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Abstract. During an interval of the Late Pliocene, referred

to here as the mid-Pliocene Warm Period (mPWP; 3.264 to

3.025 million years ago), global mean temperature was sim-

ilar to that predicted for the end of this century, and atmo-

spheric carbon dioxide concentrations were higher than pre-

industrial levels. Sea level was also higher than today, im-

plying a significant reduction in the extent of the ice sheets.

Thus, the mPWP provides a natural laboratory in which to

investigate the long-term response of the Earth’s ice sheets

and sea level in a warmer-than-present-day world.

At present, our understanding of the Greenland ice sheet

during the mPWP is generally based upon predictions using

single climate and ice sheet models. Therefore, it is essen-

tial that the model dependency of these results is assessed.

The Pliocene Model Intercomparison Project (PlioMIP) has

brought together nine international modelling groups to sim-

ulate the warm climate of the Pliocene. Here we use the cli-

matological fields derived from the results of the 15 PlioMIP

climate models to force an offline ice sheet model.

We show that mPWP ice sheet reconstructions are highly

dependent upon the forcing climatology used, with Green-

land reconstructions ranging from an ice-free state to a near-

modern ice sheet. An analysis of the surface albedo vari-

ability between the climate models over Greenland offers

insights into the drivers of inter-model differences. As we

demonstrate that the climate model dependency of our results

is high, we highlight the necessity of data-based constraints

of ice extent in developing our understanding of the mPWP

Greenland ice sheet.

1 Introduction

The response of the Earth’s ice sheets to a warming cli-

mate is a critical uncertainty in future predictions of cli-
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404 A. M. Dolan: Investigation of the Greenland Ice Sheet via results from the PlioMIP ensemble

mate and sea level (Church et al., 2013; Masson-Delmotte

et al., 2013; Vaughan et al., 2013). Therefore, there is in-

creasing interest in understanding the nature and behaviour

of the major ice sheets during warm intervals in Earth his-

tory. The Pliocene Epoch is a particularly well documented

pre-Quaternary environment which has become the focus

for intense study within the Pliocene Model Intercompari-

son Project (PlioMIP; Haywood et al., 2010, 2011). A warm

period within the Late Pliocene (referred to as the mPWP;

3.264 to 3.025 million years ago; Dowsett et al., 2010) is

predicted to have been between 2 and 3 ◦C warmer than pre-

industrial (Haywood et al., 2009; 2013; Lunt et al., 2010)

and estimates of atmospheric carbon dioxide (CO2) concen-

trations suggest levels of up to 450 ppmv (Pagani et al., 2010;

Seki et al., 2010). The IPCC Fifth Assessment Report states

with high confidence that global mean sea level was above

present (up to 20 m) during warm intervals of the mPWP

(Masson-Delmotte et al., 2013) and individual records of sea

level high-stands (∼ 20 m) support the reduction in the extent

of the ice sheets at this time (e.g. Miller et al., 2012; Rovere

et al., 2014; Rohling et al., 2014). Although in recent litera-

ture the terms mid-Piacenzian or Late Pliocene warm event

have been used to describe this interval, here we retain con-

sistency with the original PlioMIP naming convention when

discussing model simulations and use the mPWP.

Proxy records of palaeotemperature derived from ice

cores (Dahl-Jensen et al., 1998; Cuffey and Marshall, 2000;

Johnsen et al., 2001; Rasmussen et al., 2006) and numeri-

cal modelling (Otto-Bliesner et al., 2006; Overpeck et al.,

2006; van de Berg et al., 2011; Born et al., 2012; Quiquet

et al., 2013; Stone et al., 2013) of more recent interglacials

demonstrate that the Greenland ice sheet (GrIS) has a large

sensitivity to high-latitude warming. However, there is little

proximal evidence to indicate the volume or extent of the

GrIS during the warmest intervals of the mPWP. Evidence of

long-lasting subaerial soil formation at the base of the cen-

tral Greenland Ice Sheet have been suggested as evidence

for persistent reduction in Pliocene ice, but the soils have

not been positively dated as relating to this period (Bierman

et al., 2014). The presence of forest fragments in the Kap

København Formation in the far North of Greenland up until

2.4 Ma (Funder et al., 2001) suggests that this area may have

been ice-free through intervals of the Late Pliocene. Frag-

ments of evergreen taiga forest in Pliocene sediments at Ile de

France (Bennike et al., 2002) also suggest that ice marginal

regions were much warmer during the Pliocene. Records

from the central Labrador Sea suggest that landmasses ad-

jacent to Greenland, such as Ellesmere and Baffin Island,

show a predominance of evergreen forest during intervals of

the Pliocene (De Vernal and Mudie, 1989; Thompson and

Flemming, 1996; Ballantyne et al., 2006; Csank et al., 2011).

Additionally, temperature estimates from peat deposits in

the Canadian High Arctic (Beaver Pond) suggest elevated

Pliocene Arctic temperatures (Ballantyne et al., 2010). Al-

though there are no mPWP temperature records from Green-

land against which to test the climate model simulations,

there is generally a cool bias in the models compared to the

available data in the northern high latitudes (Dowsett et al.,

2012; Salzmann et al., 2013).

While useful, proxy evidence is too sparse and uncertain

to enable a detailed reconstruction of the extent and loca-

tion of mPWP ice sheets. Therefore, a variety of modelling

frameworks have been adopted in order to simulate the mass

balance of the GrIS and reconstruct potential ice sheet con-

figurations during the mPWP (Lunt et al., 2008b, 2009; Hill,

2009; Hill et al., 2010; Dolan et al., 2011; Koenig et al., 2011,

2014a, b). These modelling frameworks have generally in-

cluded the offline coupling of an ice sheet model (ISM) to

a climate model, and have been limited to the use of three

climate models; the UKMO UM (UK Met Office Unified

Model; e.g. Hill et al., 2010; Dolan et al., 2011), GENE-

SIS (e.g. Koenig et al., 2011) and multiple versions of CAM

(Community Atmosphere Model; e.g. Yan et al., 2014). Al-

though all available simulations suggest that the GrIS was

reduced in size during the mPWP, the model dependency

of the results is yet to be robustly assessed. The extent to

which ice sheet reconstructions are dependent on the ISM

employed is addressed through a sub-project of PlioMIP,

entitled the Pliocene Ice Sheet Modelling Intercomparison

Project (PLISMIP; Dolan et al., 2012). Results from Koenig

et al. (2014b) suggest that ISM dependency is low. Here,

we will address the question of climate model dependency

utilising climate model outputs from PlioMIP (Chan et al.,

2011; Bragg et al., 2012; Contoux et al., 2012; Stepanek and

Lohmann, 2012; Yan et al., 2012; Kamae and Ueda, 2012;

Zhang and Yan, 2012; Zhang et al., 2012; Chandler et al.

2013; Rosenbloom et al., 2013) to force the British Antarc-

tic Survey ISM (BASISM). Results from PlioMIP present a

unique opportunity to sample differences in model predic-

tions of climate and how this impacts on our reconstruction

of the GrIS.

Initially a summary of the PlioMIP experimental design

will be provided, followed by a description of the offline cou-

pling method adopted for the ISM simulations in this study,

which will include details of the climate differences over

Greenland as derived from the PlioMIP ensemble. A discus-

sion of the differences between equilibrium-state ice sheet

simulations using the climatological forcing from the 15 dif-

ferent climate model experiments in the PlioMIP ensemble

will follow and we will conclude with an assessment of the

potential causes of any discrepancies and suggestions for fu-

ture modelling strategies of the mPWP GrIS.

