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Abstract

We investigate the disordered copolymer and pinning models, in the case of a cor-
related Gaussian environment with summable correlations, and when the return
distribution of the underlying renewal process has a polynomial tail. As far as the
copolymer model is concerned, we prove disorder relevance both in terms of crit-
ical points and critical exponents, in the case of non-negative correlations. When
some of the correlations are negative, even the annealed model becomes non-trivial.
Moreover, when the return distribution has a finite mean, we are able to compute the
weak coupling limit of the critical curves for both models, with no restriction on the
correlations other than summability. This generalizes the result of Berger, Caravenna,
Poisat, Sun and Zygouras [7] to the correlated case. Interestingly, in the copolymer
model, the weak coupling limit of the critical curve turns out to be the maximum of
two quantities: one generalizing the limit found in the IID case [7], the other one
generalizing the so-called Monthus bound.
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1 Introduction

In this paper we denote by N the set of positive integers, and N0 = N ∪ {0}.

1.1 The copolymer and pinning models

We briefly present here a general version of the models. For a more complete
overview and physical motivations, we refer to [14, 19, 20, 28].
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Critical curve for correlated pinning and copolymer models

Renewal sequence. Let τ = (τi)i > 0 be a renewal process whose law is denoted by
P, with the property that τ0 := 0, and the (τi − τi−1)i > 1’s are IID N-valued random
variables. The set τ = {τ0, τ1, . . .} (with a slight abuse of notation) represents the set of
contact points of the polymer with the interface, and the intervals (τi−1, τi] are referred
as excursions of the polymer away from the interface. We assume that the renewal
process is recurrent, and that its inter-arrival distribution verifies

K(n) := P(τ1 = n) =
ϕ(n)

n1+α
, for n ∈ N, (1.1)

where α ∈ [0,+∞), and ϕ : (0,∞) → (0,∞) is a slowly varying function (see [8] for a
definition). We also denote by {n ∈ τ} the event that there exists k ∈ N0 such that τk = n

and we write δn = 1{n∈τ}.
For the copolymer model, one also has to decide whether the excursions are above or

below the interface. Take (Xk)k > 1 a sequence of IID Bernoulli random variables with
parameter 1/2, independent of the sequence τ , whose law will be denoted by PX . Here
if Xk = 1, we identify the kth excursion to be below the interface. We set ∆n := Xk for
all n ∈ (τk−1, τk], so that ∆n is the indicator function that the nth monomer is below the
interface. The sequences τ and X (with joint law P⊗PX) therefore describe the ran-
dom shape of a free polymer. From now on, we write P instead of P⊗PX , for conciseness.

Disorder sequence. Let ω = (ωn)n > 0 be a centered and unitary Gaussian stationary
sequence, whose law is denoted by P: for the copolymer model, one interprets ωn as the
(random) charge carried by the nth monomer, and for the pinning model as the charge
at site n of the interface. Its correlation function is ρn := E[ω0ωn], defined for n ∈ Z,
with ρ−n = ρn. The assumption that E[ω0] = 0 and E[ω2

0 ] = ρ0 = 1 is just a matter of
renormalization, and do not hide anything deep. For notational convenience, we also
write Υ := (ρij)i,j > 0 the covariance matrix, where ρij := E[ωiωj ] = ρ|j−i|, and Υk the
covariance matrix of the Gaussian vector (ω1, . . . , ωk). An example of valid choice for a
correlation structure is ρk = (1 + k)−a for all k > 0, with a > 0 a fixed constant, since it
is convex, cf. [32].

Assumption 1.1. We assume that correlations are summable, that is
∑
n∈Z |ρn| < +∞,

and we define the constant Υ∞ :=
∑
n∈Z ρn. This means that Υ is a bounded operator.

We also make the additional technical assumption that Υ is invertible.

Note that Assumption 1.1 implies that limn→∞ ρn = 0, which entails ergodicity of ω,
see [17, Ch. 14 §2, Th. 2]. For the choice ρk = (1 + k)−a, Assumption 1.1 corresponds to
having a > 1.

Remark 1.2. The condition that Υ is invertible is a bit delicate, and enables us to get
uniform bounds on the eigenvalues of Υk and Υ−1

k . Indeed, Υ is a bounded and invertible
operator on the Banach space `1(N), so that Υ−1 is a bounded operator. Therefore,
Assumption 1.1 yields that the eigenvalues of Υk are uniformly bounded away from 0.
For example, one has

Υ∞ := lim
k→∞

〈Υk1k,1k〉
〈1k,1k〉

=
∑
k∈Z

ρk > 0, (1.2)

where 〈· , ·〉 denotes the usual Euclidean scalar product, and 1k is the k-dimensional
vector constituted of only 1’s.

A simple case when Υ is invertible is when 1 = ρ0 > 2
∑
k∈N |ρk|: it is then diagonally

dominant. More generally, one has to consider the Laurent series associated to the
Toeplitz matrix Υ, namely f(λ) = 1 + 2

∑
k∈N ρn cos(λn) (we used that ρ0 = 1, and that

ρ−n = ρn). Then, the fundamental eigenvalue distribution theorem of Szegö [25, Ch.
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Critical curve for correlated pinning and copolymer models

5] tells that the Toeplitz operator Υ is invertible if and only if minλ∈[0,2π] f(λ) > 0. For
example, if ρ0 = 1, ρ1 = 1/2 and ρk = 0 for k > 2, then Assumption 1.1 is not verified:
indeed, one then has that f(λ) = 1 + cos(λ), and its minimum is 0 so that the operator Υ

is not invertible.

The copolymer model. For a fixed sequence ω (quenched disorder) and parameters
λ ∈ R+, h ∈ R, and N ∈ N, define the following Gibbs measures

dPω,cop
N,λ,h

dP
:=

1

Zω,cop
N,λ,h

exp

(
− 2λ

N∑
n=1

(ωn + h)∆n

)
δN , (1.3)

with the partition function used to normalize the measure to a probability measure,

Zω,cop
N,λ,h := E

[
exp

(
− 2λ

N∑
n=1

(ωn + h)∆n

)
δN

]
. (1.4)

This measure corresponds to giving a penalty/reward (depending on its sign) ωn + h if
the nth monomer is below the interface.

One then defines the free energy of the system.

Proposition 1.3 (cf. [19], Theorem 4.6). The following limit exists and is constant P-a.s.

Fcop(λ, h) := lim
N→∞

1

N
logZω,cop

N,λ,h = lim
N→∞

1

N
E logZω,cop

N,λ,h. (1.5)

It is called the quenched free energy of the system. The map h 7→ Fcop(λ, h) is non-
negative, non-increasing and convex. There exists a quenched critical point hcop

c (λ) :=

inf{h ; Fcop(λ, h) = 0}, such that Fcop(λ, h) > 0 if and only if h < hcop
c (λ).

Since the condition that the polymer must visit the interface at time N does not
change the value of the free energy, we work in some places with the free version of the
model, which is obtained by removing the constraint {N ∈ τ} in (1.3) and (1.4).

A straightforward computation shows that ∂hFcop(λ, h) is the limiting fraction of
monomers below the interface under the measure Pω,cop

N,λ,h (and ∂hF
cop(λ, h) exists for

h < hcop
c (λ), see [24]; differentiability at the critical point is a consequence of the

smoothing inequality, see Proposition 1.7). Therefore, the critical point hcop
c (λ) marks

the transition between a delocalized phase (∂hFcop = 0), where most of the monomers lie
above the interface, and a localized phase (∂hFcop > 0), where the polymer sticks around
the interface.

One also introduces the annealed counterpart of the model, to be compared with the
quenched one. The annealed partition function is

E
[
Zω,cop
N,λ,h

]
= E

[
exp

(
− 2λh

N∑
n=1

∆n + 2λ2
N∑

n,m=1

ρnm∆n∆m

)
δN

]
, (1.6)

and the annealed free energy is

Fcop
a (λ, h) := lim

N→∞

1

N
logE

[
Zω,cop
N,λ,h

]
> 0. (1.7)

The existence of this limit (which is a non-trivial fact if correlations can be negative) can
be proved using Hammersley’s approximate subadditive lemma (Theorem 2 in [26]). We
refer to Proposition 2.1 in [31] for a detailed proof in the context of the correlated pinning
model. The annealed critical point is then defined as hcop

a (λ) := inf{h ; Fcop
a (λ, h) = 0}.

