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Background: Paracetamol’s (APAP) mechanism of action suggests the implication of 

supraspinal structures but no neuroimaging study has been performed in humans.

Methods and results: This randomized, double-blind, crossover, placebo-controlled trial in 

17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked 

functional magnetic resonance imaging signals. We used behavioral measures and functional 

magnetic resonance imaging to investigate the response to experimental thermal stimuli with 

APAP or placebo administration. Region-of-interest analysis revealed that activity in response 

to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, 

thalami, anterior cingulate cortex, and periaqueductal gray matter.

Conclusion: These findings suggest an inhibitory effect of APAP on spinothalamic tracts 

leading to a decreased activation of higher structures, and a top-down influence on descending 

inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates 

pain, especially in the context of repeated administration to patients with pain.

Keywords: paracetamol, nociception, fMRI, pharmacology, pain

What is really known about this subject?
The mechanism of action of paracetamol (APAP) is complex and a central mechanism 

of action has been described to explain its analgesic effect. However, this has not been 

to date visualized by neuroimaging and brain areas involved in the analgesic effect of 

APAP have not been studied.

What this study adds?
APAP 1) decreases activation of higher structures involved in pain and in cognitive/

affective processing and 2) exerts a top-down influence on descending inhibitory path-

ways and midbrain neurotransmission. This functional magnetic resonance imaging 

(fMRI) study opens interesting avenues for research on the mechanism of action of 

APAP per se and beyond that, for the development of new non-opioid analgesics.

Introduction
APAP (acetaminophen), one of the most frequently prescribed analgesics worldwide, 

has been largely explored in preclinical, molecular, and clinical studies over the last  

2 decades. The findings of its central mechanism of action,1–4 the concept of APAP as a 

prodrug with analgesic APAP metabolites,5,6 the implication of serotonergic, opioidergic, 

vanilloid, cannabinoid receptors as well as calcium channels7–13 have transformed our 

view of APAP from a drug acting at the periphery to a complex molecule with spinal 

and supraspinal actions. Clinical studies in healthy volunteers have confirmed the central 

serotonergic activation4 and the reinforcement by APAP of descending inhibitory pain 
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pathways3 in order to obtain APAP analgesic effect. This pain 

inhibitory system comprises a network of cortical regions and 

brain stem nuclei, the periaqueductal gray matter (PAG) and 

the rostral ventromedial medulla (RVM) that project to the 

dorsal horn of the spinal cord.14–16 Both the PAG and RVM 

receive direct projections from the spinal dorsal horn and 

may control the ascending nociceptive input by a feedback 

mechanism.17,18 In the few missing pieces of the APAP mecha-

nism of action puzzle, so far there has been a limited number 

of neuroimaging studies with APAP in humans.

fMRI allows to elucidate pharmacodynamic effects of 

a drug on brain function by combining the administration 

of a drug with fMRI. A number of studies with analgesics 

have demonstrated the coupling between subjective pain 

intensity ratings and objective blood oxygen level-dependent 

(BOLD) responses measured in central structures.19–21 The 

brain regions found active with fMRI during an acute physi-

cal pain experience, the so-called “pain matrix”, are well 

documented.16 As pain is a subjective experience,22–24 some 

of these regions (dorsal anterior cingulate cortex [ACC], 

anterior insula) are also involved in the affective and unpleas-

ant component of acute physical pain, as well as in social 

pain.25,26 Among analgesics, opioids,27–32 non steroidal anti-

inflammatory drugs, aspirin and parecoxib33 and ketamine34 

have been studied by fMRI.

Considering the corpus of research on APAP pharmacol-

ogy at the central level and the fact that the cerebral signature 

of APAP during physical pain has not been studied yet, this 

fMRI trial has been designed and combines physical pain 

induction with APAP administration. This clinical trial in 

healthy volunteers aims to evaluate how APAP modulates 

pain-evoked fMRI signals and how cerebral structures of the 

pain matrix and the PAG, cornerstone of APAP mechanism 

of action, are involved in APAP antinociception.

Methods
study protocol
This randomized, double-blind, crossover, controlled trial in 

healthy volunteers took place in the Clinical Investigation 

Centre/Clinical Pharmacology Centre and in the Neuroim-

aging Department of the University Hospital of Clermont-

Ferrand, France, between January 9, 2012 and April 13, 

2012. The study was reviewed and approved by the French 

Institutional Review Board and by the French Drug Agency. 

It followed standardized ethical and safety Good Clinical 

Practice Guidelines, and procedures were in accordance with 

the Declaration of Helsinki. It was declared on clinialtrials.

gov (NCT01562704).