The aims of this paper can be summarised as

– to assess the extent to which GrIS reconstructions for

the mPWP are dependent upon the climate model used

to force the ISM;

– to understand the potential reasons for any differences

between the simulated GrISs by considering factors
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Table 1. The short names of the PlioMIP climate models used to force BASISM, along with the atmospheric component resolution and the

land–sea mask (LSM) scheme implemented by each model (Haywood et al., 2010). Regarding the LSM, “preferred” refers to a LSM that has

been entirely altered to meet the PlioMIP boundary conditions, whereas “alternate” is where modelling groups have had to use more similar

to modern LSM. More comprehensive details of each model, and their implementation of the LSM, can be found in Haywood et al. (2013)

and the individual references listed in this table.

Type Model name Atmosphere resolution (lat/long) References/contributors Preferred or alternate LSM

A
G

C
M

s

CAM3.1 ∼ 2.8◦× 2.8◦(T42) Yan et al. (2012) Alternate

COSMOS 3.75◦× 3.75◦ Stepanek and Lohmann (2012) Preferred

HadAM3 2.5◦× 3.75◦ Bragg et al. (2012) Preferred

LMDZ5A 1.9◦× 3.75◦ Contoux et al. (2012) Preferred

MIROC4m ∼ 2.8◦× 2.8◦(T42) Chan et al. (2011) Preferred

MRI-CGCM2.3 ∼ 2.8◦× 2.8◦(T42) Kamae and Ueda (2012) Alternate

NorESM-L ∼ 3.75◦× 3.75◦(T31) Zhang and Yan (2012) Alternate

A
O

G
C

M
s

CCSM4 0.9◦× 1.25◦ Rosenbloom et al. (2013) Alternate

COSMOS 3.75◦× 3.75◦ Stepanek and Lohmann (2012) Preferred

GISS ModelE2-R 2◦× 2.5◦ Chandler et al. (2013) Preferred

HadCM3 2.5◦× 3.75◦ Bragg et al. (2012) Alternate

IPSLCM5A 1.9◦× 3.75◦ Contoux et al. (2012) Alternate

MIROC4m ∼ 2.8◦× 2.8◦(T42) Chan et al. (2011) Preferred

MRI-CGCM2.3 ∼ 2.8◦× 2.8◦(T42) Kamae and Ueda (2012) Alternate

orESM-L ∼ 3.75◦× 3.75◦(T31) Zhang et al. (2012) Alternate

which may affect the climate representation over Green-

land in the PlioMIP models;

– To inform decisions regarding the prescription of the

GrIS in subsequent climate model experiments (e.g. the

second phase of PlioMIP).

2 Methods

2.1 Climate model forcing (PlioMIP)

2.1.1 The PlioMIP ensemble

In order to systematically examine uncertainties in numerical

model predictions of the mPWP, PlioMIP (Haywood et al.,

2010, 2011) was initiated as a component of PMIP (Palaeo-

climate Model Intercomparison Project). PMIP’s aim is to

provide a means for coordinating palaeoclimate modelling

and model-evaluation activities in order to understand the

mechanisms of climate change and the role of climate feed-

backs under past climate conditions (Braconnot et al., 2012).

Previous comparisons of mPWP simulations had been lim-

ited to at most three different climate models and had in-

corporated different approaches to implementing the mPWP

boundary conditions (e.g. Haywood et al., 2000, 2009).

PlioMIP established the design for two initial experi-

ments. Experiment 1 used atmosphere-only climate models

(AGCMs) and is detailed fully in Haywood et al. (2010). Ex-

periment 2 utilised coupled atmosphere–ocean climate mod-

els (AOGCMs) and is described in Haywood et al. (2011).

Here the atmospheric and topographic fields from both the

AGCMs and the AOGCMs in PlioMIP (Table 1) will be used

to force an offline shallow ice approximation ISM (BASISM;

see Sect. 2.2).

The boundary conditions applied to all climate models of

PlioMIP are described specifically in Haywood et al. (2010,

2011) respectively. In brief, both experiments utilised the

US Geological Survey PRISM3 boundary condition data

set (Dowsett et al., 2010). PRISM3 is an improved data

set in terms of data coverage compared to its predecessor

(PRISM2; Dowsett et al., 1999) and includes information on

monthly sea surface temperatures (SSTs) and sea-ice distri-

butions, vegetation cover, sea level, ice sheet extent and to-

pography. Vegetation cover is based on the palaeobotanical

reconstruction of Salzmann et al. (2008) and topography is

derived from the Sohl et al. (2009) palaeogeographic recon-

struction. The PRISM3 ice sheets applied in the climate mod-

els were derived from offline ISM experiments forced with

climatological fields from the Hadley Centre Atmosphere-

only climate model (Fig. 1; HadAM3; Hill, 2009), and rep-

resent an ice sheet that is consistent with the rest of the

PRISM3 reconstruction. For the AGCMs the SST and sea

ice distribution was fixed according to PRISM3, whereas the

AOGCMs predicted their own mPWP sea surface conditions.

In all of the PlioMIP experiments, the atmospheric con-

centration of CO2 was set to 405 ppmv (Haywood et al.,

www.clim-past.net/11/403/2015/ Clim. Past, 11, 403–424, 2015
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Figure 1. The PRISM3 Greenland ice sheet as simulated by BA-

SISM (Hill, 2009; Dowsett et al., 2010). The forcing climatol-

ogy for this ice sheet reconstruction is a HadAM3 simulation with

PRISM2 boundary conditions (as described in Salzmann et al.,

2008).

2010, 2011a). This is slightly higher than the previous stan-

dard PRISM2 level (400 ppmv), but still falls well within the

uncertainty limits of current CO2 proxy records (e.g. Pagani

et al., 2010; Seki et al., 2010; Bartoli et al., 2011). All other

trace gases were specified at a pre-industrial concentration

and the selected orbital configuration was unchanged from

modern (Haywood et al., 2010).

Each of the PlioMIP models were set up with PRISM3

boundary conditions as described above and then run for a

minimum integration length of 50 years for the AGCMs and

500 years for the AOGCMs. Average climatological forcing

fields were derived from the final 30 years of the simula-

tion. Each modelling group’s standard pre-industrial simu-

lation was used as a control run.

Details of participating groups and climate models can be

found in Table 1. Simulations from seven AGCMs and eight

AOGCMs were completed and results submitted to PlioMIP.

The AGCMs and AOGCMs sample differing levels of com-

plexity and resolution, from higher-resolution IPCC AR5-

class models to intermediate-resolution models (Haywood et

al., 2013).

Figure 2. mPWP minus pre-industrial mean annual surface air

temperature (◦C) over Greenland for the PlioMIP ensemble using

atmosphere-only (AGCMs) and coupled atmosphere–ocean climate

models (AOGCMs). Temperature plotted on the original climate

model resolution.

