TADs
necessarily occur from this underlying dynamics of the
chromatin. Therefore, any constraints favouring intrin-
sically the probability of contact between two genomic
regions will also favour the probability of interaction
between the regulatory elements that they contain.
Long-range interactions should thus tend to occur at
preferred relative separation distances where the prob-
ability of contact is the highest. We previously showed
that, in loci containing co-expressed genes, conserved
elements (UCSC database) are overrepresented at a dis-
tance of ~100 kb from the surrounding Transcriptional
Start Sites (TSS) [4]. In the same line, ChIP-seq experi-
ments at 885 loci containing genes overexpressed in
the mouse forebrain showed that p300 peaks linked to
enhancer activities are more significantly enriched for
separation distances of about 70 to 80 kb from the near-
est TSS [34]. Finally, extensive 5C experiments focusing on
the ENCODE pilot project regions (representing 1 % of the
human genome) have recently shown that long-range inter-
actions between TSS and distal elements display a marked
asymmetry with a bias for interactions with elements lo-
cated about 120 kb upstream of the TSS [35]. Altogether,
these observations are in agreement with the existence of a
long-range (~100 kb) modulation of contact frequencies in

gene-rich-TADs, suggesting that the constraints govern-
ing statistical helix organization underlie higher-order
chromatin dynamics of a very significant part of the
genome.

Simple polymer-physics principles govern chromatin
dynamics within TADs
In addition to polymer models as those used in the
present work, several other physical models, like the
equilibrium and crumpled/fractal globule models, have
been developed to describe chromatin dynamics in vivo
[20]. Crumpled globule features are characteristic of
chromatin dynamics above 1 Mb (chromosome territory/
inter-TADs dynamics) [8]. However, at that scale, simple
polymer-physic models, like the “strings and binders
switch” (SBS) model [36], can also reproduce crumpled
globule conformations, and finally globule features of
chromatin organization within TADs remain unexplored.
Using quantitative 3C data (Fig. 2), we showed that, in the
absence of any strong locus-specific interaction, contact
profiles obtained in gene-rich TADs (Fig. 1) follow a
power-law scaling associated to a slope of −1/2. A similar
value has been described for mitotic chromosomes for
separation distances encompassing 40 kb to 10 Mb [12].
However, our samples are devoid of mitotic chromosomes
(interphasic nucleus preparations) and therefore, as previ-
ously suggested for distances shorter than 100 kb [8], the
contact profiles observed in gene-rich TADs are incompat-
ible with the equilibrium or crumpled globule models. In
contrast, they are in good agreement with a more compact
conformation as suggested by the SBS model [36]. There-
fore, our work reinforce the idea that simple polymer-
physics models of chromatin are sufficient to describe
chromatin dynamics in vivo [4, 37] and it shows that such
models and principles also apply within TADs both in
mammals and in the fly Drosophila melanogaster. Import-
antly, neither the equilibrium or crumpled globule models
nor the “unconstrained chromatin” model, or so far any
other known globule or polymer models, including the
SBS model, are able to describe the discrete modulation in
contact frequencies that we consistently observed within
mammalian TADs in diverse experimental and cellular
contexts (3C data in Fig. 2; 5C data in Additional file 4;
[4]). Only the statistical helix model is able to account for
this feature and it is thus, so far, the simplest model to ac-
curately describe the fundamental chromatin dynamics
observed within mammalian TADs. However, this model
is clearly not sufficient to describe chromatin dynamics
when significant locus-specific interactions take place and,
in such conditions, more complex polymer models may
indeed be required, taking into account chromatin contacts
with nuclear compartments and/or attachment of diffusible
factors to binding sites on the chromatin [37].