Moreover, a simple application of Jensen’s inequality gives

Fcop(λ, h) 6 Fcop
a (λ, h), so that hcop

c (λ) 6 hcop
a (λ). (1.8)
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Critical curve for correlated pinning and copolymer models

The pinning model. The pinning model follows similar definitions, that we state
very briefly. Although the parametrization we use is a bit different than that of the
copolymer model, it conforms to the existing literature.

For a fixed sequence ω (quenched disorder) and parameters β ∈ R+, h ∈ R, one
defines the Gibbs measures

dPω,pin
N,β,h

dP
:=

1

Zω,pin
N,β,h

exp

( N∑
n=1

(βωn + h)δn

)
δN , (1.9)

where the partition function is

Zω,pin
N,β,h := E

[
exp

( N∑
n=1

(βωn + h)δn

)
δN

]
, (1.10)

and which corresponds to giving a reward/penalty βωn + h if the polymer touches the
defect line at site n. The quenched free energy is defined as the P-a.s limit

Fpin(β, h) := lim
N→∞

1

N
logZω,pin

N,β,h = lim
N→∞

1

N
E logZω,pin

N,β,h > 0, (1.11)

and the quenched critical point hpin
c (β) := sup{h ; Fpin(β, h) = 0} separates a delocalized

phase (h < hpin
c (β), Fpin(β, h) = 0) and a localized phase (h > hpin

c (β), Fpin(β, h) > 0).
One also defines the annealed free energy Fpin

a (β, h) := limN→∞
1
N logE

[
Zω,pin
N,β,h

]
,

and the annealed critical point hpin
a (β) := sup{h ; Fpin

a (β, h) = 0}. Analogously to the
copolymer model, hpin

c (λ) > hpin
a (λ).

Remark 1.4. The choice of a Gaussian structure for the disorder ω is very natural, and
in addition, is essential. In the Gaussian case, the two-point correlation function is
enough to describe the whole correlation structure and to compute explicitly exponential
moments. In particular, it allows us to get an explicit annealed model, see (1.6), which is
a central tool in this work. We also stress that when correlations are not summable, the
annealed model is degenerate, and the quenched free energy is always positive. We refer
to [5, 6] for an explanation of this so-called infinite disorder phenomenon in the pinning
model (the copolymer model follows the same features). This degenerate behavior is
actually due to more complex properties of the correlation structure (cf. Definition 1.5 in
[6]), and avoiding this issue is another reason to restrict to the Gaussian case.

1.2 The main results

A question of importance in these two models is that of the influence of disorder: one
compares the characteristics of the quenched and annealed models, to see if they differ.
In the copolymer and pinning models, this question is addressed both in terms of critical
points and in terms of the order of the phase transition (that is, the lack of regularity
of the free energy at the critical point). When disorder is relevant, the question of the
weak-coupling asymptotic behavior of the quenched critical point is also investigated.
We present here results on disorder relevance for both pinning and copolymer models.
For each model, we give a short overview of the existing literature, and expose our
results.

1.2.1 The Copolymer Model

So far, the copolymer model has been studied only in the case of an IID sequence ω. In
that case, disorder has been shown to be relevant for all α > 0. Indeed, the annealed
phase transition is trivially of order 1 whereas the quenched phase transition is, by the
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Critical curve for correlated pinning and copolymer models

smoothing inequality [23], at least of order 2. Moreover, it has been shown in [10, 35]
that hcop

c (λ) < hcop
a (λ) for all λ > 0 . Much attention has then been given to the weak

coupling behavior (λ ↓ 0) of the critical curve.
In [11], Bolthausen and den Hollander focused on the special case where the un-

derlying renewal is given by the return times of the simple symmetric random walk
on Z (where α = 1/2), and where the ωn’s are IID, {±1}-valued and symmetric. They
proved the existence of a continuum copolymer model, in which the random walk is
replaced by a Brownian motion and the disorder sequence ω by white noise, as a scaling
limit of the discrete model. They showed in particular that the slope of the critical
curve limλ↓0 h

cop
c (λ)/λ exists, and is equal to the critical point of the continuum model.

This result has been extended by Caravenna and Giacomin [13] for the general class of
copolymer models that we consider in this paper, with α ∈ (0, 1): the slope of the critical
curve exists, and is the critical point of a suitable α-continuum copolymer model. In
particular, the slope is shown to be a universal quantity, depending only on α, and not on
the fine details of the renewal process τ or on the law of the disorder ω. We then define,
at least for α ∈ (0, 1),

mα := lim
λ↓0

hcop
c (λ)

λ
. (1.12)

The value of mα has been the subject of many investigations and debates the past
few years. In [30], Monthus conjectured that m1/2 = 2/3, and a generalization of her
non-rigorous renormalization argument predicts mα = 1/(1+α). Bodineau and Giacomin
[9] proved the lower bound mα > 1/(α + 1), for every α > 0. Monthus’ conjecture
was ruled out first by Bodineau, Giacomin, Lacoin and Toninelli [10, Theorem 2.9] for
α > 0.801, and more recently by Bolthausen, den Hollander and Opoku [12] for α > 0.
We also refer to [10] for earlier, partial results, and [14] for a numerical study in the
case α = 1/2.

The case α > 1 was not considered until recently, in particular because no non-trivial
continuum model is expected to exist, due to the finite mean of the excursions of the
renewal process. However, it was proved recently in [7] that the slope mα exists also for
α > 1, and the exact value was found to be mα = 2+α

2(1+α) . This answered a conjecture of
Bolthausen, den Hollander and Opoku [12], who had already proved the matching lower
bound for the slope.

We now turn to the correlated version of the copolymer model. The annealed model
already presents some surprising features. When correlations are non-negative, it is still
a trivial model to study, but the case with negative correlations is challenging, and more
investigation would be needed (see Remark 1.10). Propositions 1.5 to 1.7 are valid for
all λ > 0 whereas Theorems 1.8 and 1.9 deal with the weak-coupling regime (λ ↓ 0).

Proposition 1.5. If correlations are non-negative, then for any λ ∈ R+ and h ∈ R, the
annealed free energy is

Fcop
a (λ, h) = 2λ

(
Υ∞λ− h

)
+
, (1.13)

where we used the notation x+ = max(x, 0). Therefore, the annealed critical point is

hcop
a (λ) = λΥ∞, (1.14)

and the annealed phase transition is of order 1.

Proof From (1.6), one has the easy lower bound,

E
[
Zω,cop
N,λ,h

]
> P(τ1 = N,∆1 = 1) exp

(
2λN

(
− h+

λ

N

N∑
n,m=1

ρnm

))
, (1.15)
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Critical curve for correlated pinning and copolymer models

as well as E
[
Zω,cop
N,λ,h

]
> P(τ1 = N,∆1 = 0), which directly gives that

Fcop
a (λ, h) > 2λ

(
Υ∞λ− h

)
+
, (1.16)

using in particular the assumption on the renewal (1.1). Note that this does not re-
quire the non-negativity assumption. For the upper bound, one uses that for n ∈ N,∑
m > 1 ρnm∆m 6 Υ∞, which is valid only for non-negative correlations.

Our next result is a general bound on the quenched critical curve, which is analogous
to that of Bodineau and Giacomin [9] in the correlated case, with no restriction on the
sign of correlations.

Proposition 1.6. For α > 0 and any λ > 0,

Υ∞
1 + α

6
hcop
c (λ)

λ
6
hcop

a (λ)

λ
, (1.17)

and we stress that hcop
a (λ)
λ > Υ∞ (see (1.16)), with equality when correlations are non-

negative.

The upper bound is standard and has been already pointed out in (1.8). The lower
bound is the so-called Monthus bound, adapted to the correlated case. Its proof is
postponed to Section 2. Note that if α = 0 and the correlations are non-negative we get
hcop
c (λ) = hcop

a (λ) = Υ∞λ, for all λ > 0.
Another general result on the quenched copolymer model is the so-called smoothing

inequality [23], which is also valid in the correlated case, without any restriction on the
sign of the correlations.