Volunteers
Participants were recruited through the database of the 

Clinical Pharmacology Centre of the University Hospital of 

Clermont-Ferrand, France. Male volunteers (to avoid pain 

thresholds variability due to menstrual cycle in females) were 

eligible if they were $18 years old, did not take analgesic 

or anti-inflammatory treatment in the last 7 days and were 

nonsmokers. Exclusion criteria included the following: a 

known hypersensitivity to APAP, concomitant pathologies, 

contraindications in the realization of the MRI without injec-

tion (claustrophobia, pacemaker, hearing aid, cerebral clip 

etc), consumption of alcohol and addiction to street drugs. 

Eligible volunteers were informed about the protocol and 

provided a signed informed consent.

study design
A detailed overview of the experimental design used for 

the fMRI experiments is given in Figure 1. Prior to fMRI 

experiments, the volunteers were familiarized (two sessions 

at 1-week interval) with the thermal stimulation and the fMRI 

procedures. The trial itself consisted of two randomized fMRI 

sessions 1 week apart, with APAP or placebo according to 

the randomization list established beforehand by a research 

assistant who was not involved in the trial. On the day of 

the experiment, volunteers were comfortably lying on the 

examination table of the MRI scanner with the thermode 

strapped on the dominant hand for thermal tests. The pain 

threshold, defined as the temperature where the stimulation 

becomes painful, was evaluated and the noxious stimulation 

temperature (ST) was defined as the pain threshold +3°C 

according to previous tests performed in our department. 

Baseline fMRI was recorded using the thermal stimula-

tion paradigm (described later). Each MRI session lasted  

40 minutes. Subjects were then randomized at T0 in APAP 

or placebo groups. Double-blinding was fully respected with 

the volunteers and the members of staff. A research nurse 

who was only involved in drug allocation was in charge of 

drug administration. fMRI data acquisition was then repeated 

at T0+100 minutes (T0+100) during the application of the 

same thermal stimulation paradigm. Perceived pain was 

evaluated at the end of each fMRI session, at baseline and 

T+100 with a numeric pain rating scale ranging from 0 – no 

pain to 10 – maximal pain. Volunteers were then discharged 

after a clinical examination and came back a week later for 

the second period of the fMRI trial and were administered 

APAP or placebo in a crossover design.

The double-blind, randomized, and crossover design 

of this study was chosen in order to be able to discard all 
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Pre screening 
Training 1

Selection
Training 2

Period 1

Placebo

Wash out: 
7 days

Placebo

T0
WP** WP**

PT/* PT/** *Treatment
administration

APAP 2 g or placebo
Outside of the MRI

Treatment
administration

APAP 2 g or placebo
Outside of the MRI

T0–60 min T0+100 min T0T0–60 min T0+100 min

APAP 2 g

Period 2

APAP 2 g

Figure 1 chronology of the study.
Notes: PT: determination of pain threshold with Thermotest pathway (Medoc ltd, ramat Yishai, israel). *Pain stimulation following the pain paradigm with Thermotest 
pathway (Medoc) and acquisition of data with fMri 3 Tesla (recording session duration: 40 minutes). Waiting period** outside from the Mri.
Abbreviations: aPaP, paracetamol; min, minute(s); fMri, functional magnetic resonance imaging; Mri, magnetic resonance imaging.

variable environmental factors, placebo analgesia, and 

have the subjects as their own controls. Such a clinical trial 

will isolate pure drug effects if expectations and beliefs 

of the subject are identical at each session to avoid any 

bias. The second test after administration of APAP was 

set at T0+100 based on published data on oral APAP with 

a maximal analgesic effect at 90–100 minutes3 and also 

to allow the patient some time out of the MRI scanner to 

limit fatigue and poor compliance. The main outcome of 

the study was the impact of APAP compared to placebo 

on BOLD fMRI activity by the analysis of the regions-of-

interest (ROI).

randomization
Patients were randomized in the APAP group (2 g of oral 

APAP in four capsules of 500 mg APAP each) or in the 

placebo group (four capsules of 500 mg lactose each). Ran-

domization was done according to the randomization list 

that had been established beforehand by a clinical research 

assistant who was not on site and not involved in the trial. 

Double-blinding was fully respected. Treatments were pre-

pared in the Central Pharmacy of the University Hospital with 

double-blinding according to Good Pharmaceutical Practice 

guidelines. APAP and placebo looked alike (red and white 

capsules). Randomization was done by blocks of four but 

this information was not known by the team.

evoked thermal pain stimulation
Thermal stimulation was delivered using a 25×25 Medoc 

TSA-II thermal sensory analyzer, contact heat-evoked 

potential stimulator (Medoc Ltd, Ramat Yishai, Israel).35,36 

An event-related protocol was used to apply contact heat 

stimuli to the thenar of the right hand (dominant hand, all 

volunteers were right-handed) during simultaneous fMRI 

acquisition. The thermode was comfortably applied on the 

thenar to avoid artifacts when moving the thermode during 

measurements. The thermode remained at the same site 

during each block of stimulation and no sensitization of the 

hand was observed in the feasibility study we carried out 

before the trial.