Table 2 Fitting the unconstrained model on Drosophila Hi-C
dataa

Chromosome Parameters Active
D1

Black
D2

PcG
D3

Centromeric
D4

K *109 0.852 1.487 1.340 2.405

Chr2L S (kb) 4.150 4.918 4.849 5.296

L (nm/kb) 10.81 10.56 10.6 10,32

K *109 0.847 1.471 1.122 2.699

Chr2R S (kb) 4.147 4.925 4.552 5.292

L (nm/kb) 10.76 10.57 10.71 9.99

K *109 0.808 1.383 1.232 2.684

Chr3L S (kb) 4.090 4.881 4.873 5.382

L (nm/kb) 10.80 10.55 10.62 10.06

K *109 0.857 1.548 1.324

Chr3R S (kb) 4.132 4.95 4.773

L (nm/kb) 10.80 10.59 10.64

K *109 1.303

Chr4 S (kb) 4.55

L (nm/kb) 10.67

Median values of 3 best-fit parameters obtained on the autosomal
chromosomes in each type of TADs
aHi-C samples were prepared from unsexed flies, and therefore the X
chromosome was not analysed since, in males, this chromosome undergoes
dosage compensation that largely affects its epigenetic features
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Finally, while the existence of modulated contact fre-
quencies has important implications for chromatin dy-
namics in a cell population, its interpretation as a helical
organization may be far from the reality of an individual
conformation at a given time in a single cell. One can
note, however, that this model may also be valid to de-
scribe chromatin dynamics at the single cell level if the
ergodicity of the fluctuations could be verified (i.e. if the
average fluctuations observed at a given time in a cell
population can recapitulate the average fluctuations over
time of an individual conformation).

Conclusion
Two general types of constraints could contribute to
the emergence of the statistical helix organization frequen-
cies within mammalian TADs: “bottom-up” constraints,
inherent to some intrinsic constituents of the chromatin,
or “top-down” constraints imposed by higher-order super-
structures, like chromosome territories and TADs. Despite
its remarkable impact on chromatin flexibility in gene-rich
TADs, histone H1 depletion does not significantly affects
statistical helix parameters in mESC (Fig. 3; Table 1, lower
part). This indicates that chromatin dynamics at the nu-
cleosomal and supranucleosomal scales could be some-
what uncoupled, suggesting that the constraints imposed
on higher-order chromatin dynamics during the inter-
phase may not necessarily rely on intrinsic factors of the
chromatin that would affect its nucleosomal organization
(“bottom-up” constraints).
Hi-C data have shown that contact frequencies across

TAD borders are extremely low [7]. The statistical helix
organization observed in mammals is thus necessarily
confined within TADs and cannot extend throughout
TAD borders. It is therefore tempting to speculate that,
in mammals, TADs borders may represent “top-down”
constraints impacting chromatin dynamics at higher-
order levels by restricting the space that the chromatin
could possibly explore at that scale, thus contributing to
the emergence of the statistical helix organization. How-
ever, this hypothesis is challenged by the fact that no
such constraints are observed in Drosophila TADs.
How to explain such a difference between these two or-

ganisms? Rather than speculating that genome organization
principles are intrinsically different (which would appear
unlikely for two metazoans), it seems more realistic to pos-
tulate that the underlying organization principles are simi-
lar, but that constraints applied to higher-order chromatin
dynamics have different impacts because of distinct critical
features of TAD organization in these two organisms. In-
deed, Drosophila TADs display a median size of 70 kb [6]
which is considerably smaller than that of mammalian
TADs. With a median size of more than 800 kb [7], mam-
malian TADs are more prone to constraints that impact
chromatin dynamics at higher-order levels i.e. over large

genomic distances. Therefore, we propose that, beyond
locus-specific interactions, higher-order chromatin dy-
namics in higher eukaryotes may also rely on “top-down”
constraints whose effects are depending on the exact size
and organization of the TADs.

Methods
Mouse breeding
All experimental designs and procedures are in agree-
ment with the guidelines of the animal ethics committee
of the French “Ministère de l’Agriculture” (European
directive 2010/63/EU).

Cell culture
mESC were cultured in serum/LIF conditions as previ-
ously described [22].