Proposition 1.7. For every λ > 0 and δ > 0, one has

0 6 F(λ, hcop
c (λ)− δ) 6 1 + α

2Υ∞
δ2. (1.18)

It is proved in the same way as in the pinning model, see [5, Sec. 4], and a brief
sketch of the proof is given in Section 2.1. Together with Proposition 1.5, this result
also shows disorder relevance for all α > 0 in terms of critical exponents, in the case of
non-negative correlations, since the annealed phase transition is then known to be of
order 1.

We are also able to show disorder relevance in terms of critical points, with the
following result, similar to [35, Theorem 2.1] in the IID case.

Theorem 1.8. If correlations are non-negative, then for all α > 0, there exists θ(α) < 1

such that

lim sup
λ↓0

hcop
c (λ)

λ
6 θ(α)Υ∞. (1.19)

Since hcop
a (λ) = Υ∞λ when correlations are non-negative, this proves in particular

that hcop
c (λ) < hcop

a (λ) for λ small enough, that is disorder relevance in terms of critical
points for all α > 0.

As far as the slope of the critical curve is concerned, we strongly believe that the
proof of [13] is still valid with correlated disorder, and that the slope exists for α ∈ (0, 1).
Reproducing Step 2 in [13, Section 3.2.], one would presumably end up with a continuum
α-copolymer where the disorder is given by a standard Brownian motion multiplied by a
corrected variance Υ∞. We therefore suspect that for α ∈ (0, 1), the slope for correlated
disorder is the slope for IID disorder multiplied by a factor Υ∞.

We focus now on the case µ := E[τ1] < +∞, for which we manage to identify the
weak-coupling limit of the critical curve, without any restriction on the signs of the
correlations. This result is analogous to [7, Theorem 1.4], the uncorrelated case.
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Theorem 1.9. For the correlated copolymer model with µ = E[τ1] < +∞,

lim
λ↓0

hcop
c (λ)

λ
= max

{
Υ∞

1 + α
;

1

2

Υ∞
1 + α

+
1

2
Ccop
ρ

}
(1.20)

with

Ccop
ρ := E

[
1

µ

τ1∑
n,m=1

ρnm

]
=
∑
n∈Z

ρnκn, (1.21)

where we defined, for n ∈ Z, κn = 1
µ

∑
k > |n|P(τ1 > k + 1) ∈ [0, 1]. We stress that the

κn’s have a probabilistic interpretation in terms of the tail of the invariant measure of
the backward recurrence time, see Appendix A.

Let us make a few remarks about this result:

1. One recovers that mα = 2+α
2(1+α) in the IID case, because then Υ∞ = Ccop

ρ = 1. It
slightly improves Theorem 1.4 in [7], replacing the condition α > 1 by µ < +∞. This
comes from an improvement in (3.61) and (3.69), where we use that α = 1 and µ < +∞
imply that ϕ(n) ↓ 0 as n ↑ ∞, see [8, Proposition 1.5.9b].

2. The slope is the maximum of two terms: the first term is the generalization of the
Monthus bound to the correlated case, whereas the second term is the generalization of
the slope found in the IID case [7, Theorem 1.4].

3. The Monthus bound Υ∞
1+α was ruled out in the IID case, except in degenerate examples

(α = 0, or the “reduced" wetting model, see [34, Theorem 3.4]). In the correlated case,
it turns out to be the correct limit in some cases, namely when

Υ∞
1 + α

−
(

1

2

Υ∞
1 + α

+
1

2
Ccop
ρ

)
=

1

2

(
Υ∞

1 + α
−Ccop

ρ

)
> 0, (1.22)

a condition that we can rewrite as:

1

Υ∞

∑
n∈Z

ρnκn <
1

1 + α
∈ (0, 1/2]. (1.23)

At least when the correlations are non-negative, the left-hand side of (1.23) can be inter-
preted as a probability: let U and V be independent random variables with distribution

∀n ∈ N0, P(U = n) =
1

µ
P(τ1 > n+ 1),

(
so that κn = P(U > |n|)

)
(1.24)

∀n ∈ Z, P(V = n) = ρn/Υ∞, (1.25)

then (1.23) is equivalent to P(U > |V |) < 1/(1 + α). Besides,

P(U > |V |) 6 P(U > 1) + P(|V | = 0) = 1− 1/µ+ Υ−1
∞ , (1.26)

and it can be made arbitrarily small by choosing K(1) close to 1 and Υ∞ large enough,
so that (1.23) holds.

4. In the case of non-negative correlations, Ccop
ρ 6 Υ∞, so that limλ↓0

hcop
c (λ)
λ 6 2+α

2(1+α) Υ∞
(with possibly a strict inequality, as mentioned above). However, with negative correla-
tions, it might be the case that Ccop

ρ > Υ∞: take for instance ρ0 = 1, ρ1 < 0 and ρk = 0

for k > 2, so that Ccop
ρ = 1 + 2ρ1(1 − 1/µ) > 1 + 2ρ1 = Υ∞ (since κ0 = 1, κ1 = 1 − 1/µ).

One then would have limλ↓0
hcop
c (λ)
λ > 2+α

2(1+α) Υ∞.

Remark 1.10. Annealed system with negative correlations. The lower bound in (1.16)
comes from the trajectories that makes one large excursion below the interface. This
strategy is optimal when the correlations are non-negative, because returning to the
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interface would only result in a loss of some positive ρmn. Other strategies may actually
give better bounds when correlations are allowed to be negative. For example, using
Jensen’s inequality on the free annealed partition function, one gets

E
[
Zω,cop,free
N,λ,h

]
> exp

(
− λhN + 2λ2

N∑
n,m=1

ρnmE[∆n∆m]
)
. (1.27)

If µ = E[τ1] < +∞, Lemma A.1 gives that Fcop
a (λ, h) > λ

[
( 1

2Υ∞ + 1
2C

cop
ρ )λ− h

]
+

, and

hcop
a (λ) > λ

(
Υ∞ +

1

2
(Ccop

ρ −Υ∞)+

)
. (1.28)

One therefore gets that hc(λ) > Υ∞λ if Ccop
ρ > Υ∞ (which can happen, see point

4 above). The strategy highlighted in (1.27) is for the renewal to come back to the
origin in a typical manner (and lose some negative ρmn’s), and simply use the fact that
2×E

[∑N
n,m=1 ρmn∆n∆m

]
is strictly greater than Υ∞N (this doesn’t apply when α < 1,

because on average, you don’t return enough to the origin, cf. Remark A.3). Further
investigation needs to be carried out to understand the annealed phase transition in
presence of negative correlations.

1.2.2 The Pinning Model

For the pinning model with an IID sequence ω, the question of the influence of disor-
der has been extensively studied, and the so-called Harris prediction [27] has been
mathematically settled. First, it is known that the annealed phase transition is of order
max(1, 1/α), and hpin

a (β) = − logE[eβω1 ]∼−β2/2, as β ↓ 0. Disorder has been proved to
be irrelevant if α < 1/2 or if α = 1/2 and

∑
n−1ϕ(n)−2 is finite, in which case, for β

small enough, hpin
c (β) = hpin

a (β) and the critical behavior of the quenched free energy is
that of the annealed one [1, 3, 16, 29, 33]. The relevant disorder counterpart of these
results has also been proved. In [23], the disordered phase transition is shown to be of
order at least 2, proving disorder relevance for α > 1/2. In terms of critical points, it
has been proved that when α > 1/2 or α = 1/2 and ϕ(n) = o((log n)1/2−η) for some η > 0,
then hpin

c (β) > hpin
a (β), see [2, 16, 18, 21, 22]. Moreover, the weak-coupling asymptotic

of hpin
c (β) has been computed in [7], when α > 1, µ = E[τ1] < +∞:

lim
β↓0

hpin
c (β)− hpin

a (β)

β2
=

1

2µ

α

1 + α
. (1.29)

For the case α ∈ (1/2, 1), we refer to Conjecture 3.5 in the recent paper [15], which
also provides a new perspective in the study of disorder relevance (and beyond pinning
models).

In the correlated case, a few steps have been made towards the same type of criterion.
First, the annealed model is not trivial, and is still not completely solved: in particular,
although a spectral characterization of the annealed critical curve is given in [31], there
is no explicit formula as in the IID case.

