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SUMMARY

HP1 enrichment at pericentric heterochromatin is
essential for proper chromosome segregation. While
H3K9me3 is thought to be amajor contributor to HP1
enrichment at pericentric domains, in mouse cells,
the SUMO-protease SENP7 is required in addition
to H3K9me3. How this is achieved remains elusive.
Here,wefind that loss of SENP7 leads to an increased
time spent in mitosis. Furthermore, we reveal that a
short module comprising two consecutive HP1 inter-
action motifs on SENP7 is the determinant for HP1
enrichment and acts by restricting HP1 mobility at
pericentric domains. We propose a mechanism for
maintenance of HP1 enrichment in which this module
functions on top of H3K9me3 to lock contiguous HP1
molecules already docked on H3K9me3-modified
nucleosomes. H3K9me3 would thus promote HP1
enrichment only if a locking system is in place. This
mechanism may apply to other nuclear domains to
contribute to the control of genome plasticity and
integrity.

INTRODUCTION

A central question in the field of nuclear organization is how a

nuclear domain is established at specific chromatin loci during

development and then maintained following cellular perturba-

tion, during the cell cycle, or in response to environmental stress

(Cavalli and Misteli, 2013). A major role for histone posttransla-

tional modifications, which enable the docking of reader pro-

teins, has been underscored as a means to promote a local

stable enrichment-enabling formation and maintenance of spe-

cific nuclear domains with dedicated functions. This is exempli-

fied by centromeres, which ensure the delivery of one copy of

each chromosome to each daughter cell at every cell division

and are, therefore, crucial for genetic stability (Grewal and Jia,
Ce
2007; Weaver and Cleveland, 2007). The centromeric organiza-

tion is conserved in various species and comprises a centric re-

gion enriched in centromeric H3 variant (CenH3) and flanking

pericentric regions where heterochromatin protein 1 (HP1) pro-

teins accumulate (Maison et al., 2010). Epigenetic marks of the

underlying chromatin are believed to contribute to centromere

identity and include nuclear RNA, higher-order organization,

histone modifications, and histone-binding proteins (Ekwall,

2007; Grewal and Jia, 2007; Karpen and Allshire, 1997; Maison

et al., 2010).

Enrichment in HP1 proteins and among mammals of the HP1a

isoform at pericentric domains is a hallmark of these regions

(Billur et al., 2010; Gilbert et al., 2003; Maison and Almouzni,

2004; Nielsen et al., 2001). Further, enrichment of HP1 at these

regions is critical for centromere function since the loss or delo-

calization of HP1 has been reported to lead to mitotic defects in

mammals (De Koning et al., 2009; Obuse et al., 2004; Peters

et al., 2001) and in S. pombe (Allshire et al., 1995; Ekwall et al.,

1995). How maintenance of HP1 enrichment is achieved still

remains to be characterized. HP1 features an N-terminal

chromodomain, followed by a hinge domain and a C-terminal

chromoshadow domain (Maison and Almouzni, 2004). The HP1

chromodomain specifically recognizes methylated H3K9 (Ban-

nister et al., 2001; Jacobs and Khorasanizadeh, 2002) and is

critical for the recruitment to heterochromatin regions of the

genome (Lachner et al., 2001; Peters et al., 2001). The hinge

domain is reported to mediate association with RNA (Maison

et al., 2002; Muchardt et al., 2002). The HP1 chromoshadow

domain is able to dimerize (Brasher et al., 2000; Cowieson

et al., 2000), creating an interface allowing interactions with pro-

teins that contain a PxVxL motif (Murzina et al., 1999; Smothers

and Henikoff, 2000; Thiru et al., 2004).

The general view has been that HP1 enrichment at mouse

pericentric heterochromatin (PCH) domains is achieved by the

recognition of the H3K9me3 modification imposed by Suv39h

by the HP1 chromodomain (Bannister et al., 2001; Lachner

et al., 2001). However, several results suggest that the

H3K9me3 modification on its own is not the only critical param-

eter for HP1 enrichment. The affinity of HP1 for a histone tail
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peptide containing the H3K9me3 modification is weak (on the

order of micromolar) (Jacobs and Khorasanizadeh, 2002; Niel-

sen et al., 2002) compared to reconstituted nucleosomal arrays

that do not present this mark (on the order of nanomolar) (Fan

et al., 2004). Previous work suggested an important role for

HP1 interactors in combination with a specific spatial arrange-

ment of nucleosomes (Maison et al., 2002). Recent work

in S. pombe led to the proposal that association of the

S. pombe HP1 ortholog, Swi6, with H3K9me-modified nucleo-

some arrays is stabilized by oligomerization of distinct Swi6

molecules bound on neighboring nucleosomes, which could

lead to heterochromatin spreading or maintenance (Canzio

et al., 2011, 2013). Binding assays of HP1 to chromatin assem-

bled in vitro with H3K9me-modified histones indicated that, in

addition to the histone modification, auxiliary factors are neces-

sary for HP1 accumulation on chromatin (Eskeland et al., 2007).