2.1.2 Climatological forcing over Greenland

Greenland mean annual temperature and precipitation, and

summer temperature anomalies between the mPWP and

the pre-industrial for each of the PlioMIP AGCMs and

AOGCMs are shown in Figs. 2–4. Over Greenland simulated

mPWP climates from the AGCMs show an increase in mean

annual temperature of between 11.9 and 14.1 ◦C, whereas

the range predicted from the AOGCMs is much greater (5.3

to 12.8 ◦C; Table 3). For the AGCMs, mPWP mean annual

precipitation levels over the Greenland region (Table 3) in-

crease compared to pre-industrial in models. All AOGCMs

show an increase in mPWP precipitation of between 0.2 and

0.8 mm day−1. Simulated mPWP summer temperatures were

on average 12.6 ◦C warmer over Greenland for the AGCMs

Clim. Past, 11, 403–424, 2015 www.clim-past.net/11/403/2015/
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Figure 3. mPWP minus pre-industrial mean annual precipita-

tion (mm day−1) over Greenland for the PlioMIP ensemble using

atmosphere-only (AGCMs) and coupled atmosphere–ocean climate

models (AOGCMs). Precipitation plotted on the original climate

model resolution.

and 12.3 ◦C warmer in the AOGCMs. However, the average

for the AOGCMs is lowered due to MRI-AOGCM simulat-

ing a warming of 4 ◦C, whereas all other AOGCMs fall be-

tween 11.6 and 15 ◦C of warming in the mPWP relative to

the pre-industrial control simulation.

2.2 Ice sheet modelling framework

In this study we used BASISM, which has previously been

applied to study mPWP ice sheets (Hill et al., 2007, 2010;

Hill, 2009; Dolan et al., 2011). BASISM is a finite differ-

ence, thermomechanical, shallow ice approximation (SIA)

ISM, utilising an unconditionally stable, implicit numerical

solution of the non-linear simultaneous equations of ice flow.

BASISM is similar to other SIA models described by Huy-

brechts (1990), Ritz et al. (2001) and Rutt et al. (2009) and

Figure 4. mPWP minus pre-industrial mean July surface air tem-

perature (◦C) over Greenland for the PlioMIP ensemble using

atmosphere-only (AGCMs) and coupled atmosphere–ocean climate

models (AOGCMs). Temperature plotted on the original climate

model resolution.

a more detailed discussion of the numerical formulations be-

hind BASISM can be found in Hindmarsh (1993, 1996, 1999,

2001). As well as the internal glaciological dynamics, inter-

actions with the bedrock are simulated with a simple model

of elastic rebound, with a rebound timescale of 3000 years

(Le Meur and Huybrechts, 1996). The bedrock height for all

initial conditions is recalculated using this model, on the as-

sumption of isostatic equilibrium and then the bedrock is al-

lowed to dynamically evolve and adjust during subsequent

ice sheet changes.

For this study, BASISM was run on a 20 km× 20 km

grid, with 21 vertical layers, in a domain covering the mod-

ern grounded GrIS. The ISM is forced using climatologi-

cal fields of mean annual temperature (Fig. 2) and precipi-

tation (Fig. 3) and warmest mean monthly temperature (July;

www.clim-past.net/11/403/2015/ Clim. Past, 11, 403–424, 2015



408 A. M. Dolan: Investigation of the Greenland Ice Sheet via results from the PlioMIP ensemble

Fig. 4) from each of the PlioMIP ensemble members follow-

ing the method of Hill (2009). An exponential function is

used to convert temperatures into the number of positive de-

gree days (PDD; Reeh, 1991), which shows a high level of

correlation between warmest month temperatures and obser-

vations of present-day melt (Hill, 2009). Bilinear interpola-

tion was used to downscale the meteorological fields from the

original climate model grid onto the higher-resolution ISM

grid. Downscaling is problematic in that the coarse horizon-

tal resolution of the climate model is inadequate to resolve

the steep topographic slopes around the edges of Greenland

(Thompson and Pollard, 1997; Ridley et al., 2005). This is

partly addressed by applying a uniform and constant lapse

rate correction to resolve for the difference in climate model

and ISM topography, both in the initial conditions and as

the ice sheet surface evolves during the simulation. The stan-

dard lapse rate used within BASISM is−6.0 ◦C km−1, which

lies within modern observations of lapse rates on Green-

land (Steffen and Box, 2001; Hanna et al., 2005). Currently,

there is no known similar simple relationship between pre-

cipitation and altitude. Precipitation over the GrIS is highly

non-linear, with synoptic patterns of atmospheric circulation

tending to drive patterns of accumulation (Schuenemann and

Cassano, 2009). Combined model simulations and tree-ring

isotopes have shown that the dominant patterns of Pliocene

North Atlantic atmospheric circulation are likely to have re-

mained similar to today (Hill et al., 2011). Although some

direct effects of altitude and temperature will occur as the

ice sheet evolves, one of the key changes will be feedbacks

on atmospheric circulation, which can only be modelled in

a coupled ice sheet–climate model (Mayewski et al., 1994).

Where downscaling methods do exist (e.g. Ritz et al., 1997),

the ratio of precipitation change with temperature change is

poorly constrained (Charbit et al., 2002). Therefore, no cor-

rection for precipitation has been made within the ice sheet

modelling experiments presented here.

The PDD method was employed to convert the climate

fields into a melt rate (Reeh, 1991; Braithwaite, 1995), and

is well established in coupled atmosphere–ice sheet palaeo-

climate modelling studies (e.g. DeConto and Pollard, 2003;

Lunt et al., 2008a, b, 2009). The PDD technique assumes

that the melting of the ice sheet surface can be fully de-

scribed by three physical constants (melt rate or PDD fac-

tor of ice and snow and the maximum fractional refreez-

ing rate; Wmax) and the temperature record. Although many

other factors could contribute this method has been shown

to have some physical justification (Ohmura, 2001). Stan-

dard PDD parameters for ice (∝i) and snow (∝s) are set to

∝i = 8 mm day−1 ◦C−1 and ∝s = 3 mm day−1 ◦C−1 respec-

tively, which is within observations of different modern-day

climates (Braithwaite, 1995). Further developments of the

PDD method have been used in previous studies, but they

rely on additional glaciological parameters that may not re-

main constant in palaeoclimate scenarios, thus it is unclear

Table 2. The three glaciological parameters and the values consid-

ered in the ice sheet modelling simulations. By varying each glacio-

logical parameter independently, while holding the others constant,

there are a total of 48 sensitivity experiments performed for each

ice sheet model simulation.

Lapse rate PDD factor snow PDD factor ice

(◦C km−1) (∝i; mm day−1 ◦C−1) (∝s; mm day−1 ◦C−1)

−6 3 5

−7 4 6

−8 5 8

6 14

how to assign them for the mPWP (Janssens and Huybrechts,

2000; Tarasov and Peltier, 2002).

The aforementioned “standard” glaciological parameters

(i.e. lapse rate, and the PDD factors of ice and snow) used

in BASISM were originally tuned for a HadAM3 experiment

(Hill, 2009), so that the best representation of the modern

GrIS and East Antarctic Ice Sheet (EAIS) were simulated.

However, these parameter values are still poorly constrained,

resulting in highly variable ice sheet volumes and extents de-

pending on the exact values prescribed (Ritz et al., 1997;

Lunt et al., 2008b; Stone et al., 2010). Stone et al. (2010)

demonstrated that the ice sheet extent is predominantly de-

pendent on the PDD factors and the lapse rate, and therefore

we have chosen to vary these parameters in order to obtain

an additional estimate of uncertainty on our ISM-based GrIS

reconstructions.

The typical annual lapse rate used for a variety of stud-

ies on Greenland (e.g. Ridley et al., 2005; Huybrechts

and de Wolde, 1999; Vizcaíno et al., 2008) ranges from

−6.0 to −8.0 ◦C km−1 and therefore here we will test val-

ues within this range (Table 2). The PDD parameter val-

ues for ice and snow vary much more within the litera-

ture and previous modelling studies. The standard value

for ice used by many modellers is 8 mm day−1 ◦C−1 (e.g.