Proposition 1.11 (cf. [5, 31]). The following limit holds:

lim
β↓0

hpin
a (β)

β2
= −1

2
Cpin
ρ , with Cpin

ρ :=
∑
n∈Z

ρnP(|n| ∈ τ). (1.30)

Moreover, if
∑
n∈N n|ρn| is finite then for all β > 0, there exist cβ , Cβ ∈ (0,∞) such that

for u > 0,
cβ u

max(1,1/α) 6 Fa(β, hpin
a (β) + u) 6 Cβ u

max(1,1/α). (1.31)
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The smoothing inequality [23] has also been extended to the correlated case:

Proposition 1.12 (See [5], Theorem 2.3). For every β > 0 and δ > 0,

0 6 F(β, hpin
c (β) + δ) 6

(
1 + α

2Υ∞

)
δ2

β2
. (1.32)

Therefore, from (1.31) and (1.32), one deduces disorder relevance (in terms of critical
exponents) for α > 1/2 and

∑
n∈N n|ρn| <∞.

Our main result concerning the correlated pinning model is that we identify the small
coupling asymptotic of the quenched critical point when µ < +∞, in analogy with (1.29).

Theorem 1.13. For the correlated pinning model with µ = E[τ1] < +∞,

lim
β↓0

hpin
c (β)− hpin

a (β)

β2
=

Υ∞
2µ

α

1 + α
. (1.33)

Notice that the asymptotics given in Theorem 1.13 and that of (1.29) only differ
through the multiplicative constant Υ∞. In particular, one recovers (1.29) in the IID
case, where Υ∞ = 1. Theorem 1.13 proves disorder relevance in terms of critical points
if µ < +∞ (in particular if α > 1), under Assumption 1.1.

1.3 Outline of the proofs

We mostly focus on the copolymer model, which has not been investigated so far in
the correlated case, and we give a detailed proof only in that case. The pinning model
essentially follows the same scheme.

In Section 2, we deal with lower bounds on the free energy, leading to lower bounds
on the critical curve. The basic ingredient is a rare-stretch strategy, already widely used
in the literature. This approach was initiated in [9, 23] in the context of the pinning
and copolymer models. We briefly recall how to use this technique and explain how
it is modified by the presence of correlations. It is then applied to get the smoothing
inequality of Proposition 1.7, the Monthus bound of Proposition 1.6, and thanks to the
additional estimate in Lemma 2.1 (analogous to [7, Lemma 5.1] in the uncorrelated case),
we get the second lower bound of Theorem 1.9, that is lim infλ↓0

hc(λ)
λ > 1

2
Υ∞
1+α + 1

2C
cop
ρ .

In Section 3, we deal with the upper bound in Theorem 1.9. We employ a standard
technique which was introduced by [18] in the context of the pinning model, and
developed in [21, 22, 7]: it is the so-called fractional moment method, combined with a
coarse-graining argument. However, the adaptation of this technique to the correlated
case requires considerable work: Lemma 3.1 allows us to control the fractional moment
of the partition function on length scale 1/λ2, whereas Lemma 3.3 helps us to control
the correlation terms in the coarse-graining argument, which is a necessary step to glue
the finite-size estimates together.

Section 4 adapts the proofs to the pinning model. We begin with Lemma 4.1 (analo-
gous to [7, Lemma 3.1]), which is the pinning model counterpart of Lemma 2.1. Our proof
relies on Gaussian interpolation techniques. Combining this lemma with the smoothing
inequality of Proposition 1.12 is the key to obtain the upper bound in Theorem 1.13, that

is lim supλ↓0
hpin
c (λ)−hpin

a (λ)
λ 6 Υ∞

2µ
α

1+α . The lower bound for the pinning model follows the
same fractional moment/coarse-graining scheme as for the copolymer model, and one
mostly needs to adapt the finite-size estimates of the fractional moment, see Lemma
4.3. Together with minor changes in the coarse-graining procedure, this yields the right
lower bound in Theorem 1.13.
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2 On the copolymer model: lower bound

2.1 Rare-stretch strategy

To get a lower bound on the free energy, it is enough to highlight particular trajecto-
ries, and show that these contribute enough to the free energy to make it positive. To
that purpose, we use a rare stretch strategy: we only consider trajectories which stay
above the interface (where there is no interaction) until they reach favorable regions of
the interface and localize. We now describe how to implement this idea for the sake of
completeness, but we omit details, since the procedure is standard (since [23]), and was
already used in a correlated framework in [6].

Let us fix L a large constant integer, and divide the system in blocks of length L,
denoted by (Bi)i∈N, Bi := {(i− 1)L+ 1, . . . , iL}. Then, one restricts the trajectories to
visit only blocks Bi for which (ωj)j∈Bi ∈ A, where A is an event corresponding to a
“good" property of ω on Bi. There are many ways to define A, but for our purpose, we
consider

A =
{

(ωj)1 6 j 6 L ;
1

L
logZω,cop

L,λ,h > Fcop(λ, h− a)− ε
}
, (2.1)

for some a ∈ R, and ε > 0 fixed but meant to be small. Let us denote by (ik)k∈N the
(random) indices of the good blocks ((ωj)j∈Bik ∈ A). Restricting the partition function to
trajectories which only visit the blocks (Bik)k∈N gives

Zω,cop
inL,λ,h

>
n∏
k=1

K
(
(ik − ik−1 − 1)L

)
ZBik (2.2)

where ZBik := Zθ
ikLω,cop
L,λ,h with θ is the shift operator (θω = (ωn+1)n∈N), and where we

used the convention that K(0) = 1. We may now choose L large enough such that
(1 + α+ ε2) 1

L logL 6 ε, and by (1.1), write

1

inL
logZω,cop

inL,λ,h
>

n

in

1

n

n∑
k=1

(
− (1 + α+ ε2)

1

L
log
(
(ik − ik−1)L

)
+

1

L
logZBik

)

>
n

in

1

n

n∑
k=1

(
− (1 + α+ ε2)

1

L
log
(
ik − ik−1

)
+ Fcop(λ, h− a)− 2ε

)
, (2.3)

where we used the definition of the event A to estimate 1
L logZBik . Taking the limit

n→∞, and using (twice) Birkhoff’s ergodic Theorem, one gets

Fcop(λ, h) = lim inf
N→∞

1

N
logZω,cop

N,λ,h >
1

E[i1]

(
−(1+α+ε2)

1

L
E log i1+Fcop(λ, h−a)−2ε

)
. (2.4)

Since E log i1 6 logEi1 and Ei1 = P(A)−1, one is left to estimate P(A). To that end,
one uses a change of measure argument. Let us consider P̃L the measure consisting in
shifting (ω1, . . . , ωL) by −a, so that under P̃L, the event A is typical. Indeed, shifting ω by
−a corresponds to a shift of the parameter h by −a in the partition function. Therefore,
when L goes to infinity, P̃L(A) = 1 + o(1). Then, we use the standard entropy inequality

P(A) > P̃L(A) exp
(
−P̃L(A)−1(H(P̃L|P) + e−1)

)
, (2.5)

where H(P̃L|P) denotes the relative entropy of P̃L with respect to P, and verifies

H(P̃L|P) =
a2

2
〈Υ−1

L 1L ,1L〉 = (1 + o(1))
a2

2Υ∞
L, (2.6)
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where the last equality comes from Lemma A.1 in [5] (and uses Assumption 1.1). In the
end, we get

1

L
logP(A) = − a2

2Υ∞
(1 + o(1)). (2.7)

Then, for a fixed ε > 0 chosen small enough, the following lower bound holds for
λ, a ∈ R+, provided that L = L(ε) is large enough,

Fcop(λ, h) > P(A)

(
F(λ, h− a)− (1 + α)

a2

2Υ∞
− 3ε

)
, (2.8)

It is then straightforward to get the smoothing inequality, Proposition 1.7. Indeed,
evaluating (2.8) at h = hcop

c (λ), we get F(λ, hcop
c (λ)) = 0 in the left-hand side, and

therefore,

Fcop(λ, hcop
c (λ)− a)− (1 + α)

a2

2Υ∞
− 3ε 6 0. (2.9)

The result follows by letting ε go to 0.