Moreover, in vivo depletion of HP1 interactors, such as ORC

proteins (Prasanth et al., 2004, 2010) or the SENP7 small ubiq-

uitin-like modifier (SUMO)-protease (Maison et al., 2012), leads

to HP1 delocalization from heterochromatin sites without

affecting the H3K9me3 mark. Importantly, HP1 accumulation

at PCH does not mean that HP1 is necessarily immobile when

bound to heterochromatin. Indeed, fluorescence recovery after

photobleaching (FRAP) experiments showed that HP1 is very

mobile at these sites (Cheutin et al., 2003; Festenstein et al.,

2003; Schmiedeberg et al., 2004), indicating that the mainte-

nance of HP1 enrichment involves the regulation of dynamic

interactions. Taken together, the emerging picture is that

while the H3K9 modification is necessary for HP1 recruitment,

it is not sufficient for stable HP1 accumulation. Thus, addi-

tional mechanisms distinct from H3K9 methylation may be

involved to stabilize HP1 enrichment and they should be

characterized.

Here, we explored further the mechanism and molecular de-

terminants that maintain HP1a enrichment at pericentric do-

mains in NIH 3T3 cells. By dissecting the protein domains of

the SENP7 SUMO-protease, we identified a module of two

HP1 interaction motifs that can individually interact with HP1a,

but both prove to be required for HP1a enrichment at pericentric

domains in cells. We discuss how the maintenance of HP1

enrichment on H3K9me3-modified nucleosomes requires such

module to lock HP1 at heterochromatin loci and reduce its

mobility.
Figure 1. SENP7 Enrichment at Pericentric Domains Requires Two Px
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RESULTS

Loss of SENP7 Leads to an Increase Time Spent in
Mitosis
We used mouse cells (NIH 3T3), in which the clustering of peri-

centric regions from individual chromosomes forms distinct

entities, easily detected by DAPI staining (chromocenters), and

enables direct access by microscopy of the pericentric HP1-en-

riched domains (Guenatri et al., 2004). Given the importance of

HP1 for chromosome segregation during mitosis and the role

of SENP7 in promoting stable enrichment of HP1 at pericentric

domains (Maison et al., 2012), we verified whether the SENP7-

mediated maintenance of HP1a enrichment at pericentric re-

gions has a functional role during mitosis by monitoring with

time-lapse microscopy the time spent in mitosis in the absence

of SENP7.

We used a knockdown strategy to deplete SENP7 from NIH

3T3 cells by transfecting a plasmid encoding both a microRNA

(miRNA) to downregulate SENP7 and a GFP mRNA to enable

the identification of miRNA-expressing cells (Figure S1A). We

verified that in GFP-positive cells expressing miSENP7, SENP7

was depleted (Figure S1B) and that HP1a accumulation at peri-

centric domains was lost (Figure S1C). We cotransfected 3T3

cells with a plasmid expressing GFP/miRNA and a plasmid ex-

pressing H2B-mCherry fusion protein as a marker of chromatin

and followed GFP- and mCherry-positive cells by time-lapse

microscopy for 48 hr (Figure S1D). We determined the time

required for cells to progress from late prophase, indicated by

a large nucleus with clearly detectable condensed chromo-

somes, to late telophase, indicated by two well-separated

daughter nuclei (Figures S1E and S1F). We found an average

time of 30 min for control cells, whereas for SENP7-depleted

cells, the average time significantly increased up to 50 min (Fig-

ures 1A and S1F). This prolonged time does not lead to major

change in cell cycle (Maison et al., 2012). The late prophase-early

telophase cells might represent a small fraction of G2-M cells

that might not impact on the proportion of G2-M cells when

the cell cycle is analyzed by DNA content. We did not detect

defects in chromosome condensation during prophase nor

abnormal mitotic figures in SENP7-depleted cells as compared

to control cells. These data show that, under our experimental

conditions, depletion of SENP7, which abrogates HP1a enrich-

ment from pericentric domains (Maison et al., 2012), almost
VxL HP1 Interaction Motifs
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doubles the time required to progress from late prophase to early

telophase. Thus, this suggests a critical role of the SENP7-medi-

ated HP1 enrichment at pericentric domains during mitosis.

AModule of TwoPxVxLHP1 InteractionMotifs on SENP7
Mediates Association with HP1
To investigate the mechanism by which SENP7 ensures HP1

enrichment, we first aimed to characterize functional domains

of SENP7. As a SUMO-protease, SENP7 contains a split cata-

lytic domain required for its de-SUMOylation activity at the C ter-

minus with a critical cysteine residue (C979) (Hay, 2007; Shen

et al., 2009; Figure 1B). As a partner of HP1 (Maison et al.,

2012; Nozawa et al., 2010), SENP7 should contain an HP1 inter-

action motif. In human cells, the interaction between SENP7 and

HP1 requires a dimerized chromoshadowdomain (Nozawa et al.,

2010), which can mediate interactions with proteins containing a

PxVxL motif (Murzina et al., 1999; Smothers and Henikoff, 2000;

Thiru et al., 2004). We could identify in the N-terminal part of

SENP7 an unusual and not yet identified domain comprising

two putative PxVxL motifs, spaced by 61 amino acids at posi-

tions 91–95 and 157–161, which we called P1 and P2, respec-

tively (Figures 1B and S2A). These PxVxL motifs are similar to

peptides identified previously by phage display experiments

(Smothers and Henikoff, 2000; Figure 1B), and the P2 motif

corresponds to the PxVxL domain identified in human SENP7

(Bawa-Khalfe et al., 2012; Garvin et al., 2013). These two PxVxL

motifs are conserved in amniotes, suggesting a conserved func-

tion (Figure S2A). To verify that these motifs indeed mediate the

association between SENP7 and HP1, we used combinations of

point mutations in P1 and P2 (named P1* and P2*) to abolish/

alter the interaction with HP1 (Murzina et al., 1999; Thiru et al.,

2004) and in the catalytic domain (named Act*, catalytic-dead

SENP7 mutant) (Maison et al., 2012). These constructs were

fused to GFP to follow cellular localization and provide a tag

for immunoprecipitation in transfected cells (Figure 1C).