Huybrechts and de Wolde, 1999; Ritz et al., 1997), al-

though Braithwaite (1995) suggested that the value could

be as much as 20 mm day−1 ◦C−1. Modelling studies for

the Late Pliocene Greenland (e.g. Lunt et al., 2008b) have

tested a range of PDD parameters from low PDD fac-

tors (∝i = 8 mm day−1 ◦C−1 and ∝s = 3 mm day−1 ◦C−1;

the same as BASISM standard) to very high PDD fac-

tors (∝i = 64 mm day−1 ◦C−1 and∝s = 24 mm day−1 ◦C−1)

and have shown that the higher end of these ranges

do not lead to a good simulation of the modern GrIS.

Here we vary PDD factors conservatively between ∝s =

3 mm day−1 ◦C−1 and ∝s = 6 mm day−1 ◦C−1 for snow and

∝i = 5 mm day−1 ◦C−1 and ∝i = 14 mm day−1 ◦C−1 for ice

(Table 2).

Although it is possible to use statistical methods such as

Latin Hypercube Sampling (LHS) to define random plausible

parameter sets within a given range (e.g. Stone et al., 2010),

Clim. Past, 11, 403–424, 2015 www.clim-past.net/11/403/2015/
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Table 3. Mean annual and summer temperature and mean annual precipitation values over the Greenland region for the PlioMIP climate

models for the pre-industrial control experiments and the mPWP simulations. The climatological values have been calculated over the entire

Greenland land mass as defined by the individual land–sea masks prescribed in the climate models. No ocean temperatures/precipitation

values have been used.

Greenland

Temperature (◦C) Precipitation

Abbrev. model name Mean annual Mean summer mean annual (mm day−1)

A
G

C
M

s P
re

-I
n

d
u

st
ri

al

CAM3.1 −14.36 −1.76 1.56

COSMOS −18.22 −5.48 1.21

HadAM3 −22.59 −8.82 0.92

LMDZ5A −20.97 −6.16 0.81

MIROC4m −19.44 −2.09 0.92

MRI-CGCM2.3 −20.50 −12.23 1.04

NorESM-L −13.97 −1.71 1.33

m
P

W
P

CAM3.1 −2.45 8.95 2.01

COSMOS −4.26 7.41 2.00

HadAM3 −8.98 4.09 1.70

LMDZ5A −6.89 7.69 1.92

MIROC4m −6.24 7.33 1.67

MRI-CGCM2.3 −7.37 1.53 1.65

NorESM-L −0.71 13.00 1.70

A
O

G
C

M
s

P
re

-I
n

d
u

st
ri

al

CCSM4 −20.74 −5.08 1.25

COSMOS −18.32 −4.74 1.20

GISS ModelE2-R −14.78 −5.69 0.64

HadCM3 −22.21 −10.14 1.05

IPSLCM5A −24.68 −7.76 0.56

MIROC4m −19.65 −2.46 0.94

MRI-CGCM2.3 −28.18 −19.60 0.70

NorESM-L −15.86 −2.73 1.26

m
P

W
P

CCSM4 −13.58 5.42 1.60

COSMOS −5.93 8.08 1.83

GISS ModelE2-R −9.44 9.32 0.85

HadCM3 −10.09 4.24 1.69

IPSLCM5A −11.89 7.12 1.34

MIROC4m −7.36 9.15 1.52

MRI-CGCM2.3 −19.18 −15.59 0.96

NorESM-L −3.60 12.04 1.55

here we simply choose to co-vary parameters. Table 2 shows

the parameter values tested here, equating to 48 parameter

permutations for each simulation based on the forcing from

a specific climate model. In every ISM simulation, absolute

temperatures and precipitation values were used to force the

ISM, and no correction was made to account for temperature

biases in each model’s simulation of the pre-industrial (see

Lunt et al., 2009). BASISM was run for 50 000 years, which

is enough time for the simulated ice sheet to come into geo-

metric and thermal equilibrium with the forcing climate.

Prior to simulating the mPWP GrIS, control cases were run

in order to enable an assessment of the modelling framework

for the pre-industrial. For the pre-industrial simulations, BA-

SISM was initialised from a modern ice configuration. Ini-

tially it is useful to determine whether the pre-industrial con-

trol climate from each model produces a sensible reconstruc-

tion of the present Greenland ice sheet using BASISM with

the range of glaciological parameters that are identified in

Table 2. In order to analyse the ice sheet geometries from the

48 experiments undertaken for each of the PlioMIP climate

models, we have chosen two performance metrics to inves-

tigate for each model simulation. Following the methods of

Stone et al. (2010), the difference in total ice volume com-

pared to estimated modern volume will be used as an overall

diagnostic of how well each simulation reconstructs the ob-

servations of ice thickness. The second performance metric

will be the root mean square error (RMSE), which is a mea-

sure of the spatial fit of the ice sheet thickness reconstruction
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Figure 5. Simulated GrIS volume when BASISM is forced with

the pre-industrial climatology from each of the (a) AGCM and

(b) AOGCM PlioMIP models. The volume of the observed present-

day GrIS (Bamber et al., 2001) is shown for comparison. Red-

filled circles show the standard parameter set used within BASISM

(∝i = 8 mm day−1 ◦C−1 and ∝s = 3 mm day−1 ◦C−1, lapse rate

=−6 ◦C km−1) and blue-filled circles show the parameter set that

gives a volumetric reconstruction closest to observed. Yellow-filled

circles show the parameter set that gives the lowest RMSE in terms

of thickness. Grey circles show the sensitivity of the ice sheet vol-

ume to different values of lapse rate and the PDD factors for ice and

snow (see Table 2). The coloured circles are superimposed on the

grey circles, so when the GrIS volume is similar, the grey circles (or

individual colours) will not be visible.

over the Greenland domain. The RMSE describes the magni-

tude of the differences between two fields (e.g. observed ice

thickness and simulated ice thickness). In both cases, lower

values describe a better match between the modelled and the

observed GrIS. We use the digital elevation model (DEM) of

Bamber et al. (2001), interpolated on to the ISM grid (20 km

resolution), to calculate observed ice sheet volume and thick-

ness. This technique will also allow the definition of opti-

mal parameter sets (within the envelope of parameter values

tested) which gives each forcing climate model the “best”

estimate of the present GrIS. These parameter sets were than

used with each of the climate forcings from the PlioMIP en-

semble.

3 Results

3.1 Greenland ice sheet simulations

3.1.1 Pre-industrial control Greenland ice sheets

For the pre-industrial control experiments, BASISM was ini-

tialised from the modern GrIS. Figure 5a (AGCMs) and 5b

(AOGCMs) summarise the sensitivity of modelled GrIS vol-

ume to the three tuneable glaciological parameters (Table 2).

For most of the PlioMIP climate model inputs, the choice of

parameter values for atmospheric lapse rate and the PDD fac-

tors of ice and snow have little impact on the resulting GrIS

volume (with the exception of HadAM3 and the fully cou-

pled version of MIROC, where the final volume depends on

the choice of the parameter set; Fig. 5b). This is due to the

modern ablation zone being constrained to the steep slopes

on the periphery of the ice sheet and the constraints applied

at the ice sheet grounding line. The parameter set for each

PlioMIP model that gives the optimal ice sheet in terms of to-

tal ice volume or RMSE of ice thickness for steady-state con-

ditions in comparison to modern observations, is also shown

in Fig. 5a and b. Based on the diagnostics chosen here, the

optimal parameter sets are never equal to the standard pa-

rameter values used within BASISM, although the impact of

this on the pre-industrial GrIS is minimal.