2.2 Application: lower bounds on the critical point

Non-trivial bounds on the critical point follow from (2.8). In particular, it is straight-
forward to get

sup
a∈R

{
Fcop(λ, h− a)− (1 + α)

a2

2Υ∞

}
> 0 ⇒ h < hcop

c (λ). (2.10)

Lower bound in Proposition 1.6. One may plug in (2.10) the inequality F(λ, h) > −
2λh, which holds for h ∈ R. This comes from the contribution of trajectories making one
large excursion below the interface: Zω,cop

N,λ,h > P(τ1 > N)P(X1 = 1)e−2λhN+2λ
∑N
n=1 ωn , so

that lim infN→∞
1
NE logZω,cop

N,λ,h > − 2λh (since the disorder is centered). One therefore
has

sup
a > 0

{
Fcop(λ, h−a)−(1+α)

a2

2Υ∞

}
> sup

a∈R

{
−2λ(h−a)−(1+α)

a2

2Υ∞

}
= −2λh+2λ2 Υ∞

1 + α
.

(2.11)
Therefore, (2.10) and (2.11) yield that hcop

c (λ) > Υ∞
1+αλ for all λ > 0, which is the Monthus

bound in Proposition 1.6, and gives the first part of the lower bound in Theorem 1.9.

Lower bound in Theorem 1.9. More precise linear estimates on F(λ, h) give sharper
lower bounds for hcop

c (λ). The following lemma is analogous to [7, Lem. 5.1]. Important
refinements were made to deal with correlations, with the help of the Gaussian nature of
the disorder.

Lemma 2.1. If µ = E[τ1] < +∞, then for any c ∈ R,

lim inf
λ↓0

1

λ2
Fcop(λ, cλ) >

1

2
Ccop
ρ − c, (2.12)

where Ccop
ρ has been introduced in (1.21).

Let (λn)n∈N be a sequence of positive real numbers such that

lim
n→∞

λn = 0 and lim
n→∞

hcop
c (λn)

λn
= lim inf

λ↓0

hcop
c (λ)

λ
. (2.13)

Simply using that h 7→ Fcop(λ, h) is non-increasing and Lemma 2.1, one gets that

lim inf
n→∞

1

λ2
n

Fcop(λn, h
cop
c (λn)) >

1

2
Ccop
ρ − lim inf

λ↓0

hcop
c (λ)

λ
. (2.14)
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Combining this with the smoothing inequality of Proposition 1.7, one obtains, for all
u > 0,

1 + α

2Υ∞
u2 > lim inf

n→∞

1

λ2
n

Fcop(λn, h
cop
c (λn)− uλn) >

1

2
Ccop
ρ − lim inf

λ↓0

hcop
c (λ)

λ
+ u. (2.15)

Then,

lim inf
λ↓0

hcop
c (λ)

λ
>

1

2
Ccop
ρ + sup

u > 0

{
u− 1 + α

2Υ∞
u2

}
=

1

2
Ccop
ρ +

Υ∞
2(1 + α)

. (2.16)

Proof of Lemma 2.1. Here, we adapt an idea of [19, Theorem 6.3]. Let

NN := max{n ∈ N0 : τn 6 N} = |τ ∩ {1, . . . , N}|. (2.17)

Simply using Jensen’s inequality on the (free) partition function, and then the law of
large numbers for NN , we obtain

Fcop(λ, h) > lim
N→∞

1

N
E logE

[ NN∏
j=1

1 + e
−2λ

∑τj
n=τj−1+1(ωn+h)

2

]

>
1

µ
EE

[
log

(
1 + e−2λ

∑τ1
n=1(ωn+h)

2

)]
. (2.18)

If h = cλ and k is fixed, a Taylor expansion in λ gives

E

[
log

(
1 + e−2λ

∑k
n=1(ωn+h)

2

)
+ λ

k∑
n=1

(ωn + h)

]
λ↓0∼ 1

2
λ2E

[( k∑
n=1

ωn

)2 ]
=

1

2
λ2

k∑
n,m=1

ρnm. (2.19)

We can then apply Fatou’s lemma (note that the expression in the expectation is non-
negative) and get

lim inf
λ↓0

1

λ2

1

µ
EE

[
log

(
1 + e−2λ

∑τ1
n=1(ωn+h)

2

)
+ λ

τ1∑
n=1

(ωn + h)

]
>

1

2µ
E

[
τ1∑

n,m=1

ρmn

]
.

(2.20)
Therefore, combining (2.18) with (2.20) (recall that the ωn’s are centered and that
h = cλ), one obtains

lim inf
λ↓0

1

λ2
Fcop(λ, cλ) >

1

2µ
E

[ τ1∑
n,m=1

ρnm

]
− c =

1

2
Ccop
ρ − c. (2.21)

3 On the copolymer model: upper bound

In this section we prove the upper bound part of Theorem 1.9, that is

lim sup
λ↓0

hcop
c (λ)

λ
6 max

{
Υ∞

1 + α
;

1

2

Υ∞
1 + α

+
1

2
Ccop
ρ

}
. (3.1)

EJP 20 (2015), paper 71.
Page 12/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3514
http://ejp.ejpecp.org/


Critical curve for correlated pinning and copolymer models

We use an idea from [18], later improved in [21, 22, 7] and known as the fractional
moment method. To prove that hcop

c (λ) 6 h0 (with h0 = uλ), one needs to prove that
Fcop(λ, h0) = 0. It is actually enough to show that for some ζ ∈ (0, 1),

lim inf
N→∞

E[(Zω,cop
N,λ,h0

)ζ ] < +∞. (3.2)

Indeed, by Jensen’s inequality,

1

N
E logZω,cop

N,λ,h0
=

1

ζN
E log(Zω,cop

N,λ,h0
)ζ 6

1

ζN
logE[(Zω,cop

N,λ,h0
)ζ ], (3.3)

If (3.2) holds then we get F(λ, h0) = 0 by letting N go to +∞ in (3.3), thus hcop
c (λ) 6 h0.

The proof consists in two main steps: (a) we estimate the fractional moment on the
finite length scale 1/λ2 (Section 3.1) and (b) we glue finite-size estimates together thanks
to a coarse-graining argument (Section 3.2). The qualitative picture is the following.
First, Lemma 3.1 suggests that blocks of length t/λ2 have a negative contribution as
long as u > ζ

2Υ∞+ 1
2C

cop
ρ . Another bound, namely u > ζΥ∞, is then necessary to control

the contribution of large excursions below the interface and between two consecutive
visited blocks. Besides, we need ζ > 1/(1 + α) in order to make the coarse-graining
argument work. All in all, we get the condition u > max{ 1

2
Υ∞
1+α + 1

2C
cop
ρ ; Υ∞

1+α}.

3.1 Finite-size estimates of fractional moments

To increase readibility, we shall often omit the symbol of the integer part.

Lemma 3.1. For any constants u ∈ R and t > 0, let hλ = uλ and kλ = t/λ2. Then

lim sup
λ↓0

E

[(
Zω,cop
kλ,λ,hλ

)ζ]
6 exp

(
ζ

(
1

2
Ccop
ρ +

ζ

2
Υ∞ − u

)
t

)
. (3.4)

Proof Let P̃δ,k be the law P on (ω1, . . . , ωk) where the ωi’s are shifted by −δ: under P̃δ,k,
(ω1, . . . , ωk) is a Gaussian vector of mean −δ1k (1k is a vector consisting of k 1’s), and
covariance matrix Υk. The Radon-Nikodym derivative is given by

dP̃δ,k
dP

(ω1, . . . , ω) =
e−

1
2 〈Υ

−1
k (ω+δ1k) , ω+δ1k〉

e−
1
2 〈Υ

−1
k ω,ω〉

= e−δ〈Υ
−1
k ω,1k〉− 1

2 δ
2〈Υ−1

k 1k,1k〉, (3.5)

Using Hölder’s inequality, one has for all ζ ∈ (0, 1),

E
[(
Zω,cop
k,λ,h

)ζ]
= Ẽδ,k

[(
Zω,cop
k,λ,h

)ζ dP

dP̃δ,k

]
6
[
Ẽδ,k(Zω,cop

k,β,h )
]ζ
Ẽδ,k

[(
dP

dP̃δ,k

) 1
1−ζ
]1−ζ

. (3.6)

We also pick δ = aλ for some constant a that we optimize later on.