The stimulation paradigm (Figure 2) consisted of 20 cycles  

with 5-second stimuli at ST (ST had been determined before-

hand for each volunteer at the start of each period) followed 

by 15 seconds at the temperature of 32°C for a global dura-

tion of 8 minutes.

fMri data acquisition
fMRI experiments were carried out on a General Electric 

Discovery MR 750 3.0 T using a 32-channel head coil with 

subjects lying supine. Initial localizer images were acquired 

in three planes as a reference for slice positioning for  

°

° °

×

Figure 2 Thermal pain paradigm used in the fMri trial.
Abbreviation: fMri, functional magnetic resonance imaging.
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subsequent fMRI studies. A standard whole-brain gradient 

echo planar imaging sequence was used for the functional 

scans (repetition time =3,000 ms; echo time =30 ms; 160 vol-

umes field of view =240×240 mm2, matrix =128×128, voxel 

size =1.8×1.8×3.6 mm3, acquisition time =8 minutes). A high-

resolution volumetric three-dimensional (3D) T1-weighted 

acquisition was performed, for anatomical overlay of activa-

tion, in the same session as the functional scans: 3D brain vol-

ume imaging (repetition time =9.96 ms, echo time =4.1 ms,  

inversion time =400 ms, field of view =240×240 mm2,  

matrix =512×512, voxel size =1×1×1.2 mm3, acquisition  

time =3 minutes 22 seconds). To achieve synchronization, the 

trigger output of the scanner was used to initialize the fMRI 

paradigm and triggers from contact heat-evoked potential 

stimulation and the scanner were recorded together. fMRI 

sequences were assessed in the following order: anatomical 

scout, 3D brain volume, fMRI BOLD sequence echo planar 

imaging (thermal stimulation).

fMri data analysis
The neuroimaging data were preprocessed and analyzed 

using SPM8 (Statistical Parametric Mapping, Version 8; 

Wellcome Department of Imaging Neuroscience, London, 

UK), in Matlab 7.12 (MathWorks). Co-registration of T1 

anatomical images was performed prior to spatial normal-

ization into the MNI space. Functional images were first 

preprocessed with slice-time correction, and motion correc-

tion by realigning all images to the first image. The motion 

correction parameters were examined for each individual 

and instantaneous movement was always less than a third 

of the voxel size. The BOLD images were then spatially 

normalized into the MNI space using trilinear interpolation, 

with the normalization parameters determined during the 

normalization of the structural images. Subsequent spatial 

smoothing using isotropic 8 mm full width at half maximum 

Gaussian kernel was applied to the functional images to 

increase signal-to-noise ratio. A high pass temporal filter 

(cut-off 128 seconds) and correction for autocorrelation 

between successive scans were applied to the time series 

(AR1). On the basis of a priori hypotheses regarding the 

involvement of the ACC, insula, prefrontal cortices, thala-

mus, and PAG in the mechanism of action of APAP, we uti-

lized structurally defined ROI analyses to examine between 

group differences in neural activity in these regions during 

thermal pain stimulus.

For ROI extraction and beta analysis, we employed a 

block design with two conditions (baseline and stimulus).  

To determine those brain regions encoding pain intensity, 

we performed a whole-brain second-level statistical para-

metric maps of the t statistic (SPM{t}) analysis including 

all subjects and all functional scans obtained at baseline for 

both examinations (weeks 1 and 2), prior to drug intake. 

This allowed both to validate baseline pain matrix activa-

tion and to define the ROI in which beta extraction would 

be performed. The following ROI were defined using the 

Marsbar tool in SPM8: PAG, ACC, insula, prefrontal corti-

ces, and thalami. Beta extractions were then performed with 

the contrast stimulation-baseline, in order to assess group 

differences in neural activity in these regions during thermal 

noxious stimulus. Beta extraction corresponds to the value 

of the contrast in a selected ROI. It therefore corresponds 

to the estimate of the stimulus response compared to resting 

state, as it is an estimation of the effect of the BOLD signal 

in the ROI. Performing a beta extraction in a selected ROI 

allows to obtain an averaged beta value for the entire ROI. 

This extraction method allows to reduce the noise signal and 

therefore leads to an increase of the signal-to-noise ratio that 

facilitates stimulus response detection.

statistical analysis
Previous pilot fMRI studies with analgesics, opioids, and 

non-opioids include a variable number of subjects.32,33,37  

A double-blind, crossover, controlled fMRI study with non-

opioids included 14 subjects27 and an APAP pharmacological 

study with cerebral-evoked potentials included 12 subjects.35 

Considering these data, the estimated number of subjects was 

16, and taking into account potential dropouts, 20 patients 

had to be included.