We first tested whether these mutants could associate with

HP1a in vivo. We transfected GFP-SENP7 constructs or control

GFP into NIH 3T3 cells to prepare total cell extracts, and carried

out immunoprecipitations with anti-GFP beads. Western blot

analysis using anti-HP1a revealed the presence of endogenous

HP1a in the wild-type (WT) and Act* GFP-SENP7 immunoprecip-

itates, but not in the control GFP immunoprecipitate (Figure 1D).

When a single PxVxL motif was mutated, HP1a was still de-

tected, with amounts similar to WT when P1 was mutated (Fig-

ure 1D, P1* and P1*Act*) and slightly decreased when P2 was

mutated (Figure 1D, P2* and P2*Act*). Only when both PxVxL

motifs were mutated (P1*P2*) did we lose the association with

HP1a. We conclude from these results that SENP7 contains

two functional PxVxL motifs, which in cells can individually

mediate association between SENP7 and HP1a. Importantly,

the catalytic-dead mutation did not alter the association be-

tween HP1a and the different PxVxL mutations (Figure 1D).

We next investigated HP1a association with SENP7 in vitro

using recombinant proteins as in Maison et al., (2012). We found

that, in contrast to the coimmunoprecipitations performed from

cell extracts (Figure 1D), the double PxVxL mutant (P1*P2*)

and the P2 mutant (P2*) interacted similarly with HP1 as with

the WT (Figure S2C). Two contiguous PxVxL motifs could
774 Cell Reports 10, 771–782, February 10, 2015 ª2015 The Authors
increase the affinity for HP1 and compensate for the loss of inter-

action in the context of a single mutated PxVxLmotif. Most inter-

estingly, it suggests that posttranslational modifications and/or

additional factors present in cells may attenuate the strength

of the association between HP1 and a protein containing two

contiguous PxVxL motifs, and thus be key for regulated interac-

tion. We then examined whether SENP7 mutations in the HP1

interaction motifs can affect the capacity of SENP7 to de-

SUMOylate HP1a. We found that, in our cell extract conditions,

mouse SENP7 can deconjugate SUMO-1-modified HP1a when

unable to interact with HP1a (Figures S2D–S2F).

Taken together, these results provide the molecular basis for

the interaction between SENP7 and HP1, and indicate that, in

our conditions, the capacity for SENP7 to interact with HP1

in cells and its capacity to de-SUMOylate SUMO-1-HP1 are

independent.

SENP7 Localization at Pericentric Domains Depends on
HP1 Interaction Motifs
Given that our previous results indicated that the localization of

SENP7 at pericentric domains is lost when the localization of

HP1 isoforms at these regions is impaired (Maison et al., 2012),

we investigated whether the pericentric localization of SENP7

could be mediated via the two PxVxL HP1 interaction motifs.

We transfected the GFP-SENP7 constructs into NIH 3T3 cells

and analyzed their nuclear localization by monitoring GFP fluo-

rescence. We identified and characterized three types of locali-

zation patterns as follows: (1) localization at pericentric domains

similar to the endogenous SENP7 (Figure S3A; Maison et al.,

2012), (2) faint localization at pericentric domain and diffuse

throughout the nucleus, and (3) only diffuse throughout the nu-

cleus identical to the GFP control (Figure 1E). We found that

the WT and the Act* localize at the domains. Localization of con-

structs with a single functional PxVxLmotif is faint at the domains

and diffuse throughout the nucleus. Localization of constructs

with both PxVxL motifs mutated was only diffuse throughout

the nucleus, mimicking that of GFP control (Figures 1E and 1F).

To further document the localization of GFP-SENP7 con-

structs at pericentric domains, we quantified the enrichment of

the GFP fluorescence at the domains for the different constructs

using the 3D fluorescence intensity enrichment determination

(3D-FIED) method (Cantaloube et al., 2012). This method deter-

mines the enrichment (E) of fluorescent proteins at pericentric

domains as the ratio of the mean fluorescence intensity at the

pericentric domains and themean fluorescence intensity outside

of the domains. A value below 1.1 indicates no enrichment,

whereas values above 1.1 indicate enrichment at the domains.