(1) Let us first estimate the second term in (3.6), for large k (that is small λ). With (3.5),
one obtains

Ẽδ,k

[(
dP

dP̃δ,k

) 1
1−ζ
]1−ζ

= E

[(
dP̃δ,k
dP

)− ζ
1−ζ
]1−ζ

= E

[
e
ζδ

1−ζ 〈Υ
−1
k ω,1k〉

]1−ζ

e
ζδ2

2 〈Υ
−1
k 1k,1k〉 = e

1
2
ζδ2

1−ζ 〈Υ
−1
k 1k,1k〉. (3.7)

Using Assumption 1.1, 〈Υ−1
` 1`,1`〉 = (1 + o(1))`Υ−1

∞ when ` goes to infinity, see [5,
Lemma A.1]. We obtain (recall that k = kλ = t/λ2 and δ = aλ):

δ2〈Υ−1
k 1k,1k〉

λ↓0
= ta2Υ−1

∞ + o(1), (3.8)
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which, in combination with (3.7), gives

lim
λ↓0
Ẽδ,k

[(
dP

dP̃δ,k

) 1
1−ζ
]1−ζ

= exp

(
1

2

ζ

1− ζ
ta2Υ−1

∞

)
. (3.9)

(2) For the first factor in (3.6), since under P̃δ,k (ω1 +δ, . . . , ωk+δ) is a centered Gaussian
vector with covariance Υk, one obtains similarly to (1.6)

Ẽδ,k
[
Zω,cop
k,λ,h

]
= E

[
e−2λ2(u−a)

∑k
i=1 ∆i+2λ2 ∑k

i,j=1 ρij∆i∆j1{k∈τ}

]
, (3.10)

where we also used that h = hλ = uλ.
Recall that λ2 = t/k. By Lemma A.1 (which gives the a.s. limits limn→∞

1
n

∑n
i=1 ∆i = 1

2

for the first sum in the exponential in (3.10), and limn→∞
1
n

∑n
i,j=1 ρij∆i∆j = 1

4C
cop
ρ +

1
4Υ∞ for the second sum in the exponential in (3.10)), one gets

lim
λ↓0
Ẽδ,k

[
Zω,cop
k, λ, h

]
=

1

µ
exp

(
t

{
a− u+

1

2
Ccop
ρ +

1

2
Υ∞

})
. (3.11)

Combining (3.6) with (3.7) and (3.11), we get

lim sup
λ↓0

E
[(
Zω,cop
k,λ,h

)ζ]
6 exp

(
ζt

{
1

2
Υ∞ +

1

2
Ccop
ρ − u+ a+

a2

2(1− ζ)Υ∞

})
(3.12)

The optimal choice a = Υ∞(ζ − 1) finally gives Lemma 3.1.

3.2 The coarse-graining procedure

We proceed through several steps.

STEP 0: Preliminaries. Let us abbreviate

c0 = max

{
Υ∞

1 + α
;

Υ∞
2(1 + α)

+
1

2
Ccop
ρ

}
, cε = c0 + ε, ε > 0. (3.13)

We need to show that there exists λ0 = λ0(ε) sufficiently small such that Fcop(λ, cελ) = 0

for λ ∈ (0, λ0). As explained at the beginning of this section, it is actually enough to find
ζε ∈ (0, 1) such that

lim inf
N→∞

E[(Zω,cop
N,λ,cελ

)ζε ] < +∞. (3.14)

We now fix ε > 0 and set

hε = hε(λ) = cελ, ζε =
1

1 + α
+ ε2. (3.15)

The coarse-graining correlation length is chosen to be k = kλ,ε = tε/λ
2, where tε is a

(large) constant, whose value is specified at the end of the proof.
In the rest of this section, the constants C0, C1, ... do not depend on ε. We shall add a

subscript ε for constants that do depend on ε.

STEP 1: Setting up the coarse-graining. The size of the system is going to be a
multiple of the correlation length: N = mkλ,ε, where m ∈ N is the macroscopic size.
The system is then partitioned into m blocks B1, . . . , Bm of size kλ,ε, defined by

Bi :=
{

(i− 1) kλ,ε + 1 , . . . , i kλ,ε
}
⊆ {1, . . . , N} , (3.16)
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so that the macroscopic (coarse-grained) “configuration space” is {1, . . . ,m}. A macro-
scopic configuration is then a subset J ⊆ {1, . . . ,m}. Let us define for a, b ∈ N0 with
a < b:

zba = E
[

exp
{
− 2λ

b∑
n=a+1

(ωn + h)∆n

} ∣∣∃k > 0 : τk = a, τk+1 = b
]
, (3.17)

which is the contribution of a large excursion between a and b. By decomposing the
partition function according to the blocks visited by the polymer, we get

Zω,cop
N,λ,cελ

=
∑

J⊆{1,...,m}: m∈J

ẐJ , (3.18)

where for J = {j1, . . . , j`}, with 1 6 j1 < j2 < . . . < j` = m and ` = |J |, we set

ẐJ :=
∑

d1,f1∈Bj1
d1 6 f1

. . .
∑

d`−1,f`−1∈Bj`−1

d`−1 6 f`−1

∑
d`∈Bj`=Bm

(∏̀
i=1

K(di − fi−1)zdifi−1
Zdi,fi

)
, (3.19)

with the conventions

f0 = 0, f` = N, Zdi,fi = Zθ
diω,cop
fi−di,λ,hε . (3.20)

N

0

B1

k

B2

2k

B3 · · ·

d1 f1 d2 f2 d3 f3

Figure 1: Illustration of the coarse-graining decomposition of trajectories presented in (3.19).
The blocks Bji with ji ∈ J are highlighted in the picture above: j1 = 3, j2 = 5, j3 = 6... The
trajectories are decomposed according to the first and last renewals in every Bji (for 1 6 i 6 `),
respectively at di and fi.

It follows that
E
[(
Zω,cop
N,λ,cελ

)ζε] 6
∑

J⊆{1,...,m}: m∈J

E
[(
ẐJ
)ζε]

. (3.21)

We now focus on providing an upper bound on E
[(
ẐJ
)ζε]. Defining f̄i = jikλ,ε and

d̄i = (ji − 1)kλ,ε for i ∈ {1, . . . , `}, notice that

zdifi−1
6 4 z

f̄i−1

fi−1
zd̄i
f̄i−1

zdi
d̄i
, (3.22)

cf. [35, Equation (3.16)]. Let us then define

ŽJ :=
∑

d1,f1∈Bj1
d1 6 f1

. . .
∑

d`−1,f`−1∈Bj`−1

d`−1 6 f`−1

∑
d`∈Bj`=Bm

∏̀
i=1

K(di − fi−1)z
f̄i−1

fi−1
Zdi,fiz

di
d̄i
, (3.23)

so that ẐJ 6 4`ŽJ
∏`
i=1 z

d̄i
f̄i−1

To decouple ŽJ and the zd̄i
f̄i−1

’s we use the following lemma,
which relies on Lemma B.1 and is proved in Appendix B.

Lemma 3.2. There exists λ1 = λ1(ε) > 0 such that, for all λ 6 λ1,

E
[(∏̀

i=1

zd̄i
f̄i−1

)ζε
(ŽJ)ζε

]
6 2`E

[ ∏̀
i=1

(
zd̄i
f̄i−1

)ζε]
E
[
(ŽJ)ζε

]
. (3.24)
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We therefore get, using that 4ζε 6 4,

E
[
(ẐJ)ζε

]
6 8`E

[ ∏̀
i=1

(
zd̄i
f̄i−1

)ζε]
E
[
(ŽJ)ζε

]
. (3.25)

We first estimate the term E
[∏`

i=1(zd̄i
f̄i−1

)ζε
]
. Let us write zd̄i

f̄i−1
= 1

2 (1 + eHi), with

Hi := −2λ
∑d̄i
u=f̄i−1+1(ωu+cελ). Then, since ζε 6 1, we get that (zd̄i

f̄i−1
)ζε 6 2−ζε(1+eζεHi).