Statistical analysis was performed using Stata software, 

version 13 (StataCorp LP, College Station, TX, USA). The 

tests were two-sided, with a type I error set at α=0.05. The 

characteristics of patients between groups were compared 

using Student’s t-test or Mann–Whitney test according 

to t-test hypotheses (assumption of normality studied by 

Shapiro–Wilk test and homoscedasticity by Fisher–Snedecor 

test) for quantitative parameters and using Fisher’s exact test 

for categorical factors. Beta values, presented as the mean ±  

associated standard deviation, were compared between 

groups using random-effects models for crossover designs. 

These models used the delta values as the dependent variables 

and included period, group, sequence, ROI, and possible 

carryover as fixed effects. In these models, we always con-

sidered random subject effects (random intercept and slope). 

The residual normality was checked for all models presented 

in this article. Random-effect models were performed to 

consider between and within subject variability (several 
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ROI measures for each subject) rather than averaging fMRI 

signals from different ROI. These models allowed to study 

the correlation between fMRI signals and the pain intensity 

considering pain intensity as a fixed effect.

BOLD response amplitude and perceived pain intensity 

were tested for a significant decrease between placebo and 

APAP sessions and between the two portions of the experi-

ment, baseline and drug administration. Significance was 

tested with a paired one-tailed Student’s t-test at P,0.05. 

BOLD response amplitudes to each stimulus were pooled 

(averaged) across subjects to achieve adequate signal-to-

noise for the parameter estimation.

Results
Twenty healthy right-handed males were eligible, three did 

not meet the inclusion criteria and 17 (22.7±3.2 years old) 

were randomized and analyzed. The flowchart is presented 

in Figure 3.

Psychophysics
The ST was not significantly different between both ses-

sions (47.1°C±2.1°C APAP, 46.3±2.4 placebo). During the 

overall fMRI experiment, APAP did modulate significantly 

(P,0.001) the mean pain ratings on the numerical scale 

evoked by the thermal stimulation (T0: 6.0±1.2; T100: 

3.6±0.8) compared to placebo that did not diminish pain (T0: 

5.8±1.1; T100: 5.6±1.1). APAP reduced the behavioral pain 

score from moderate/strong to mild pain.

fMri results
During acute pain stimulation, robust BOLD signals were 

seen in cortical regions typically involved in pain processing. 

These areas included the prefrontal cortices, ACC (anterior, 

medium, and dorsal), insula, thalamus, and PAG. Figure 4 

shows corresponding group activation maps during acute 

thermal pain.

Brain pain activation at baseline for both sessions was 

similar, making these groups comparable at the beginning of 

the sessions and making results methodologically reliable. 

Corresponding Talairach coordinates, t-scores, cluster sizes, 

and Broadmann areas are given in detail in Table 1.

Overall diminution between T0 and T100 was sig-

nificantly different between placebo and APAP (β =0.89 

vs -0.032, P=0.001). Comparisons between the APAP 

Enrollment Assessed for eligibility (n=20)

Randomized (n=17)

Allocation

Follow-up

Analysis

Analyzed (n=17) Analyzed (n=17)

Excluded (n=3)
Not meeting inclusion criteria (n=3)

Allocated to intervention (n=17)
Received allocated intervention (n=17)

Allocated to intervention (n=17)
Received allocated intervention (n=17)

Lost to follow-up (n=0)
Discontinued intervention (n=0)

Lost to follow-up (n=0)
Discontinued intervention (n=0)

Figure 3 Flowchart of the study.
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and placebo groups showed that significant diminished 

activations were observed for APAP at T100 in prefrontal 

cortices (P=0.006 and 0.002 left and right, respectively), 

ACC (P=0.02, 0.004, and 0.002 for anterior, medium, and 

dorsal, respectively), insula (P=0.001 and P,0.001 left 

and right, respectively) and thalami (P=0.007 and 0.003 

for left and right, respectively). The diminution was not 

significant in the PAG (P=0.54), Figure 5. The correlation 

between fMRI signal for APAP diminution of activation 

(T100–T0) and the diminution of pain intensity was signifi-

cant for APAP (P=0.002) and not for placebo. The imaging 

results are therefore consistent with the behavioral analgesic 

effects of APAP.

Discussion
This trial, for the first time, visualizes the central effect of 

APAP in antinociception through neuroimaging. The study 

provides evidence in healthy subjects that APAP reduces the 

pain-related BOLD signal responses arising from peripheral 

noxious thermal stimulation, in several brain areas of the pain 

matrix. However, a limitation of the study is that it does not  

allow to differentiate between a peripheral and a central mecha-

nism of action as both could induce changes in the pain matrix. 