Quantitative 3C / SybGreen assays
3C assays were performed from nucleus preparations
as previously described [3, 38, 39]. 3C products were
quantified (during the linear amplification phase) on a
LighCycler 480 II apparatus (Roche) (10 min. at 95 °C
followed by 45 cycles 10 s. at 95 °C/8 s. at 69 °C/14 s. at
72 °C) using the Hot-Start Platinum® Taq DNA Polymer-
ase from Invitrogen (10966–034), the GoTaq® Hot-Start
Polymerase from Promega (M5005) and a standard 10X
qPCR mix [40] where the usual 300 μM dNTP have been
replaced by 1500 μM of CleanAmp dNTP (Tebu-bio
040 N-9501-10). Standards curves for qPCR have been
generated from BACs (RP serie from Invitrogen) as previ-
ously described [4]: RP23 55I2 for the Usp22 locus; RP23
117C15 for the Dlk1 locus; RP23 463 J10 and RP23 331E7
for the Lnp locus; RP23 117 N21 for the Mtx2 locus; RP23
131E7 for the Emb locus; RP23 30H4 and RP23 247C7 for
the 3qH2 and 19qC2 gene-poor regions respectively; and
a sub-clone derived from RP23 3D5 for the 11qA5 gene-
desert region (also see Additional file 1a). Quantitative
3C primers sequences are given in Additional file 6.
Data obtained from these experiments are included in
Additional file 7 (WT mESC) and Additional file 8
(H1 TKO mESC). The number of sites analysed in
each experiment were as follows (Additional file 1b).
For WT mESC: Usp22 locus, for anchor sites F1 and
F7, 33 and 35 sites were analysed respectively; Dlk1 locus,
for anchor sites F3/F5/F14 and F16, 9/16/21 and 26 sites
were analysed respectively; Emb locus, for anchor sites R4
and R7, 30 sites were analysed for each anchor; Lnp locus,
for anchor site R35, 49 sites were analysed; Mtx2 locus, for
anchor sites R2 and R56, 52 and 50 sites were analysed
respectively; 3qH2 gene-poor locus, for anchor sites R6
and R27, 25 sites were analysed for each anchor; 19qC2
gene-poor locus, for anchor sites R41 and R59, 33 sites
were analysed for each anchor, and for the 11qA5 gene-
desert locus, for anchor sites F5/F25/F35 and F48, 21/
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20/21 and 20 sites were analysed respectively. For H1
TKO mESC: Usp22 locus, for anchor sites F1 and F7,
33 and 34 sites were analysed respectively; Dlk1 locus,
for anchor sites F3/F5/F14 and F16, 9/16/21 and 24
sites were analysed respectively; Emb locus, for anchor
sites R4 and R7, 29 and 30 sites were analysed respect-
ively; Lnp locus, for anchor site R35, 49 sites were ana-
lysed; Mtx2 locus, for anchor sites R2 and R56, 52 and
49 sites were analysed respectively; 3qH2 gene-poor
locus, for anchor sites R6 and R27, 25 sites were analysed
for each anchor; 19qC2 gene-poor locus, for anchor sites
R41 and R59, 33 sites were analysed for each anchor,
and for the 11qA5 gene-desert locus, for anchor sites
F5/F25/F35 and F48, 18/20/21 and 19 sites were analysed
respectively.

Supranucleosomal domains
The supranucleosomal domains (D.I to D.VI) encompass
separation distances where random collision frequencies
are alternatively lower and higher; They were assessed
by statistical analyses (Mann–Whitney U tests) performed
on data shown in Figs. 2 and 3. For gene-rich and gene-
poor loci : 0 to 35 kb (domain I), 35-70 kb (domain II),
70-115 kb (domain III), 115-160 kb (domain IV), 160-
205 kb (domain V) and 205–250 kb (domain VI). For the
gene-desert region : 0 to 25 kb (domain I), 25-50 kb (do-
main II), 50-75 kb (domain III), 75-100 kb (domain IV),
100-125 kb (domain V) and 125–150 kb (domain VI).