Using a binomial expansion of
∏`
i=1(1 + eζεHi), we obtain

E
[ ∏̀
i=1

(
zd̄i
f̄i−1

)ζε] 6 (2−ζε)`
∑

I⊆{1,...`}

E
[∏
i∈I

exp(ζεHi)
]
, (3.26)

where the product in the right-hand side is 1 when I = ∅. Recalling the definition of Hi,
we may write

E
[∏
i∈I

exp(ζεHi)
]
6 exp

{
2λ2ζε

∑
i∈I

(
ζε

d̄i∑
u,v=f̄i−1+1

ρuv + ζε
∑

u∈(f̄i−1+1,d̄i]
v/∈(f̄i−1+1,d̄i]

|ρuv| − cε(d̄i − f̄i−1)

)}
.

(3.27)
Since the correlations are summable, there exists n1 = n1(ε) such that, for n > n1, one
has

∑n
u,v=1 ρuv 6 n(Υ∞ + ε/4) as well as

∑n
u=1

∑
v/∈{1,...,n} |ρuv| 6 εn/4. Therefore,

there exists λ2 = λ2(ε) such that, for λ 6 λ2, one has kλ,ε > n1. Then, in (3.27), since
either d̄i+1 − f̄i = 0 or d̄i+1 − f̄i > kλ,ε > n1, we obtain

E
[∏
i∈I

exp(ζεHi)
]
6
∏
i∈I

exp
{

2λ2ζε(ζεΥ∞ + ε/2− cε)(d̄i+1 − f̄i)
}

=
∏
i∈I

exp
{

2λ2ζε

( Υ∞
1 + α

+ ε2Υ∞ + ε/2− c0 − ε
)

(d̄i+1 − f̄i)
}
6 1, (3.28)

where, at first, we used the definitions of ζε and cε, and then we chose ε small enough so
that ε2Υ∞ − ε/2 6 0. Note that the condition c0 > Υ∞/(1 + α) (the so-called Monthus
bound) is crucial here: otherwise the terms in (3.28) would diverge when di − fi−1 goes
to infinity. Plugging this estimate in (3.26) gives

E
[ ∏̀
i=1

(
zd̄i
f̄i−1

)ζε] 6 2−ζε`
∑

I⊆{1,...,`}

1 = 2−ζε` 2` 6 2`. (3.29)

Combining this with (3.25), we have for λ 6 min{λ1, λ2},

E
[(
ẐJ
)ζε] 6 (16)`E

[
(ŽJ)ζε

]
, (3.30)

and we are now left with estimating E
[
(ŽJ)ζε

]
.

STEP 2: Applying the change of measure. Recall the definition of the shifted
measures given in (3.5). Here, we denote by P̃J the law on (ω1, . . . , ωN ) obtained from P

by shifting the ωn for each n ∈
⋃
i∈J Bi by

− δ = −aελ, where aε := −(1− ζε)Υ∞. (3.31)

Note that this value of aε is chosen according to the proof of Lemma 3.1. By Hölder’s
inequality,

E
[(
ŽJ
)ζε] 6 [ẼJ(ŽJ)

]ζε
ẼJ

[(
dP

dP̃J

) 1
1−ζε

]1−ζε
. (3.32)
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(1) The second factor in (3.32) is computable, since, as in (3.5)

dP̃J
dP

= exp
(
− δ〈Υ−1

N ω,1J〉 −
1

2
δ2〈Υ−1

N 1J ,1J〉
)
, (3.33)

where 1J is the indicator function of ∪j∈JBj . Similarly to (3.7), we have

ẼJ

[(
dP

dP̃J

) 1
1−ζε

]1−ζε
= exp

(
1

2

ζε
1− ζε

δ2〈Υ−1
N 1J ,1J〉

)
. (3.34)

We now estimate 〈Υ−1
N 1J ,1J〉 using the idea of [5, Lemma A.3]. Define

RJ = ΥN1J −Υ∞1J . (3.35)

Because of the summability of correlations, the `1-norm of RJ is bounded from above by∑
i∈J
∑
n∈Bi

∑
m/∈Bi |ρnm|, which is |J |o(kε,λ) as kε,λ goes to infinity. Then, multiplying

(3.35) by Υ−1
N , one gets that

Υ∞Υ−1
N 1J = 1J −Υ−1

N RJ (3.36)

so that one obtains

Υ∞〈Υ−1
N 1J ,1J〉 = 〈1J ,1J〉 − 〈Υ−1

N RJ ,1J〉 = (1 + o(1))|J |kλ,ε. (3.37)

To obtain the last equality, we use that 〈1J ,1J〉 = |J |kλ,ε, and that 1J = Υ−1
∞ (ΥN1J −RJ)

to get
|〈Υ−1

N RJ ,1J〉| = Υ−1
∞ |〈RJ ,1J〉 − 〈Υ−1

N RJ , RJ〉| = |J | o(kλ,ε). (3.38)

Indeed, |〈Υ−1
N RJ , RJ〉| 6 |||Υ−1

N ||| ||RJ ||`1 = |J | o(kε,λ), because Assumption 1.1 gives a
uniform bound on |||Υ−1

N |||. On the other hand, 〈ΥN1J ,1J〉 ∼ Υ∞〈1J ,1J〉 as k →∞, so
that 〈RJ ,1J〉 = 〈ΥN1J ,1J〉 −Υ∞〈1J ,1J〉 = |J | o(kε,λ).

Therefore, there exists λ3 = λ3(ε) such that, for λ 6 λ3, we have 〈Υ−1
N 1J ,1J〉 6 (1 +

ε2)Υ−1
∞ |J |kλ,ε. Plugging this in (3.34), and recalling that δ = −(1− ζε)Υ∞λ, kλ,ε = tε/λ

2,
we have, for λ 6 λ3,

ẼJ

[(
dP

dP̃J

) 1
1−ζε

]1−ζε
6 exp

(
(1 + ε2)

ζε
2

(1− ζε)Υ∞tε`
)

6 (Cε)
`, (3.39)

with

Cε = exp

(
tεζε(1 + ε2)

αΥ∞
2(1 + α)

)
, (3.40)

(we used that 1− ζε 6 1− 1/(1 + α) = α/(1 + α)).

(2) Let us now deal with the first factor in (3.32), that is ẼJ [ŽJ ]. From (3.23), we need
to estimate in particular

ẼJ

[∏̀
i=1

z
f̄i−1

fi−1
Zdi,fiz

di
d̄i

]
(3.41)

for every di 6 fi in Bji , where ji ∈ J . An extra difficulty comes from the lack of
independence of the ω’s. The following lemma, proved in Appendix B thanks to Lemma
B.1, allows to decouple the factors in the product above.

Lemma 3.3. There exists λ1 = λ1(ε) (the same as in Lemma 3.2) such that, for all
λ 6 λ1,

ẼJ

[ ∏̀
i=1

z
f̄i−1

fi−1
Zdi,fiz

di
d̄i

]
6 8`

∏̀
i=1

ẼJ
[
z
f̄i−1

fi−1

]
ẼJ
[
Zdi,fi

]
ẼJ
[
zdi
d̄i

]
. (3.42)
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Let us now estimate the different terms in this product.