We found that the GFP-SENP7 constructs can be clustered

into three values of enrichment at pericentric domains (Figure 1G)

that parallel localization patterns (Figure 1F). Enrichment of GFP-

SENP7 was highest (E = 1.5) with the two WT PxVxL motifs (WT

and Act*), and decreased (E = 1.2) for all constructs with one

mutated PxVxL motif (P1* or P2* constructs). When both PxVxL

motifs were mutated, enrichment of SENP7 at pericentric

domains was lost (P1*P2* constructs). Analysis of the GFP-

SENP7 constructs is in agreement with the association between

HP1 and GFP-SENP7 analyzed by coimmunoprecipitation from

cell extracts (Figure 1D). Mutation in the catalytic domain does



not impact on SENP7 enrichment, suggesting that, in these con-

ditions, the de-SUMOylation activity is not required for SENP7

localization at PCH domains.

Taken together, our data indicate that localization of SENP7

at pericentric domains depends on the PxVxL interaction motifs

and that both PxVxL motifs are required to achieve the highest

enrichment.

The Module of Two PxVxL Interaction Motifs on SENP7
Maintains HP1 Enrichment at Pericentric Domains
Having identified a complex mode of association between

SENP7 and HP1a, we next aimed to characterize which function

of SENP7 is involved in themaintenance of HP1a. We thus inves-

tigated whether impairing (1) the interaction between SENP7

and HP1a, (2) SENP7 localization at pericentric domains, or (3)

SENP7 deconjugation activity leads to a loss of endogenous

HP1a accumulation at PCH domains. We designed a combina-

tion of small interfering RNA (siRNA) targeting endogenous

SENP7 and GFP-SENP7 constructs resistant to this siRNA to

investigate whether mutated GFP-SENP7 can complement the

depletion of endogenous SENP7. We verified that cotransfection

of SENP7 siRNA with GFP-SENP7 siRNA-resistant constructs

leads to efficient depletion of endogenous SENP7 (WT) (Figures

S3A and S3B) and expression of the siRNA-resistant GFP-

SENP7 construct (WTr) (Figure S3C). Importantly, the levels of

HP1a in the cells remained unaffected by these cotransfections

(Figures S3B and S3C). We performed immunofluorescence

staining to visualize endogenous HP1a and H3K9me3 in cells

cotransfected with siRNA and the GFP-SENP7 constructs (Fig-

ure 2A). Whereas we did not notice changes for the H3K9me3

enrichment at pericentric domains, HP1a localization was

affected with some conditions showing high enrichment at peri-

centric domains and others showing low enrichment diffuse

throughout the nucleus (Figure 2A). When compared to control

siRNA, we found that SENP7 depletion led to a decrease of cells

showing high HP1a enrichment (Figures 2A and 2B). This is in

agreement with our previous observation showing that depletion

of SENP7 leads to a loss of HP1 enrichment at pericentric

domains without affecting the cell cycle when analyzed by fluo-

rescence-activated cell sorting (Maison et al., 2012).

In contrast, if WT GFP-SENP7 was expressed, the proportion

of cells showing high HP1a enrichment remained identical to

control siRNA (Figures 2A and 2B). This thus validates our

approach using GFP-SENP7 constructs to complement endog-

enous SENP7. We obtained an identical result when using a

construct in which the SENP7 catalytic domain (amino acids

720–1037) was replaced by the catalytic domain of hSENP2

(data not shown), suggesting that the C-terminal part of SENP7

does not contain specific features necessary to maintain high

HP1a enrichment. We next tested the GFP-SENP7 mutant con-

structs. We found that when the single or double PxVxL motif

mutants were expressed, the proportion of cells showing high

HP1a enrichment decreased, indicating that these mutants

cannot complement the loss of endogenous SENP7 (Figures

2A and 2B). Interestingly, when cells expressed the catalytic-

dead mutant with two functional PxVxL motifs, the proportion

of cells showing high HP1a enrichment remained identical to

control siRNA, suggesting that the deconjugation activity is not
Ce
critical to complement for the loss of endogenous SENP7 (Fig-

ure 2B). Given that H3K9me3 is thought to contribute to HP1

accumulation (Bannister et al., 2001; Lachner et al., 2001), we

verified whether H3K9me3 accumulation at pericentric domains

would parallel that of HP1a under our conditions. The enrichment

value of H3K9me3 was identical for each condition (Figure S3D),

in line with the fact that we did not detect qualitative changes in

H3K9me3 localization from the immunofluorescence stainings

(Figure 2A).

We then investigated whether a simple module of two PxVxL

motifs could be sufficient tomaintain HP1 enrichment at pericen-

tric domains following endogenous SENP7 depletion. We thus

fused 125 amino acids of SENP7 (59–183) to GFP to generate

a short construct containing only the two PxVxL motifs of

SENP7. We generated constructs with two WT PxVxL motifs

(sP1P2), a single PxVxLmutant (sP1*P2, sP1P2*), and the double

PxVxL mutant (sP1*P2*) (Figure S3E). We verified that these

GFP-short PXVXL constructs were expressed at similar levels

as the full-length GFP-SENP7 (Figure S3F). Coimmunoprecipita-

tion and immunofluorescence analyses showed that their asso-

ciation with HP1a and their nuclear localization was identical to

the full-length GFP-SENP7 constructs (Figures S3G and S3H).

Since these GFP-short-PxVxL constructs are not targeted by

SENP7 siRNA, we verified as above whether they could comple-

ment the loss of endogenous SENP7 to maintain HP1a accumu-

lation. We found that, following endogenous SENP7 depletion,

the single PxVxL motif mutants (sP1*P2, sP1P2*) and the double

PxVxL motif mutant (sP1*P2*) could not complement the loss of

endogenous SENP7 (Figures 2C and 2D).