The reduction of perceived pain intensity scores simultaneous 

with the reduction in pain-related activity is consistent with 

the observed changes in BOLD signal resulting from the anal-

gesic effect of APAP. This point is important as an analgesic 

treatment may as part of its primary effect reduce or increase 

the BOLD signal by reducing or increasing neuronal activity/

local metabolic consumption.21 Compared to placebo, APAP 

significantly reduces the pain-related BOLD signal responses 

arising from the noxious thermal stimulation in the selected 

ROI, insula, ACC, thalamus, and prefrontal cortices. This 

suggests an inhibitory effect of APAP on spinothalamic tracts 

leading to a decreased activation of higher structures and a 

resulting anti-nociceptive effect of APAP. Some of these brain 

areas, dorsal ACC, and insula are also described to be involved 

in psychological and cognitive-emotional processes.16,26 An 

fMRI study38 found that APAP reduced neural responses to 

social rejection in these brain regions, demonstrating an over-

lap between social and physical pain. A recent cluster trial 

has also shown that APAP significantly reduces agitation and 

behavioral or psychological symptoms in patients with com-

munication disorders with a beneficial effect on well-being, 

with a probable impact on physical pain but also on other 

components of pain.39

This study also demonstrates some degree of deactivation 

of the PAG with APAP but does not reach the level of signifi-

cance set in our study. The PAG is known to have a pivotal 

role in the descending pain modulatory pain system17–40,41 

with top-down influences between higher centers from the 

cingulo-frontal cortex to the PAG and RVM downward to 

the spinal cord. The PAG is also an important projection 

site of ascending pain pathways that might have a role in 

pain modulation distinct from descending projections in the 

spinal cord.42 We suggest a number of hypotheses to explain  

our findings. Firstly, a covariation between the activity in the 

dorsal ACC and the PAG has been demonstrated in placebo 

analgesia and opioid analgesia, leading to opioid release 

within the brain stem.37 White matter tracks between ACC 

and PAG have also been described suggesting an anatomical 

support to the link between ACC and PAG,43 and neuro-

pharmacological evidence has suggested that corticobulbar 

neurons in the ACC directly or indirectly excite the PAG.9 

Our findings confirm a sort of continuum in APAP effect 

from higher centers to the PAG but with lesser impact 

than has been observed with morphine.15 Considering that 

the ACC and the PAG are very rich in opiate receptors,  

a weak opioidergic effect of APAP cannot be discarded and 

this corroborates a number of preclinical and clinical stud-

ies, discussing contradictory findings on the implication of 

opioidergic mechanisms in APAP mechanism of action.  

A clinical study in healthy volunteers35 using APAP and 

naloxone with cerebral-evoked potential suggested a possible 

but weak effect of opioid mechanisms in this context.

Table 1 coordinates of the regions of interest

Region TAL coordinates

X Y Z

cingulate gyrus
anterior -12 20 40
Middle 10 8 42
Posterior 16 -20 38

Prefrontal cortex
left

rOi 1 -20 56 10
rOi 2 -30 54 -8

right
rOi 1 30 46 -14
rOi 2 48 36 -12

insula
left -36 -2 0
right 38 -8 6

Pag 4 -36 -10
Thalamus

left -16 -17 11
right 18 -16 10

Abbreviations: fMri, functional magnetic resonance imaging; Pag, periaqueductal 
gray matter; rOi, regions-of-interest; Tal, Talairach coordinates.
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Figure 5 rOi analysis performed on physical pain regions revealed anti-nociceptive effect of aPaP compared to placebo.
Notes: Bar graphs demonstrate the β-values of aPaP deactivation (T+100 minutes . baseline) and placebo deactivation (T+100 minutes . baseline) extracted from each cluster. 
β-values associated with APAP differed significantly from the β-values associated with placebo in all regions (prefrontal cortices left and right [lPrc, rPFc], anterior cingulate 
cortex [acc], anterior [a], medium [m], dorsal [d]), insula left and right (lin, rin), and thalamus left and right (lTh, rTh) but in the periaqueductal gray matter (Pag).
Abbreviations: rOi, regions-of-interest; aPaP, paracetamol.

Secondly, the PAG is in a physiological continuum with RVM 

neurons that have been classified as on, off, and neutral cells.  

We suggest that the maintained partial activation of the PAG 

enables release of neurotransmitters and endogenous opioids 

that exert their anti-nociceptive action through the synapses of 

the RVM system, a mechanism similar to the one shown for 

morphine.18,44 APAP might have a direct effect and activate 

PAG off cells and disinhibit RVM off cells or may activate 

PAG and RVM on cells to exert their anti-nociceptive effect on 

dorsal horn transmission neurons. One of the key neurotrans-

mitters involved directly or indirectly in APAP mechanism of 

action is serotonin4,11,12 and serotonin receptors located at brain 

stem level, in combination with other mediators,2,11 play a role 

in the analgesic effect of APAP. Spinal serotonin receptors 

contribute to descending anti-nociceptive influence induced 

by stimulation of the PAG.45,46 An RVM subpopulation of 

neutral cells is serotoninergic, has more variable effects, and 

possibly modulates the effects induced by on and off cells to 

contribute to descending inhibitory controls relaying through 

the activation of PAG and RVM.18 This may be a specificity 

of action of APAP, as serotonergic neurotransmission, which 

recruits many serotonergic receptors including 5-HT2A and 

5-HT2C47 in the PAG plays a critical role in the elaboration 

of antinociception and a link between spinal 5-HT(7) and A1 

receptors in the spinal cord has been shown to be relevant to 

antinociception by systemic APAP.48
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Thirdly, the stimulus we used was 3 degrees above pain 