Mathematical methods
We used a model that combines the Freely Jointed
Chain/Kratky-Porod worm-like chain models as described
in reference [41]. This combined model (equation 3 of
reference [21]), which expresses the relation between
the cross-linking frequency X(s) (in mol x liter−1 x nm3)
and the site separation s (in kb) along the genome, is as
follows:

X sð Þ ¼ K � 0:53� β�
3

2= � exp �2
β2

. �
� L� Sð Þ�3

i�h
ð1Þ

with, for an unconstrained polymer:

β¼s
S unconstrained chromatin modelð Þ= ð2Þ

In equation [1], the linear mass density L is the length of
the chromatin in nm that contains 1 kb of genomic DNA.
We used different L values estimated from a packing ratio
of 6 nucleosomes per 11 nm of chromatin in solution at
physiological salt concentrations [42, 43] and a nucleosome
repeat length (NRL) of 194 base pairs as found in mouse
liver [44] or NRL = 189 and 174 nt for wild-type and TKO
mESC respectively [22]. This led to values of L = 9.45 nm/
kb for mouse liver cells, L = 9.70 nm/kb for mESC and

L = 10.53 nm/kb for TKO mESC. S is the length of
the Kuhn’s statistical segment in kb, which is a meas-
ure for the flexibility of the chromatin. The parameter
K represents the efficiency of cross-linking which re-
flects experimental variations [1].
We previously showed that mammalian chromatin

undergoes constraints that results in a modulation of
contact frequencies along some regions of the chromatin
[4]. This modulation can be described by a specific poly-
mer model, called the statistical helix model, where the
following β term is used in equation [1] (see ref. [4]):

β¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2� sin2 π�L�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2�D2þP2
p

� �
þ P2�L2�s2

π2�D2þP2

h is

L�S
statistical helix modelð Þ

ð3Þ
where P is the mean Pitch and D the mean diameter in
nm of the statistical helix. The length of one turn on the
statistical helix Sh in kb (Table 1) was calculated using
best-fit parameters and equation [4]:

Sh¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
ðπ �DÞ2þ P 2

� �
L kbð Þ

ð4Þ

Best-fit analyses of quantitative 3C data from mouse ECS
Best-fit analyses were implemented under the R software (R
Development Core Team 2008, http://www.R-project.org),
as previously described [4]. We used the “nls object” (pack-
age stats version 2.8.1) which determines the nonlinear
(weighted) least-squares estimates of the parameters of
nonlinear models.

Best-fit analyses of “Virtual 3C” in the Drosophila
melanogaster
Hi-C data were obtained from total Drosophila embryos
and normalized tag numbers were assembled into 5 kb
bins as previously described [6, 28]. Datasets have been
submitted to Gene Expression Omnibus (GEO) under
accession no [GSE61471] (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE61471). The relative contact
frequencies used to construct the “virtual 3C” profiles
were obtained by assembling these 5 kb bins into larger
25 kb (5*5 kb) bins that were analyzed with a step of
5 kb along the chromosomes. For each 25 kb bins, the
relative contact frequencies were calculated each 5 kb
within a region surrounding 400 kb (80*5 kb bins) from
the start of the 25 kb bin. For each “virtual 3C”, the un-
constrained chromatin model [eqs. 1 and 2] was fitted to
the first 70 kb (14*5 kb bins) using the “nls2 object”
under the R software (R Development Core Team 2008,
http://www.R-project.org), and the best-fit parameters
were extracted. Statistical analyses of these parameters
were performed separately on each chromosome and
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according to the type of epigenetic domain (Fig. 2 and
Additional file 2). Wilcox p-values were calculated to as-
sess the significance of differences observed between the
values obtained in each case (Additional files 1 and 9).

Availability of supporting data
The data set supporting the results of this article is
available in the Gene Expression Omnibus repository,
[GSE61471, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE61471].