In contrast, when the WT double PxVxL motif (sP1P2)

construct was expressed, high HP1a enrichment at pericentric

domains wasmaintained in the same percentage of cells as con-

trol or SENP7-depleted cells complemented by WT full-length

SENP7 (Figures 2C and 2D). As above, we did not detect

changes in H3K9me3 accumulation at pericentric domains (Fig-

ure S3I). We next analyzed quantitatively HP1a enrichment and

found that, following endogenous SENP7 depletion, it remained

identical to siRNA control transfection when WT or catalytic-

dead full-length GFP-SENP7 (Figure 2E) and the GFP-short-

PxVxL construct containing the two intact PxVxL motifs

(sP1P2) (Figure 2F) were expressed. In contrast, the HP1a

enrichment value significantly decreased when any of the other

full-length GFP-SENP7 constructs and the short GFP-short-

PxVxL constructs containing one or both mutant PxVxL motifs

were expressed (Figures 2E and 2F). Taken together, these re-

sults indicate that, in addition to the H3K9me3 modification,

maintenance of HP1a enrichment at pericentric domains re-

quires the two PxVxL HP1 interaction motifs on SENP7. In these

conditions, we could not detect an effect of the desumoylation

activity of SENP7. Importantly, the sole association of SENP7

with HP1a was not sufficient since a single PxVxL motif could

not complement the loss of endogenous SENP7, whereas it

associated with HP1a (Figures 1D and S3G). Furthermore, the

behavior of the GFP-short-PxVxL construct containing the two

intact PxVxL motifs was identical to that of the WT full-length

GFP-SENP7.

We thus conclude from these results that a simple module of

two PxVxL motifs displaying a bivalent HP1 interaction domain
ll Reports 10, 771–782, February 10, 2015 ª2015 The Authors 775



Figure 2. A Simple Module of Two PxVxL Motifs Is Sufficient for HP1 Enrichment at Pericentric Domains

(A) Immunofluorescence analysis of full-length GFP-SENP7 constructs (green), endogenousHP1a (red), andH3K9me3 (blue) localization in GFP-positive NIH 3T3

cells after transfection of siRNA control (siC) or against SENP7 (siS7) and GFP control or GFP-SENP7 siRNA-resistant constructs. Corresponding DAPI images

are shown. Scale bar, 10 mm.

(legend continued on next page)
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is required for the maintenance of HP1 enrichment at pericentric

domains, in addition to the H3K9me3 mark.

Single PxVxL Mutants Behave as Dominant Negatives
Based on the above results, we predicted that single PxVxL

mutants should act asmonovalent HP1 interactor and could per-

turb the association between endogenous HP1 and SENP7. We

transfected full-length GFP-SENP7 constructs and the GFP-

short-PxVxL constructs in NIH 3T3 and analyzed HP1a and

H3K9me3 localization at pericentric domains, in comparison to

GFP controls. Immunofluorescence analysis revealed that

HP1a enrichment at pericentric domains resembled GFP con-

trols, either when both PxVxL motifs are WT or both mutated

for the full-length GFP-SENP7 constructs (Figure 3A) and the

GFP-short-PxVxL constructs (Figure 3B). In contrast, when the

constructs contained a mutation in a single PxVxL motif, HP1a

enrichment decreased (Figures 3A and 3B). Thus, the single

PxVxL motif mutants behave as dominant negatives for HP1a

localization. We did not detect modifications of such interfering

behavior of the single PxVxL mutants when using catalytic mu-

tants (Figures 3A and 3B). Quantification of the proportion of

cells displaying HP1 enrichment (Figures 3C and 3D) and quan-

titative analysis of HP1 enrichment fully supported these obser-

vations (Figures 3E and 3F). We next investigated the status of

the H3K9me3 mark and found that it remained enriched at peri-

centric domains in each condition, and, most importantly, when

HP1a localization was perturbed (Figures 3A, 3B, S4A, and S4B).

We did not detect differences in cell cycle profiles between cells

expressing the GFP-short-PxVxL constructs (Figure S4C), indi-

cating that the interference on HP1a localization mediated by

expression of the single PxVxL motif mutants is not a conse-

quence of a change in cell cycle. These results indicate that

the presence of a monovalent module with only one motif able

to interact with HP1 interferes with HP1a enrichment at pericen-

tric domains. Furthermore, no interferencewas detectedwith the

deconjugation mutant, suggesting that, in these conditions, the

de-SUMOylation activity of SENP7 is not detected to be critical

for HP1a enrichment.

Taken together, these findings strengthen our previous

observations showing that the critical role of SENP7 for the

maintenance of HP1 at pericentric domains lies in a bivalent

HP1 interaction module.

The Two PxVxL Motifs of SENP7 Impact HP1 Dynamics
at Pericentric Domains
We next investigated by which mechanism a bivalent module

of two PxVxL motifs affects HP1 enrichment at pericentric do-

mains. Given that HP1 enrichment at heterochromatin is thought

to result from a decreased mobility at these heterochromatic re-

gions compared to euchromatin (Cheutin et al., 2003; Festen-

stein et al., 2003; Schmiedeberg et al., 2004), we tested whether
(B) Quantitative analysis of HP1a localization patterns in GFP-positive cells from i

indicate the SD from four different experiments.