threshold and corresponds to moderate to severe pain, rated as 

6/10 at baseline. APAP is recommended for mild to moderate 

pain (3 to 7) but in severe or moderate/severe pain, opiates 

should then be prescribed. Although the subjects report less 

pain after APAP, there is some residual pain (4±2) that may 

explain that PAG activation is partially maintained.

Finally, cortical areas that are not included in the pain 

matrix, other brain stem regions, parallel descending pain 

inhibitory pathways may also be involved in APAP mechanism 

of action, and bidirectional links between the brain stem and 

cortical areas have also been described. Connectivity studies 

and pharmacological trials using tagged 5HT antagonists4 

would help to decipher the implication of the serotonergic 

system in APAP analgesic effect. Reports show that APAP 

easily passes the blood–brain barrier, that the enzyme involved 

in AM404 synthesis (FAAH), as well as vanilloid and can-

nabinoid receptors and neuronal calcium channels are all 

widely distributed among supraspinal and spinal structures7–13 

emphasizing the need for central studies. Considering the 

recent observation that a single APAP dose may increase 

the transcription of efflux transporter genes such as P-gp at 

the blood–brain barrier and enhance their production in the 

course of 3 hours,49 a study with repeated doses of APAP 

would show if longer term impaired brain permeation may 

have consequences on neuroimaging of pain with APAP, 

and may even decrease the effect of APAP, as suggested in a 

recent study challenging the international recommendations 

of APAP in osteoarthritis.50

Conclusion
This trial visualizes for the first time by fMRI the supraspi-

nal effect of APAP after a peripheral stimulation. It shows 

the decreased activation of a number of brain structures 

involved in physical pain and in cognitive/emotional 

domains of pain. Linking the findings of this study to the 

mechanistic cascade of events described in the literature, we 

suggest a top-down phenomenon with an active engagement 

of the PAG for APAP mechanism of action and a specific 

action on the midbrain neurotransmission system. Further 

binding and connectivity studies are needed to evaluate 

how the analgesic effect of APAP relates to cerebral and 

descending modulation of pain, especially in chronic admin-

istration in patients.

Acknowledgments
To Clermont-Ferrand University Hospital for providing 

full financial support of the trial. SL and RV received fund-

ing from the French program “Investissement d’Avenir” 

run by the “Agence Nationale pour la Recherche”; grants 

“IHU-A-ICM, Paris Institute of Translational neuroscience” 

and “Infrastructure d’avenir en Biologie Santé – ANR-11-

INBS-0006”.

Disclosure
The authors declare no conflicts of interest in this work.

References
 1. Alloui A, Pelissier T, Dubray C, Lavarenne J, Eschalier A. Tropise-

tron inhibits the antinociceptive effect of intrathecally administered 
acetaminophen and serotonin. Fundam Clin Pharmacol. 1996;10(4): 
406–407.

 2. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The 
modern pharmacology of paracetamol: therapeutic actions, mechanism 
of action, metabolism, toxicity and recent pharmacological findings. 
Inflammopharmacology. 2013;21(3):201–232.

 3. Pickering G, Estève V, Loriot MA, Eschalier A, Dubray C. Acetamino-
phen reinforces descending inhibitory pain pathways. Clin Pharmacol 
Ther. 2008;84(1):47–51.

 4. Pickering G, Loriot MA, Libert F, Eschalier A, Beaune P, Dubray C. 
Acetaminophen: First evidence of a central serotonergic mechanism 
of action in humans. Clin Pharmacol Ther. 2006;79(4):371–378.

 5. Andersson DA, Gentry C, Alenmyr L, et al. TRPA1 mediates spinal 
antinociception induced by acetaminophen and the cannabinoid Δ(9)-
tetrahydrocannabiorcol. Nat Commun. 2011;2:551.

 6. Högestätt ED, Jönsson BA, Ermund A, et al. Conversion of acetamino-
phen to the bioactive N-acylphenolamine AM404 via fatty acid amide 
hydrolase-dependent arachidonic acid conjugation in the nervous 
system. J Biol Chem. 2005;280(36):31405–31412.

 7. Barrière DA, Mallet C, Blomgren A, et al. Fatty acid amide hydrolase-
dependent generation of antinociceptive drug metabolites acting on 
TRPV1 in the brain. PLoS One. 2013;5;8(8):e70690.