For ease of comparison, if we consider using the stan-

dard BASISM parameters, all forcing climatologies produce

a GrIS which is similar to modern observations. However,

the ISM consistently overestimates ice volume by between

+3 and +17 %. Comparing the spatial differences between

Bamber et al. (2001) and the PlioMIP-based ISM simula-

tions, there are similar biases in elevation (Fig. 6) between

the different climate forcings. Over central Greenland, some

BASISM simulations produce ice sheets that are too low

(∼ 200 to 400 m) in comparison to observations (Fig. 6) al-

though others – notably CAM3.1, COSMOS (AGCM and

AOGCM), NorESM (AGCM and AOGCM) – are very close

to observations in these regions. Consistent with other ISMs

(e.g. Koenig et al, 2014b), all BASISM simulations produce

ice sheets that are too high (up to ∼ 800 m) at the ice sheet

margins (Fig. 6). These largest deviations from observations

occur in the regions of fast ice sheet flow around the ice sheet

margins. At these locations there are inherent problems with

both the relatively coarse resolution climate model and the

ISM when simulating areas of steep topography and com-

plex dynamics. Additionally, as a large proportion (∼ 40 %)

of the ice loss in Greenland occurs through iceberg calving

(Huybrechts et al., 1991) and such grounding line physics are

omitted from this SIA ISM, it is expected that ice loss at the

margin would be underestimated (Fig. 6). For smaller simu-

lated ice sheets where ice terminates on land (such as those

in the mPWP e.g. PRISM3; Fig. 1), problems associated with

ice dynamics such as calving are anticipated to have less of

an influence on the reconstruction.
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Figure 6. Ice sheet surface elevation (m) anomalies (model minus

data) for the pre-industrial control relative to the observed present-

day GrIS (Bamber et al., 2001) for individual AGCM and AOGCM

forcings. The BASISM simulations shown here were run using BA-

SISM’s standard glaciological parameters (∝s = 3 mm day−1 ◦C−1

and ∝i = 8 mm day−1 ◦C−1, lapse rate=−6 ◦C km−1).

The ranking between the simulations depends upon the

choice of metric (volumetric or spatial) and thus no one cli-

matological forcing stands out as giving the best representa-

tion of the present GrIS. Therefore these metrics will be con-

sidered separately in the analysis of mPWP results. RMSE

values for each PlioMIP model based on the optimal param-

eter sets range from 250 to 305 m, and there is no discernible

difference in skill at reproducing the modern GrIS between

the AGCMs (Fig. 5a) and the AOGCMs (Fig. 5b). Consid-

ering both the AGCMs and AOGCMs, the parameter set for

each model which gives the smallest RMSE, simulates a dif-

ference in volume between the models of 3.01×106 km3 and

3.47×106 km3. Using the standard parameter set used in BA-

SISM, the volume difference for the pre-industrial is similar

(3.02× 106 km3 and 3.44× 106 km3). In summary, none of

the simulated ice sheets show any significant biases beyond

those inherent when using a SIA ISM (see also Ritz et al.

1997; Saito and Abe-Ouchi, 2005). This provides confidence

in the results of the mPWP ISM simulations using the same

modelling framework.

3.1.2 mPWP Greenland ice sheets

For the mPWP simulations, BASISM was initialised from the

PRISM3 ice configuration (Dowsett et al., 2010; Fig. 1), con-

Figure 7. Simulated GrIS volume when BASISM is forced

with the mPWP climatology from each of the (a) AGCM and

(b) AOGCM PlioMIP models. The volume of the observed present-

day GrIS (Bamber et al., 2001) is shown for comparison. Red-

filled circles show the standard parameter set used within BASISM

(∝i = 8 mm day−1 ◦C−1 and ∝s = 3 mm day−1 ◦C−1, lapse rate

=−6 ◦C km−1) and blue-filled circles show the parameter set that

gives a volumetric reconstruction closest to observed. Yellow-filled

circles show the parameter set that gives the smallest RMSE in

terms of simulated ice sheet thickness. Grey circles show the sen-

sitivity of the ice sheet volume to different values of lapse rate and

the PDD factors for ice and snow (see Table 2). The coloured circles

are superimposed on the grey circles, so when the GrIS volume is

similar, the grey circles (or individual colours) will not be visible.

sistent with the climate model forcing. Figure 7 shows the

simulated GrIS volume for each of the PlioMIP ensemble

members using the different glaciological parameters listed

in Table 2. In contrast to the pre-industrial ice sheets, mPWP

simulations are much more sensitive to the chosen param-

eter values within the ISM. This is consistent with results

presented by Robinson et al. (2011) using a different mod-

elling framework, which show that the modern GrIS is less

sensitive to changes in melt parameters than ice sheet recon-

structions for the warmer-than-modern Eemian Interglacial

(ca. BP 130–115 ka). In all cases, the use of the standard,

the volumetrically optimal or the spatially optimal parame-
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Figure 8. BASISM Surface Mass Balance (SMB; m yr−1) pre-

dictions for the mPWP (on the ISM grid) derived from the

PlioMIP climatologies and using standard glaciological parameters

(∝i = 8 mm day−1 ◦C−1 and ∝s = 3 mm day−1 ◦C−1, lapse rate

=−6 ◦C km−1). The SMB is plotted for the first time step (prior to

a lapse rate correction) and shows areas of ablation (negative SMB)

and accumulation (positive SMB) based on the temperature and pre-

cipitation fields shown in Figs. 2–4.

ters within BASISM has a significant impact on the resulting

mPWP GrIS reconstruction (Fig. 7).

Figure 8 shows the surface mass balance (SMB) calculated

by BASISM for the PlioMIP climatologies from the initial

ISM time step. BASISM simulates a positive SMB over the

PRISM3 ice sheet region for the majority of PlioMIP climate

forcings and over the southern and western parts of Green-

land, net ablation of up to 10 m yr−1 is predicted. In MRI-

CGCM2.3 (AOGCM), the cold summer mPWP temperatures

(Fig. 4; Table 3) lead to accumulation over most of the land-

mass of Greenland (Fig. 8). Conversely, the high summer

temperatures exhibited in the NorESM-L models means that

the GrIS area experiences only ablation, even over the centre

of the PRISM3 GrIS.

Figure 9 shows the spatial distribution of the GrIS when

BASISM (standard parameter set; red dots in Fig. 7) is forced

with atmospheric input fields from each of the PlioMIP mod-

els. These results show large differences in both the ice thick-

ness and extent from one simulation to another. Using the

AGCMs, ice cover ranges from no ice (NorESM-L) to mod-

ern extent (COSMOS, MIROC4m and MRI-CGCM2.3). The

absence of ice in the NorESM-L reconstruction is due to the

Figure 9. BASISM reconstructions of the mPWP GrIS for individ-

ual AGCM and AOGCM forcings. All BASISM simulations were

forced with climate model fields (i.e. temperature and precipitation)

that were downscaled by a bilinear interpolation method from the

original model grid to 20 km× 20 km resolution. GCM specific to-

pography was also used and the ISM simulations were initialised

from the PRISM3 ice sheet configuration (Fig. 1). The ice sheet con-

figurations relate to the volumes (red-filled circles) shown in Fig. 7

which use standard glaciological parameters.

fact that summer temperatures remain above freezing even

when a lapse rate correction has been applied (that accounts

for the differences in altitude between the GCM and the ISM

grid). Therefore, no ice is able to survive the melt season in

this simulation (Fig. 9). The ice sheet reconstructions using

CAM3.1 (0.77× 106 km3) and LMDZ5A (1.47× 106 km3)

provide ice sheets that are comparable in terms of volume to
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Table 4. GrIS diagnostics for the PlioMIP simulations, including

volume, sea level equivalent (SLE) and ice area using the stan-

dard BASISM parameters. Values are given as a difference from the

simulated pre-industrial GrIS, when the same GCM pre-industrial

forcing climatology is used. For example, negative volume or area

means that the GrIS reduces in size compared to the GCM pre-

industrial control. All simulated volumes (for each parameter set)

can be found in the Supplement (Table S1).