(C) As in (A) but with the GFP-short-PxVxL constructs.

(D) As in (B) but with the GFP-short-PxVxL constructs.

(E) Quantitative analysis of endogenous HP1a enrichment at PCH domains when

(F) As in (E) but with the GFP-short-PxVxL constructs. *p < 0.05; ***p < 0.001.

Ce
the module of two PxVxL motifs could impact HP1 mobility at

pericentric domains. We used FRAP to monitor HP1a mobility

at pericentric domains in conditions where maintenance of

HP1a enrichment is perturbed by expression of the interfering

module. We cotransfected NIH 3T3 cells with GFP-HP1a

and the short 125 amino acids of SENP7 (59–183) fused to

mCherry to generate mCherry-short-PxVxL constructs that

were WT (mCherry-sP1P2), single mutant (mCherry-sP1*P2

and mCherry-sP1P2*), or double mutant (mCherry-sP1*P2*). In

the conditions used, we found that (1) GFP-HP1a was enriched

at pericentric domains (Figure 4A), and (2) localization of the

mCherry-short-PxVxL constructs was identical to the GFP-

short-PxVxL and full-length GFP-SENP7 constructs (Figure 4A,

prebleach). Further in agreement with our previous findings on

endogenous HP1a, we found that localization of GFP-HP1a at

pericentric domains was perturbed when interfering mCherry-

short-PxVxL constructs were expressed (mCherry-sP1*P2

and mCherry-sP1P2*), when compared to expression of nonin-

terfering mCherry-short-PxVxL constructs (mCherry-sP1P2 or

mCherry-sP1*P2*) (Figure 4A, prebleach).

We selected cells expressing both GFP-HP1a and mCherry-

short-PxVxL constructs, to ensure that HP1a mobility was

analyzed in the presence of the mCherry-short-PxVxL proteins,

and performed FRAP analysis at individual pericentric domains

by bleaching and measuring fluorescence recovery of a single

pericentric domain (Figure 4A). Analysis indicated that half re-

covery at heterochromatin was reached within 1–5 s, in agree-

ment with previous reported observations (Cheutin et al., 2003;

Festenstein et al., 2003; Schmiedeberg et al., 2004; Figures 4B

and S4E). When compared to the double-mutant sP1*P2*, which

does not associate with HP1a or interfere with HP1a localization,

single PxVxL mutants (sP1P2* and sP1*P2) conferred a faster

recovery to HP1a, while WT PxVxL (sP1P2) conferred a slower

recovery (Figures 4B and S4E). We performed kinetic modeling

of the FRAP data and found, for every mCherry-short-PxVxL

construct, the presence of amobile and a verymobile population

of HP1a molecules characterized by a distinct association time

of HP1a to pericentric domains (t1 and t2 respectively, Fig-

ure 4B), in agreement with previous results (Schmiedeberg

et al., 2004). When the single PxVxL mutants (sP1P2* and

sP1*P2) were expressed, both t1 and t2 decreased relative to

the double PxVxL mutant (sP1*P2*), indicating a higher HP1a

mobility. This finding correlates with the loss of HP1a enrichment

at pericentric domains detected when the single PxVxL mutants

are expressed (Figures 3B, 3D, and 3F). Conversely, when the

WT PxVxL construct was expressed (sP1P2), both t1 and t2

increased relative to sP1*P2* (Figure 4B), indicating a decreased

HP1a mobility.

Based on these results, we conclude that the interference

observed on HP1a enrichment in the presence of a single

HP1 interaction motif reflects an increase in HP1a mobility at
mmunofluorescence stainings above. Bar represents the mean, and error bars

full-length GFP-SENP7 constructs are transfected. ***p < 0.001.
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Figure 3. Single PxVxL Mutants Behave as Dominant Negatives

(A) Immunofluorescence staining of full-length GFP-SENP7 constructs (green), endogenous HP1a (red), and H3K9me3 (blue) in GFP-positive cells after trans-

fection of GFP control or the full-length GFP-SENP7 constructs in NIH 3T3 cells. Corresponding DAPI images are shown. Scale bar, 10 mm.

(legend continued on next page)
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pericentric domains. This thus indicates that the double PxVxL

motif module of SENP7 participates in the maintenance of

HP1a enrichment at pericentric regions by restricting HP1a

mobility.

DISCUSSION

The results reported here indicate that the ability of SENP7 to

interact with HP1 via a module comprising two PxVxL HP1 inter-

action motifs is most critical to maintain HP1 enrichment at

pericentric domains. We further provide evidence that, for this

function in HP1 maintenance, SENP7 can be substituted for a

simple bivalent module containing two PxVxL HP1 interaction

motifs. Interfering with the two PxVxL motifs module leads to

an increased HP1 mobility, suggesting that a function for this

module is to restrict HP1 mobility at pericentric domains. Impor-

tantly, we found that the loss of HP1 enrichment when SENP7 is

either depleted or subjected to dominant-negative interference

occurs without changes of H3K9me3 enrichment. This finding in-

dicates that the H3K9me3 modification, although necessary for

HP1 recruitment, is not sufficient to maintain stable HP1 accu-

mulation at pericentric domains, and suggests that the module

of two PxVxL HP1 interaction motifs of SENP7 might act on

top of the H3K9me3 modification.