 8. Bonnefont J, Daulhac L, Etienne M, et al. Paracetamol recruits spinal 
p42/p44 MAPKs and GH/IGF-1 receptors to produce analgesia via the 
serotonergic system. Mol Pharmacol. 2007;71(2):407–415.

 9. Kerckhove N, Mallet C, François A, et al. Ca(v)3.2 calcium channels: 
the key protagonist in the supraspinal effect of paracetamol. Pain. 2014; 
155(4):764–772.

 10. Mallet C, Barriere DA, Ermund A, Jönsson BA, Eschalier A, et al. 
TRPV(1) in brain is involved in acetaminophen-induced antinocicep-
tion. PLoS One. 2010;5(9):e12748.

 11. Mallet C, Daulhac L, Bonnefont J, et al. Endocannabinoid and seroton-
ergic systems are needed for acetaminophen-induced analgesia. Pain. 
2008;139(1):190–200.

 12. Pini LA, Sandrini M, Vitale G. The antinociceptive action of parac-
etamol is associated with changes in the serotonergic system in the rat 
brain. Eur J Pharmacol. 1996;308(1):31–40.

 13. Zygmunt PM, Chuang H, Movahed P, Julius D, Hogestatt ED. The 
anandamide transport inhibitor AM404 activates vanilloid receptors. 
Eur J Pharmacol. 2000;396(1):39–42.

 14. Hadjipavlou G, Dunckley P, Behrens TE, Tracey I. Determining ana-
tomical connectivities between cortical and brainstem pain processing 
regions in humans: a diffusion tensor imaging study in healthy controls. 
Pain. 2006;123(1–2):169–78.

 15. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6): 
355–374.

 16. Tracey I, Mantyh PW. The cerebral signature for pain perception and 
its modulation. Neuron. 2007;55(3):377–391.

 17. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem 
spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7: 
309–338.

 18. Fields HL, Basbaum AI. Central nervous system mechanisms of pain 
modulation. In: Melzack R, Wall PD, editors. Textbook of pain. London: 
Churchill Livingstone; 2005:125–142.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/drug-design-development-and-therapy-journal

Drug Design, Development and Therapy is an international, peer-
reviewed open-access journal that spans the spectrum of drug design 
and development through to clinical applications. Clinical outcomes, 
patient safety, and programs for the development and effective, safe,  
and sustained use of medicines are a feature of the journal, which  

has also been accepted for indexing on PubMed Central. The manu-
script management system is completely online and includes a very 
quick and fair peer-review system, which is all easy to use. Visit 
http://www.dovepress.com/testimonials.php to read real quotes from 
published authors.

Drug Design, Development and Therapy 2015:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

3862

Pickering et al

 19. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain 
and analgesia: nucleus accumbens response to noxious stimuli changes 
in the presence of chronic pain. Neuron. 2010;66(1):149–160.

 20. Upadhyay J, Anderson J, Schwarz AJ, et al. Imaging Drugs With and 
Without Clinical Analgesic Efficacy. Neuropsychopharmacology. 2011; 
36(13):2659–2673.

 21. Wise RG, Williams P, Tracey I. Using fMRI to quantify the time 
dependence of remifentanil analgesia in the human brain. Neuropsy-
chopharmacology. 2004;29(3):626–635.

 22. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain 
mechanisms of pain perception and regulation in health and disease. 
Eur J Pain. 2005;9(4):463–484.

 23. Peyron R, Faillenot I. Imagerie fonctionnelle cérébrale appliquée à 
l’analyse des phénomènes douloureux. [Functional brain mapping of 
pain perception]. Med Sci (Paris). 2011;27(1):82–87. French.

 24. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect 
encoded in human anterior cingulate but not somatosensory cortex. 
Science. 1997;277(5328):968–971.

 25. Eisenberger NI, Lieberman MD. Why rejection hurts: a common neural 
alarm system for physical and social pain. Trends Cogn Sci. 2004;8(7): 
294–300.

 26. Kross E, Berman MG, Mischel W, Smith EE, Wager TD. Social rejec-
tion shares somatosensory representations with physical pain. Proc Natl 
Acad Sci U S A. 2011;108(15):6270–6275.

 27. Becerra L, Harter K, Gonzalez RG, Borsook D. Functional magnetic 
resonance imaging measures of the effects of morphine on central 
nervous system circuitry in opioid-naive healthy volunteers. Anesth 
Analg. 2006;103(1):208–216.

 28. Gear R, Becerra L, Upadhyay J, et al. Pain facilitation brain regions 
activated by nalbuphine are revealed by pharmacological fMRI. PLoS 
One. 2013;8(1):e50169.

 29. Leppa M, Korvenoja A, Carlson S, et al. Acute opioid effects on human 
brain as revealed by functional magnetic resonance imaging. Neuroim-
age. 2006;31(2):661–669.