Additional files

Additional file 1: Genomic maps of the TADs investigated in the
present study. (a) Map of the TADs containing the loci analyzed in
mESC. The Hi-C data (http://yuelab.org/hi-c/database.php) ([1]) are
displayed on the top of each map. Gene locations are presented as
visualized in the UCSC browser. The black squares in the Hi-C data and
the location of the BACs (black bars below the genes) help to demarcate
the regions analyzed in our quantitative 3C experiments. Red and green
rectangles indicate a negative or a positive directionality index
respectively, as defined in ref. [1]. Blue rectangles are located at the
borders of each TAD. (b) Detailed map of the loci investigated by
quantitative 3C. Genes are indicated by full boxes and promoters by thick
black arrows above these boxes. The scale-bar indicates the size of 10 kb
of sequence. The names of the loci and chromosomal location are
indicated above each map. The HindIII (Usp22, Emb, Lnp, Mtx2, 19qC2,
3qH2 and 11qA5 loci) or EcoRI (Dlk1 locus) sites investigated are
indicated on the maps. Arrows labeled with a “F” (forward) or a “R”
(reverse) indicate the positions of the primers used as anchors in
quantitative 3C experiments. The location (mm9), size (in Mb) and gene
density (TSS/Mb) of each TAD investigated are indicated on the right.
Note that the very low contact frequencies observed for regions
investigated on chromosomes 3 and 11qA5 impair the accurate location
of TAD borders. TAD sizes provided here are those determined from data
published in ref. [1] (Additional file 9). (PDF 300 kb)

Additional file 2: Nine examples of fits of the unconstrained
chromatin model [eqs. 1 and 2] on « Virtual 3C » data obtained on
Drosophila melanogaster chromosome 2 L. Because of the small size
of TADs in the Drosophila, the unconstrained chromatin model was fitted
to the first 70 kb of the data. Note that the fit is generally in very good
agreement with the unconstrained chromatin model even for larger
separation distances. (PDF 250 kb)

Additional file 3: Epigenetic landscapes and chromatin dynamics of
the Drosophila chromosomes. “Virtual 3C” were obtained and analysed
from each chromosome as described in Fig. 4. Statistical analyses of
best-fit parameters were performed separately according to the
epigenetic domains (Note that chromosome 4 is exclusively
composed of D4 Domains, while chromosome 3 is devoid of such
domains). Box-plots show the results obtained for each type of domains
on each chromosome. Chromosome X was excluded from the analyses
because dosage compensation affects epigenetic landscapes of this
chromosome in males and the embryos used in the Hi-C experiments
were not sexed. The number of best-fits (n) performed in each domain is
as follows: for chromosome 2R, D1: n = 1391; D2: n = 1943; D3: n = 350;
D4: n = 290, for chromosome 3 L, D1: n = 1096; D2: n = 2650; D3: n = 609;
D4: n = 272, for chromosome 3R, D1: n = 1525; D2: n = 3197; D3: n = 755,
for chromosome 4, D4: n = 225. (PDF 260 kb)

Additional file 4: fitting the statistical helix model to contact
frequencies quantified by 5C experiments in mECS: (a) 5C Matrix
from data obtained in mESC [2] indicating the 572 kb gene-poor
region (region 1) with no apparent locus-specific interaction
(chrX:102,338,477-102,910,171) that we used to fit polymer models.
(b) “Virtual 3C” profiles were reconstructed from region 1 and data were
compiled in a single graph. Error bars are standard error of the mean of

two 5C experiments. Dashed lines delimit supranucleosomal domains
that encompass separation distances where contact frequencies are
alternatively lower and higher (see Methods). The graph shows the best
fit analyses obtained with the unconstrained chromatin model [eqs. 1
and 2] (black curve) or the statistical helix model [eqs. 1 and 3] (red
curve). Correlation coefficients (R2) are indicated on the graph. For each
supranucleosomal domains, the mean contact frequencies and the
number (n) of experimental points are indicated on the graph. p-values
(Mann–Whitney U-test) account for the significance of the differences
observed between the experimental means of two adjacent domains.
(PDF 200 kb)

Additional file 5: Statistical tests. This table gives, for each
chromosome and each domain, the Wilcox p-values for the differences
observed between the median values of the three parameters presented
in Table 2 (k = crosslinking efficiency; L = compaction; S = flexibility).
(PDF 72 kb)

Additional file 6: Quantitative 3C primer sequences. (XLS 56 kb)

Additional file 7: Quantitative 3C dataset for WT mouse embryonic
stem cells. (XLS 89 kb)

Additional file 8: Quantitative 3C dataset for H1 TKO mouse
embryonic stem cells. (XLS 86 kb)

Additional file 9: Additional references. (PDF 108 kb)
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