Based on these data, we propose a mechanism for the main-

tenance of HP1 enrichment at H3K9me3-enriched regions

involving a module of two PxVxL HP1 interaction motifs (Fig-

ure 4C). The docking of HP1 on contiguous H3K9me3-modified

nucleosomes would provide exposure of several consecutive

HP1-chromoshadow domains that could be recognized and

connected by a module of two PxVxL motifs, resulting in a phys-

ical link between several HP1 molecules. This would decrease

global HP1 mobility, since dissociation from chromatin of con-

nected HP1 molecules would necessitate a loss of interaction

between every individual HP1 chromodomain and H3K9me3

residue to occur simultaneously. This ultimately would lock the

HP1 molecules and, hence, favor their stable maintenance at

H3K9me3-enriched regions. Importantly, such locking could

occur between HP1 molecules docked on adjacent nucleo-

somes from the same nucleosomal array, but also from distinct

arrays, favoring a stabilization of higher-order chromatin organi-

zation (Figure 4C). One could envisage that additional factors

and/or posttranslational modifications regulating the physical

association between HP1 and the module of two PxVxL HP1

interaction motifs could control this locking mechanism. At a

functional cellular level, we could reveal that such an HP1-lock-

ing function of SENP7 might be critical because of the loss of

HP1 enrichment at pericentric domains as a result of prolonged

time required to progress from late prophase to early telophase

during mitosis (Figure 1A).
(B) As in (A) but with transfection of the GFP-short-PxVxL constructs.

(C) Quantitative analysis of HP1a localization pattern at pericentric domains in GF

mean, and error bars indicate the SD from four experiments.

(D) Quantitative analysis as in (C) but with the GFP-short-PxVxL constructs from

(E) Quantitative analysis of HP1a enrichment at pericentric domains in GFP-po

fluorescence stainings in (A). ***p < 0.05.

(F) As in (E) but with the GFP-short-PxVxL constructs from immunofluorescence

Ce
In our experimental conditions using 3T3 cells, in which HP1

enrichment at pericentric domains was established, we did not

detect the de-SUMOylation activity of SENP7 to be critical for

HP1 maintenance. However, important functions of SENP7

related to HP1, involving the catalytic de-SUMOylation domain,

should not be dismissed. A recent report revealed a role

of SENP7 in promoting a permissive environment for homolo-

gous recombination repair role by regulating the levels of the

SUMO-2/3 modification of the HP1 interactor KAP1 (Garvin

et al., 2013). SENP7 de-SUMOylation activity with specificity

for SUMO-2/3 also was reported to be involved in the regulation

of HP1a recruitment to specific promoters and tumorigenesis

(Bawa-Khalfe et al., 2012). Further, since we found that de

novo targeting of HP1a involves HP1 SUMOylation by SUMO-1

and pericentric transcripts (Maison et al., 2011), SENP7 acting

in combination with transcription-related mechanisms (Bulut-

Karslioglu et al., 2012) may be considered as a potential regu-

lator of de novo HP1 targeting. It is thus tempting to envisage

SENP7 with the combination of de-SUMOylation activity and a

double PxVxLmodule as a factor that could regulate HP1 enrich-

ment via several nonexclusive mechanisms that could adapt to

the cellular context.

We identified here how HP1 accumulation depends on addi-

tional mechanisms beyond the presence of the H3K9me3 modi-

fication, and characterized a critical role for a module of two

PxVxL HP1-binding motifs to ensure HP1 maintenance at het-

erochromatic sites. Interacting with HP1 via two distinct interac-

tion domains does not seem to be unique to SENP7, and could

have a broad importance since it also has been reported for

the EMSY protein in human (Huang et al., 2006), the DNA meth-

yltransferase DIM-2 in Neurospora crassa (Honda and Selker,

2008), the Su(var)3-7 protein in Drosophila (Delattre et al.,

2000), and the Orc3 protein (Prasanth et al., 2010). Although

the in vivo relevance for a module of interaction with HP1

made of two distinct domains had remained unclear for these

proteins besides SENP7, it is interesting to note that, similar to

our data with SENP7, Orc3 depletion resulted in delocalization

of HP1 from heterochromatin loci, though without impacting

H3K9me3 (Prasanth et al., 2010). Further, although the interac-

tion between Orc3 and HP1 may be related to replication of het-

erochromatin domains, this does indicate that enrichment of

HP1 at heterochromatin loci may depend on several factors

able to bridge or connect several HP1 molecules, but which

loss cannot systematically be compensated by another.