Model Volume SLE Area

name (×106 km3) (m) (×106 km2)

A
G

C
M

s

CAM3.1 −2.70 −6.89 −1.10

COSMOS 0.14 0.36 −0.07

HadAM3 −1.27 −3.25 −0.63

LMDZ5A −1.67 −4.25 −0.85

MIROC4m 0.19 0.49 −0.04

MRI-CGCM2.3 0.22 0.57 −0.01

NorESM-L −3.46 −8.82 −1.66

A
O

G
C

M
s

CCSM4 −0.27 −0.68 −0.24

COSMOS −0.66 −1.68 −0.36

GISS ModelE2-R −1.89 −4.82 −0.96

HadCM3 −1.73 −4.42 −0.83

IPSLCM5A −1.85 −4.71 −0.91

MIROC4m −0.83 −2.13 −0.44

MRI-CGCM2.3 0.20 0.50 0.00

NorESM-L −3.12 −7.94 −1.41

the PRISM3 GrIS (1.07×106 km3), although the distribution

of ice is most similar in LMDZ5A (Fig. 9).

All AOGCMs produce some ice over Greenland during the

mPWP (Fig. 9) and seven of the eight reconstructions show a

reduction in volume in comparison to the GCM-specific pre-

industrial counterpart (Table 4). Ice is distributed in these

seven reconstructions as two ice caps, one in the South

of Greenland and one spreading out from the mountains

of East Greenland. The simulation performed using MRI-

CGCM2.3 (AOGCM) produces a GrIS of modern extent

with an overall increase in modelled volume relative to the

pre-industrial control (+6.3 %; Table 4). This is consistent

with the MRI-CGCM2.3 (AOGCM) simulated mPWP tem-

perature over Greenland, which is on average 9 ◦C warmer

than the MRI-CGCM2.3 pre-industrial. Nevertheless, the ab-

solute mPWP temperatures remain much colder than those

simulated within the rest of the ensemble, and are actu-

ally more akin to the range of pre-industrial temperatures

simulated by the other models (Table 3). At the other ex-

treme, NorESM-L produces a GrIS which is reduced in

areal extent by 1.41× 106 km2 (equivalent to a simulated

sea level increase of > 7 m). GISS ModelE2-R, HadCM3 and

IPSLCM5A produce relatively similar ice sheet configura-

tions over Greenland with the Northern ice cap not extend-

ing across to West Greenland. However, the ice sheets re-

constructed by CCSM4, COSMOS and MIROC4m either

reach or stretch to within∼ 60 km of the Baffin Bay coastline

(Fig. 9). In terms of areal extent and volume, the IPSLCM5A

and the GISS ModelE2-R ice sheet reconstructions are the

closest to the original PRISM3 GrIS.

4 Discussion

To date, only a few studies (e.g. Charbit et al., 2007; Quiquet

et al., 2012; Yan et al., 2013) have explicitly tested the sensi-

tivity of an ISM to atmospheric input fields, with more stud-

ies focusing on parametric uncertainty within ice sheet mod-

elling (e.g. Marshall et al., 2002; Tarasov and Peltier, 2004;

Hebeler et al., 2008; Stone et al., 2010). In this study we have

tested the climate model dependency of ice sheet reconstruc-

tions using output from multiple mPWP climate models. The

simulated realisations of the mPWP GrIS reveals significant

differences from one simulation to the other, with respect to

both the simulated ice volume and ice-covered area, and to

the shape and spatial distribution of the ice sheet.

4.1 Understanding climate model differences

By comparing the ISM output (Fig. 9) with GCM-predicted

mPWP climate forcing (Figs. 2–4) and the calculated SMB

fields (Fig. 8), it is clear that some of the major variations are

reflected in the differences in temperature and precipitation

distribution amongst the model ensemble. This is in agree-

ment with the study of Charbit et al. (2007), who demon-

strated that variability in climate forcing through the last

glacial–interglacial cycle induced large differences in sim-

ulated Northern Hemisphere ice sheets.

In order to better understand the mechanisms that cause

inter-climate model differences in temperature, a more in-

depth analysis is required that investigates how changes in

the energy balance lead to a redistribution of global heat (e.g.

Heinemann et al., 2009; Lunt et al., 2012). Hill et al. (2014)

have performed such an analysis on the AOGCM (Experi-

ment 2) results from PlioMIP and have shown that the domi-

nant control on annual mean temperature changes in the Arc-

tic regions is related to the clear sky albedo in each model.

All AOGCM simulations show that the strongest warming

signals come from clear sky albedo (α), although the range

in the magnitude of this warming is large (3–12 ◦C; Hill et al.,

2014). Clear sky albedo reflects changes on the Earth surface

such as vegetation, snow cover and ice (both terrestrial ice

and sea ice).

Figures 10 and 11 show the clear sky albedo values

for the pre-industrial and mPWP simulations respectively

from within the entire PlioMIP ensemble. The clear sky

albedo value for each model is relatively similar for the pre-

industrial simulations (except MRI-CGCM2.3 (AOGCM);

Fig. 10), although there are differences in the albedo values at

the margins of the ice sheets. Whilst this is sometimes linked

to the resolution of the climate model giving either a finer

(e.g. CCSM4 AOGCM) or a coarser (e.g. MRI-CGCM2.3

AOGCM) representation of albedo around Greenland, it can
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Figure 10. Pre-industrial annual mean clear sky albedo values over

Greenland for PlioMIP models (where available).

also be attributed to the different albedo properties of snow

in each of the climate models (Table 5). For example, some

climate models have deep-snow albedo values that are de-

pendent on temperature (e.g. HadCM3, MRI-CGCM2.3 and

COSMOS) but the range of maximum and minimum albedo

values are not always identical (e.g. the minimum albedo

in COSMOS is 0.6 whereas in MRI-CGCM2.3 it is 0.64).

Moreover, not all climate models account for factors that in-

fluence snow albedo such as the aging of snow or the radia-

tive effects of darkening snow. The differences in the snow

albedo schemes implemented in the ensemble may help to

explain the differences shown in the mPWP experiments es-

pecially over the GrIS region (Fig. 11).

In the ice-free regions of Greenland prescribed in PlioMIP,

modelling groups were asked to implement the Salzmann et

al. (2008) vegetation reconstruction. Due to the challenging

nature of this task different implementation methods were

Figure 11. mPWP annual mean clear sky albedo values over Green-

land for PlioMIP models (where available).

used within the modelling groups. The vegetation distribu-

tion was given to the groups in terms of the BIOME4 biome

or mega-biome types (Salzmann et al., 2008). However, most

modelling groups were unable to implement the data set

exactly and instead mapped the plant-functional types onto

their own biome scheme. In some cases (e.g. with the GISS

ModelE2-R) this meant that distinct biome types within

BIOME4 became merged into broader categories within an

individual model scheme (Chandler et al., 2013). It is there-

fore likely that the albedo properties of the altered vegetation

types could be quite different between models, which may be

an important factor in the clear sky albedo differences shown

in Fig. 11.