 30. Oertel BG, Preibisch C, Wallenhorst T, et al. Differential opioid action 
on sensory and affective cerebral pain processing. Clin Pharmacol Ther. 
2008;83(4):577–588.

 31. Upadhyay J, Anderson J, Baumgartner R, et al. Modulation of CNS 
pain circuitry by intravenous and sublingual doses of buprenorphine. 
Neuroimage. 2012;59(4):3762–3773.

 32. Wise RG, Rogers R, Painter D, et al. Combining fMRI with a pharma-
cokinetic model to determine which brain areas activated by painful 
stimulation are specifically modulated by remifentanil. Neuroimage. 
2002;16(4):999–1014.

 33. Maihöfner C, Ringler R, Herrndobler F, Koppert W. Brain imaging of 
analgesic and antihyperalgesic effects of cyclooxygenase inhibition 
in an experimental human pain model: a functional MRI study. Eur J 
Neurosci. 2007;26(5):1344–1356.

 34. Rogers R, Wise RG, Painter DJ, Longe SE, Tracey I. An investigation 
to dissociate the analgesic and anesthetic properties of ketamine using 
functional magnetic resonance imaging. Anesthesiology. 2004;100(2): 
292–301.

 35. Pickering G, Moustafa F, Desbrandes S, Cardot JM, Roux D, Dubray C.  
Paracetamol and opioid pathways: a pilot randomised clinical trial. 
Fund Clin Pharmacol. 2013;27(3):339–345.

 36. Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL. Thermorecep-
tive innervation of human glabrous and hairy skin: a contact heat evoked 
potential analysis. Pain. 2005;115(3):238–247.

 37. Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid anal-
gesia? imaging a shared neuronal network. Science. 2002;295(5560): 
1737–1740.

 38. Dewall CN, Macdonald G, Webster GD, et al. Acetaminophen reduces 
social pain: behavioral and neural evidence. Psychol Sci. 2010;21(7): 
931–937.

 39. Husebo BS, Ballard C, Sandvik R, Nilsen OB, Aarsland D. Efficacy of 
treating pain to reduce behavioural disturbances in residents of nursing 
homes with dementia: cluster randomised clinical trial. BMJ. 2011;343: 
d4065.

 40. La Cesa S, Tinelli E, Toschi N, et al. fMRI pain activation in the 
periaqueductal gray in healthy volunteers during the cold pressor test. 
Magn Reson Imaging. 2014;32(3):236–240.

 41. Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neu-
roimaging of the periaqueductal gray: state of the field. Neuroimage. 
2012;60(1):505–522.

 42. Yoshida W, Seymour B, Koltzenburg M, Dolan RJ. Uncertainty increases 
pain: evidence for a novel mechanism of pain modulation involving the 
periaqueductal gray. J Neurosci. 2013;33(13):5638–5646.

 43. Mantyh PW. Forebrain projections to the periaqueductal gray in the mon-
key, with observations in the cat and rat. J Comp Neurol. 1982;206(2): 
146–158.

 44. Tracey I, Ploghaus A, Gati JS, et al. Imaging attentional modulation 
of pain in the periaqueductal gray in humans. J Neurosci. 2002;22(7): 
2748–2752.

 45. Aimone LD, Jones SL, Gebhart GF. Stimulation-produced descending 
inhibition from the periaqueductal gray and nucleus raphe magnus in the 
rat: mediation by spinal monoamines but not opioids. Pain. 1987;31(1): 
123–136.

 46. Rivot JP, Pointis D, Besson JM.  A comparison of the effects of mor-
phine on 5-HT metabolism in the periaqueductal gray, ventromedial 
medulla and medullary dorsal horn: in vivo electrochemical studies in 
freely moving rats. Brain Res. 1989;495(1):140–144. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/2776031

 47. de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T,  
de Aguiar Corrêa FM, Coimbra NC. The role of dorsomedial and 
ventrolateral columns of the periaqueductal gray matter and in situ 
5-HT

2
A and 5-HT

2
C serotonergic receptors in post-ictal antinocicep-

tion. Synapse. 2014;68(1):16–30.
 48. Liu J, Reid AR, Sawynok J. Antinociception by systemically- 

administered acetaminophen (paracetamol) involves spinal serotonin 
5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 
receptors. Neurosci Lett. 2013;536:64–68.

 49. Slosky LM, Thompson BJ, Sanchez-Covarrubias L, et al. Acetamino-
phen modulates P-glycoprotein functional expression at the blood–brain 
barrier by a constitutive androstane receptor-dependent mechanism. 
Mol Pharmacol. 2013;84(5):774–786.

 50. Williams WC, Maher CG, McLachlan AJ, Hancock MJ, Day RO, Chung-
Wei CL. Efficacy of paracetamol for acute low-back pain: a double-blind, 
randomised controlled trial. Lancet. 2014;384(9954):1586–1596.

http://www.dovepress.com/drug-design-development-and-therapy-journal
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