The mode of action of the two PxVxL modules on HP1 stability

necessitates at least two critical requirements. First, the possibil-

ity for HP1 molecules recruited on H3K9me3-modified nucleo-

somes to oligomerize in order to expose contiguous chromosh-

adow dimer interfaces that could be recognized and connected

by the two PxVxL-containing module. Second, the connection of
P-positive cells from immunofluorescence stainings in (A). Bar represents the

immunofluorescence stainings in (B).

sitive cells transfected with full-length GFP-SENP7 constructs from immuno-

stainings in (C).

ll Reports 10, 771–782, February 10, 2015 ª2015 The Authors 779



Figure 4. The Module of Two PxVxL Motifs

Restricts Mobility of HP1a

(A) Images of confocal sections showing localiza-

tion of mCherry-short-PxVxL constructs (red) and

GFP-HP1a (green) before bleaching and GFP-

HP1a fluorescence recovery at selected time

points. The arrow indicates the bleached peri-

centric domain. Scale bar, 10 mm.

(B) FRAP curves of GFP-HP1a in the presence of

the various mCherry-short-PxVxL constructs. The

table shows the time of association of HP1a to

pericentric domains for both HP1a population in

the presence of the various mCherry-short-PxVxL

constructs calculated from modeling. Number of

pericentric domains analyzed (n) is indicated. See

also Figure S4.

(C) Hypothetical model. The two PxVxL motifs

of SENP7 connect contiguous HP1 molecules

docked on H3K9me3-modified nucleosomes

enabling locking of HP1. For simplification, only

the minimal region of SENP7 containing the mod-

ule of two PxVxL motifs and no additional factors

are represented.
two HP1 dimers by their respective chromoshadow dimer inter-

face should be structurally possible. For the oligomerization

aspect, human HP1 was reported to oligomerize as tetramers

(Yamada et al., 1999), and Swi6 bound on H3K9me3-modified

nucleosomes was shown to tetramerize (Canzio et al., 2011),
780 Cell Reports 10, 771–782, February 10, 2015 ª2015 The Authors
thus generating contiguous PxVxL-bind-

ing sites on nucleosomal arrays. Further,

dimers of Swi6 were shown to self-asso-

ciate to promote elongation of Swi6

dimers chain (Canzio et al., 2013), sug-

gesting that several binding sites for

PxVxL motifs could be exposed on HP1-

containing chromatin. For the structural

aspect, the fact that two chromoshadow

dimers are found in the crystal structure

of the EMSY-HP1 complex (Huang

et al., 2006) supports the absence of

structural constraints that could prevent

the binding of two chromoshadow dimers

at the same time. Thus, taken together,

current data support the idea of a partic-

ular architecture at PCH involving factors

with two HP1 interaction motifs, such

as SENP7 to lock the chromoshadow

domains of HP1 molecules docked on

H3K9me3-modified nucleosomes.

The necessity of having closely spaced

HP1 chromoshadow dimers to be able

to be locked by SENP7 could help modu-

late the strength of HP1 maintenance. A

genomic loci made of homogenous ar-

rays of H3K9me3-modified nucleosomes,

such as blocks of heterochromatin, might

be a better substrate to expose many

regularly spaced chromoshadow do-
mains that would be efficiently locked by the double PxVxLmod-

ule of SENP7 and kept in a closed state. In contrast, genomic loci

that would bemade of H3K9me3 nucleosomes interspersedwith

non-H3K9me3 nucleosomes would not provide an efficient sub-

strate to expose contiguous chromoshadow domains that could



be locked by double PxVxL module, and would not result in a

stable accumulation of HP1. This would allow dynamic and

reversible binding of factors to chromatin and DNA, such as pro-

moter regions regulated by H3K9me3 and HP1 (Kwon and

Workman, 2011). It is interesting then to envisage the double

PxVxL module of SENP7 as a means to ensure HP1 stability

and enrichment at heterochromatin loci as a consequence of

the density of H3K9me3 modification.

Future work should aim at characterizing whether locking

mechanisms acting on top of histone modifications to promote

maintenance of protein concentration at specific genomic loci

in the cell nucleus could apply to other nuclear domains and

how they would impact on the plasticity of nuclear organization

and genome stability.

EXPERIMENTAL PROCEDURES

Cells, Transfections, and Extracts

Wecultured NIH 3T3 cells (Maison et al., 2012) and used Lipofectamin 2000 for

transfections (Invitrogen). For the complementation experiment, we cotrans-

fected siRNA and DNA plasmids and performed analysis 33 hr after transfec-

tion. We prepared total cell extracts by resuspending cells in RIPA buffer and

performed immunoprecipitations (Maison et al., 2012).

Plasmids

GFP-SENP7 WT and Act* (C979S) expressing plasmid were from Maison

et al. (2012). Mutations of the GFP-SENP7 mutants were as follows: P1*

(V93DL95N), P2* (V159DL161N), P1*P2* (V93DL95N V159DL161N), P1*Act*

(V93DL95N C979S), and P1*P2*Act* (V93DL95N V159DL161N C979S).

Microscopy Analyses

We immunostained cells (Martini et al., 1998) and quantified the enrichment

at PCH domains of SENP7, H3K9me3, and HP1a with the 3D-FIED method

(Cantaloube et al., 2012). We performed time-lapse microscopy using the

BioStation system (Nikon). We carried out FRAP experiments on a Zeiss

LSM 780 confocal and used NIH Image J software for analysis.

Statistical Tests

We used theMann-Whitney test to compare HP1a and H3K9me3 enrichments

and theWilcoxon test for time-lapsemicroscopy. Differenceswere considered

significant when p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.01.004.
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