The impact of differing albedo schemes over Greenland

can be seen clearly in the MRI-CGCM2.3 (AOGCM) recon-

struction of the mPWP GrIS (Fig. 9). The high albedo val-

ues relative to other models are associated with much colder
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mPWP temperatures (comparable with most pre-industrial

simulations; Table 3) and lead to the reconstruction of a

modern-sized mPWP GrIS (Table 4; Fig. 9). High albedo

values in the AOGCM version of MRI-CGCM2.3 are also

consistent with results from Hill et al. (2014), which show

this model as having the least contribution to mPWP warm-

ing from clear sky albedo.

In the AOGCMs, it is also useful to consider differences in

predicted SSTs and sea-ice around the Greenland region. Hill

et al. (2010) and Koenig et al. (2014) have shown minimal

and large responses respectively of the GrIS to fixed SSTs

within a climate model. Whilst these studies are not directly

comparable (due to the use of different modelling frame-

works and different initial conditions), Hill et al. (2010) sug-

gest that the GrIS volume is relatively insensitive to changes

in SSTs, with alterations in precipitation being the dominant

forcing of the small changes (< 20 % of present GrIS vol-

ume). However, Koenig et al. (2014) have demonstrated a

greater sensitivity of the GrIS to changes in temperature in-

curred by fixed SST and sea-ice boundary conditions in the

climate model. Also, Ballantyne et al. (2013) have shown

that Arctic continental temperatures in general (including

those over Greenland) are highly sensitive to the prescrip-

tion of sea-ice conditions within a model. For the AGCMs

the mPWP albedo values over the sea-ice region around the

coast of Greenland are very similar, reflecting the prescribed

sea-ice conditions in these models (including a sea-ice-free

summer; Fig. 11; see also Haywood et al., 2010). Minor

albedo differences in the AGCMs are attributed to the vary-

ing sea-ice albedo schemes used in the models. Conversely,

in the AOGCMs, where the models can freely simulate sea-

ice conditions, there are significant differences in albedo val-

ues which reflect the variability in sea-ice predictions in this

region. Howell et al. (2015) have performed an in-depth anal-

ysis of the differences in Arctic sea-ice predictions within

the PlioMIP AOGCM ensemble. It is possible to draw corre-

lations between some models’ sea-ice and GrIS reconstruc-

tions. For example, the higher summer temperature in July

in NorESM-L may be partially attributed to the greatly re-

duced sea-ice and increased SSTs over the sub-polar North

Atlantic, whereas using CCSM4, which retains a substantial

sea-ice cover in the Arctic during summer, produces one of

the largest predicted GrISs (Fig. 9; F. W. Howell, personal

communication, 2014). Whilst the differing conditions in the

surrounding oceans offer some explanation as to the differ-

ent GrIS predictions from the PlioMIP AOGCM ensemble,

they do little to shed light upon the reasons for inter-model

differences within the AGCMs. Thus it is difficult to promote

sea-ice and SSTs as the sole fundamental control on the ex-

tent of the GrIS based on the results presented here.

One further potential contributor to the inter-model differ-

ences between ice sheet reconstructions could be the differ-

ences in resolution within the PlioMIP ensemble, as GCM

resolution (within one model) has been shown to impact

on the simulated climate (Roeckner et al., 2006). On one

Figure 12. mPWP mean annual temperature (◦C) and precipita-

tion (mm day−1), and mean July temperature differences simulated

between the AOGCMs and AGCMs over Greenland for compara-

ble models from the PlioMIP ensemble (AOGCM climate minus

AGCM climate).

hand, there are multiple scenarios presented here where the

GCM horizontal resolution is comparable (i.e. COSMOS and

NorESM-L, MIROC4m and MRI-CGCM2.3), but the simu-

lated ice sheet is very different (Fig. 9). However, it is also

noticeable that the extent of the prescribed GrIS within each

of the PlioMIP models is slightly different due to the model

resolution (Table 1). This can be seen most clearly when con-

sidering the southward and eastward extent of the regions of

accumulation (where the model predicts a positive SMB) in

Figure 8. In general such regions of positive SMB track the

shape of the prescribed PRISM3 ice sheet in the GCM, and

the overall area of accumulation will have an influence on the

final GrIS volume.

Where possible, it is also interesting to contrast the re-

sults obtained from using a fully coupled version of the

model to those obtained using the atmospheric compo-

nent of the same model (Fig. 12). Six model lineages can

be considered in this way: COSMOS (AGCM/AOGCM,

Stepanek and Lohmann, 2012), HadAM3/HadCM3 (Bragg

et al., 2012), LMDZ5A/IPSLCM5A (Contoux et al., 2012),

MIROC4m (AGCM/AOGCM, Chan et al., 2011), MRI-

CGCM2.3 (AGCM/AOGCM, Kamae and Ueda, 2012) and

NorESM-L (AGCM/AOGCM, Zhang et al., 2012). As the

AOGCM experiments incorporate a dynamic ocean, there is

no reason to anticipate that the reconstructed ice sheets will
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necessarily be comparable when only the atmospheric com-

ponent of the model is employed. Of the six climate mod-

els, four simulate a larger GrIS using the AGCM compo-

nent than the AOGCM (COSMOS, LMDZ5A/IPSLCM5A,

HadAM3/HadCM3 and MIROC4m; Fig. 9). Larger ice

sheets are generally associated with the decrease in sum-

mer temperatures and increase in precipitation levels in the

AGCMs (Fig. 12).

In summary, there are substantial differences in the pre-

dicted volumes of the GrIS when forced with multiple cli-

mate model predictions (performing a standard experiment),

which suggests that the climate model dependency of ISM

results is high. However, it is difficult to ascertain why the

modelled differences occur between the PlioMIP simula-

tions, although we have shown that the clear sky albedo

within each model may be an important factor. In contrast,

Koenig et al. (2014b) derive a much lower inter-ISM spread

when reconstructing the GrIS during the mPWP, which sug-

gests that relative to climate model dependency, ISM depen-

dency is low. This also gives us confidence that the BASISM-

based ice sheet predictions presented here would also hold

true if repeated with a different ISM (see also Yan et al.,

2014).

4.2 Understanding the mPWP Greenland ice sheet

Our results show a high climate model dependency of ISM

simulations over Greenland, which implies that the PRISM3

ice sheet configuration (Hill, 2009; Dowsett et al., 2010) is

likely dependent on the climate model used within the mod-

elling framework (in this case HadAM3). A better estimation

of the GrIS during the mPWP might be derived from con-

sidering a “mean” modelled ice sheet, rather than a single

reconstruction. A number of studies have shown that a multi-

model average often out-performs any individual model if

compared to observations (Knutti et al., 2010). This has been

demonstrated for mean climate (Gleckler et al., 2008; Re-

ichler and Kim, 2008), but also in regional climate model

assessments of the mPWP (Zhang et al., 2013). A similar

approach was taken for defining the Last Glacial Maximum

(LGM) ice sheet configuration in the Northern Hemisphere.

In the PMIP3/CMIP5 LGM experiments a blended product

was obtained by averaging three different ice sheet recon-

structions, because of the uncertainties associated with each

individual reconstruction (PMIP3, 2010). Here we have cal-

culated an un-weighted multi-model mean (MMM), which

is the average of simulations in our multi-model ensemble,

treating all models equally.

We have calculated MMMs for both the ice sheet config-

urations derived using the standard BASISM glaciological

parameters and the parameter sets that give the best GrIS re-

construction in terms of modern volume. Figure 13a displays

the differences between the calculated MMMs for the AGCM

and AOGCM simulations. Present-day observations suggest

that if the modern GrIS entirely deglaciated, global sea would

Figure 13. (a) Summary of the spread of mPWP GrIS volumes for

each model within the PlioMIP ensemble (AGCM and AOGCM)

compared with the un-weighted MMM for either the standard BA-

SISM glaciological parameter set or for the parameter set that gives

the “best” volumetric representation of the modern GrIS. (b) Ice

sheet configuration with the closest volume equating to the largest

(top) and smallest (bottom) MMM volume.

rise by around 7.36 m (Bamber et al., 2013). The mPWP GrIS

MMM volumes are equivalent to a range in global sea level

rise of 2.2 to 4.4 m (Fig. 13a). Due to the difficulties in cre-

ating a spatially consistent MMM GrIS, possible ice sheet

configurations (taken from the BASISM ensemble of pre-

dicted ice sheets) that are approximately equal to the largest

and smallest MMM volume are shown in Fig. 13b. It is no-

table that the smallest MMM ice sheet is very similar to the

PRISM3 GrIS boundary condition prescribed in the PlioMIP

climate models (Fig. 1), with the exception of the ice cap on

Southern Greenland.

There are nevertheless a number of problems with this ap-

proach that suggest that caution should be applied when in-

terpreting these results. Firstly, given sea level records and

proximal estimates of Greenland ice, it is unlikely that a

modern-extent GrIS prevailed during the warmest parts of

the mPWP. In the case of the AOGCM “best-fit” parameters,

the removal of the large MRI-CGCM2.3 ice sheet reconstruc-

tion would make the ensemble spread significantly smaller

and also impact upon the calculated MMM (the alternative

MMM ice sheet reconstruction in this case would be equiva-

lent to a 5.1 m sea level rise rather than 4.4 m).

Secondly, Contoux et al. (2015) highlight the possibility

that the use of the PRISM3 GrIS as a climate model bound-

ary condition for the experiments presented here might bias

or precondition the subsequent ISM experiments towards a

PRISM3-like GrIS. Contoux et al. (2015) show that when

an ice-free Greenland is prescribed in the IPSLCM5A cli-
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mate model, the subsequent ISM reconstruction is smaller

than the PRISM3 GrIS and restricted to the East Greenland

Mountains and the southern tip of Greenland. This is sup-

ported by the inter-model assessment presented in Koenig et

al. (2014b). When prescribing an ice-free Greenland during

the mPWP in HadAM3, five SIA ISMs reconstruct a mean

ice loss equivalent to a ∼ 7 m global sea level rise. However,

when using the same set of boundary conditions to this study

(i.e. PRISM3 ice in HadAM3), the contribution of the GrIS

to sea level rise ranges between 2.2 and 1.6 m as a MMM

(see Koenig et al. 2014b for further details). This highlights

the impact of the choice of the initial ice configuration in the

climate model. However, without a fully coupled ice-sheet–

climate model, this is a difficult problem to overcome. Given

the modelling framework adopted here, and the likely pres-

ence of ice on Greenland, it is essential to prescribe an ice

sheet in the climate model, which requires a number of a

priori assumptions regarding ice distribution. Not only does

this have implications for our understanding of the GrIS dur-

ing warm interglacials of the Late Pliocene, but an incorrect

representation of the ice sheets in general may have a neg-

ative impact when assessing global climate model simula-

tions against proxy data from the mPWP/Late Pliocene (e.g.

Dowsett et al., 2012, 2013; Haywood et al., 2013; Salzmann

et al., 2013).

A final caveat to this research is derived from the un-

certainty as to whether a good simulation of the modern

GrIS (when compared to observations) necessarily implies

a realistic representation of the mPWP GrIS. Robinson et

al. (2011) found that when simulating the Eemian GrIS

(where significantly more constraints are available than for

the Late Pliocene), the ISM simulation that gave the most

realistic modern ice sheet gave an entirely unrealistic ice

sheet for the Eemian when compared with proxy data. This

highlights the need for further palaeodata constraints regard-

ing the extent and thickness (where possible) of the Late

Pliocene GrIS in order to thoroughly assess the results pre-

sented here.

4.3 Climate model boundary conditions for PlioMIP

phase 2

The final aim of this study and the wider PLISMIP project

(Dolan et al., 2012) is to inform decisions regarding the

ice sheet boundary conditions to be prescribed in the sec-

ond phase of PlioMIP (Haywood et al., 2015). The high cli-

mate model dependency of the GrIS shown here now brings

into question the suitability of the PRISM3 GrIS in PlioMIP

Phase 1, as this was the result of a one climate model/one

ISM modelling framework. However, the broad range in the

MMM ensemble presented here and the problems associated

with a priori assumptions necessary to undertake this mod-

elling framework suggest that the simple use of a MMM GrIS

is inappropriate.

It is therefore likely that future GrIS reconstructions will

be based on a combination of climate/ice sheet modelling

results (e.g. Koenig et al., 2014b; Contoux et al., 2015 and

those presented here) and data-based constraints. Evidence

of vegetation suggesting ice-free conditions can be found

in North Greenland (Funder et al., 2001), at Ile de France

(Bennike et al., 2002), on Ellesmere Island and the Canadian

Archipelago (De Vernal and Mudie, 1989; Thompson and

Flemming, 1996; Ballantyne et al., 2006; Csank et al., 2011),

and these offer limited constraints on a mPWP GrIS recon-

struction. More recently Bierman et al. (2014) have shown

a preservation of a preglacial landscape under the centre of

the GrIS at the site of the Greenland Ice Sheet Project 2

core. They suggest that the soils which formed at the base

of the core (at the onset of Northern Hemisphere Glaciation

around 2.7 Ma) could have been subaerially exposed for be-

tween 200 000 and 1 million years, which has been suggested

to imply that this region was potentially ice free in the warm

Late Pliocene. Additionally, a recent reassessment of pollen

derived from ODP Hole 646B off Southwest Greenland (de

Vernal and Mudie, 1989) confirms that southern Greenland

would have been vegetated (boreal and cool-temperate con-

ditions) during warm parts of the Pliocene (A. de Vernal, per-

sonal communication, 2014).

Combined, the proxy-based evidence and the modelling

work done to date would suggest that a smaller ice cap (in re-

lation to PRISM3), centred on the eastern Greenland Moun-

tains, is the best available estimation of a warm interglacial

mPWP GrIS configuration. Clearly however, there is a crit-

ical need for further data pertaining to ice extent (e.g. Bier-

man et al., 2014) or potentially the Greenland climate (such

as vegetation records) in order to more accurately constrain

this reconstruction.

5 Conclusions

The Pliocene Ice Sheet Modelling Intercomparison Project

(Dolan et al., 2012) was initiated in order to ascertain the de-

gree to which ice predictions over Greenland are influenced

by the choice of ISM and climate model. Whilst Koenig et

al. (2014b) have shown that ISMs are generally relatively

consistent in their predictions when forced with the same

climatology, here we show that the choice of climate model

significantly affects the predicted GrIS. Ice sheet reconstruc-

tions using forcing from the PlioMIP AGCMs and AOGCMs

range from a larger-than-modern GrIS to an ice-free Green-

land. Such a result demonstrates the difficulty in using only

one climate model to draw conclusions regarding ice sheet

stability in the warm Late Pliocene and highlights the need

for an alternative ice sheet reconstruction going forward with

PlioMIP Phase 2.

The Supplement related to this article is available online

at doi:10.5194/cp-11-403-2015-supplement.
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