(a) We first take care of the first and third terms, that is ẼJ
[
zn0
]
, setting n = f̄i−1 − fi−1

or n = di − d̄i. Writing zn0 = 1
2 + 1

2 exp
(
− 2λ

∑n
i=1(ωi − cελ)

)
, one directly has

ẼJ
[
zn0
]

=
1

2
+

1

2
exp

(
2λ2n(aε − cε) + 2λ2

n∑
i,j=1

ρij

)
. (3.43)

Note that aε − cε 6 −Υ∞ + ε2Υ∞ − ε 6 −Υ∞ − 3ε/4, provided that ε is chosen small
enough (we used here that cε > Υ∞

1+α ). There exists n1 = n1(ε) such that for n > n1,∑n
i,j=1 ρij 6 n(Υ∞ + ε/2). For n > n1, one has

ẼJ
[
zn0
]
6

1

2
+

1

2
exp

(
2λ2n(−Υ∞ − 3ε/4 + Υ∞ + ε/2)

)
6 1. (3.44)

On the other hand, for n 6 n1, the uniform bound
∑n
i,j=1 ρij 6 n

∑
k∈Z |ρk| holds, and

ẼJ
[
zn0
]
6

1

2
+

1

2
exp

(
2λ2n1

∑
k∈Z

|ρk|
)
. (3.45)

Therefore, for all λ 6 λ4(ε) = 1/
√
n1(ε), we have

ẼJ
[
zn0
]
6 C1, where C1 := e2

∑
k∈Z |ρk|. (3.46)

Using Lemma 3.3, one therefore has for λ 6 min{λ1, λ4},

ẼJ

[ ∏̀
i=1

z
f̄i−1

fi−1
Zdi,fiz

di
d̄i

]
6 (8C2

1 )`
∏̀
i=1

ẼJ
[
Zdi,fi

]
. (3.47)

(b) We now turn to ẼJ
[
Z0,n

]
for n = fi − di ∈ {0, . . . , kλ,ε}. Bounding 1{n∈τ} by 1, we

have

ẼJ [Z0,n] 6 E
[

exp
{
− 2λ2(cε − aε)

n∑
i=1

∆i + 2λ2
n∑

i,j=1

ρij∆i∆j

}]
. (3.48)

We now distinguish according to the value of n.
(i) Case n ∈ {(1− ε2)kλ,ε, . . . , kλ,ε}. By Lemma A.1, there exists λ5 = λ5(ε) > 0 such

that, for λ 6 λ5 and n ∈ {(1− ε2)kλ,ε, . . . , kλ,ε}, we have (recall kλ,ε = tε/λ
2)

ẼJ [Z0,n] 6 exp
{

(1− ε2)tε

(
aε − cε +

Ccop
ρ

2
+

Υ∞
2

)}
. (3.49)

The fact that the bound is uniform comes from the Lipschitz character of the functions
x 7→ eCx, when C and x both range over a bounded set. Recall the definitions of cε and
aε in (3.13) and (3.31), a straightforward computation gives

aε − cε +
Ccop
ρ

2
+

Υ∞
2

6 − αΥ∞
2(1 + α)

− ε+ ε2Υ∞ 6 − αΥ∞
2(1 + α)

− ε/2, (3.50)

where in the last inequality we took ε small enough. In the end, we get that for λ 6 λ5

∀n ∈ {(1− ε2)kλ,ε, . . . , kλ,ε}, ẼJ
[
Z0,n

]
6 exp

{
− (1− ε2) tε

( αΥ∞
2(1 + α)

+ ε/2
)}
. (3.51)

(ii) General bound for n 6 kλ,ε: we show that ẼJ [Z0,n] 6 C1 for all n ∈ {1, . . . , kλ,ε},
provided that λ is small enough (with the constant C1 defined in (3.46)). Indeed, by
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Lemma A.1, there exists n2 = n2(ε) such that, for n > n2,

P

(
1

n

n∑
i=1

∆i 6 1/2− ε2

)
6

1

2
e−2tε

∑
k∈Z |ρk| (3.52)

P

(
1

n

n∑
i,j=1

ρij∆i∆j >
1

4
Ccop
ρ +

1

4
Υ∞ + ε2

)
6

1

2
e−2tε

∑
k∈Z |ρk|. (3.53)

Therefore, if n2 6 n 6 kλ,ε, let us decompose the expectation in (3.48) according to
whether 1

n

∑n
i=1 ∆i > 1/2− ε2 and 1

n

∑n
i,j=1 ρij∆i∆j 6 1

4C
cop
ρ + 1

4Υ∞ + ε2 or not, which
gives

ẼJ [Z0,n] 6 e−λ
2n{(cε−aε)(1−2ε2)+ 1

2C
cop
ρ + 1

2 Υ∞+2ε2} + e−2tε
∑
n∈Z |ρn|e2tε

∑
n∈Z |ρn|. (3.54)

For the second part of the sum, we used the uniform upper bounds 2λ2(cε−aε)
∑n
i=1 ∆i > 0,∑n

i,j=1 ρij∆i∆j 6
∑
n∈Z |ρn|, and λ2n 6 tε. Recalling (3.50), and taking ε small enough,

we conclude that ẼJ [Z0,n] 6 2 if n2 6 n 6 kλ,ε.
For the case n 6 n2(ε), let us set λ6 = 1/

√
n2. Then, (3.48) gives the following

uniform bound, for λ 6 λ6 and n 6 n2,

ẼJ [Z0,n] 6 exp
(

2λ2n2

∑
n∈Z
|ρn|

)
6 C1 = exp

(
2
∑
k∈Z

|ρk|
)
. (3.55)

To summarize, we collect the estimates in (3.23), (3.47), (3.51) and (3.55). We get
that if ε is fixed and small enough, then there exists λ7(ε) = min(λi, i ∈ {1, . . . , 6}) such
that for λ 6 λ7(ε),

ẼJ
[
ŽJ
]
6 (C2)`

∑
d1,f1∈Bj1
d1 6 f1

. . .
∑

d`−1,f`−1∈Bj`−1

d`−1 6 f`−1

∑
d`∈Bj`=Bm

∏̀
i=1

K(di − fi−1)U(di − fi), (3.56)

where C2 := (8C3
1 )ζε , and

U(n) =

{
Dε if n ∈ {(1− ε2)kλ,ε, . . . , kλ,ε};
1 for all n < (1− ε2)kλ,ε;

(3.57)

with (recall (3.51))

Dε := exp
{
− (1− ε2) tε

( αΥ∞
2(1 + α)

+ ε/2
)}
. (3.58)

STEP 3: Simplifying ẼJ [ŽJ ] as a coarse-grained system. In this part we trans-
form (3.56) into a partition function for a coarse-grained system, where the set J plays
the role of a renewal set.

Let us denote by
◦
J the set of indices j ∈ J such that j − 1 ∈ J ∪ {0} and j + 1 ∈

J ∪ {m + 1}. Recall that we denote by j1, j2, . . . , j` the elements of J . If ji ∈ J \
◦
J , we

bound U(di − fi) uniformly by 1. On the other hand, if ji ∈
◦
J , then ji−1 ∈ J ∪ {0}, and as

in [7, Section 2, STEP 3], one shows that:

(Step 3.1) The main contribution in (3.56) comes from the di’s and fi−1’s such that
|di − fi−1| 6 ε2kλ,ε/2. We recall this idea for the sake of completeness. Using that for all
n, U(n) > Dε, we get∑

fi−1∈Bji−1
, di∈Bji

|di−fi−1| 6 ε2kλ,ε/2

U(fi−1 − di−1)K(di − fi−1)U(fi − di) > K(1)D2
ε (3.59)
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where in the sum we kept only the term corresponding to di − fi−1 = 1. Let us now turn
to the sum restricted to |di − fi−1| > ε2kλ,ε/2. By (1.1), there is a constant C3 such that

∀n > ε2kλ,ε, K(n) 6 C3 ϕ(ε2kλ,ε)(ε
2kλ,ε)

−(1+α). (3.60)

Therefore,∑
fi−1∈Bji−1

, di∈Bji
|di−fi−1|>ε2kλ,ε/2

K(di − fi−1) 6 C3 ϕ(ε2kλ,ε)(ε
2kλ,ε)

−(1+α)k2
λ,ε

6 C3 ε
−2(1+α)ϕ(ε2kλ,ε)k

1−α
λ,ε , (3.61)

where we used that there were at most k2
λ,ε terms in the sum. Notice that ϕ(ε2kλ,ε)k

1−α
λ,ε

can be made arbitrarily small by choosing kλ,ε large (in the case α = 1, one uses that
limn→∞ ϕ(n) = 0, see [8, Proposition 1.5.9b]). Therefore there exists λ8 = λ8(ε) such
that for λ 6 λ8,

C3 ε
−(1+α)ϕ(ε2kλ,ε)k

1−α
λ,ε 6 K(1)D2

ε . (3.62)

Then, the sum in (3.61) is smaller than the sum in (3.59), which proves our claim.

(Step 3.2) If λ 6 λ8, one may therefore restrict the summation in (3.56) to |di −
fi−1| 6 ε2kλ,ε/2 and |di+1 − fi| 6 ε2kλ,ε/2 whenever ji ∈

◦
J , at the cost of an extra factor

2 each time. The total factor thereby introduced in (3.56) is then smaller than 2`. Thus,

for ji ∈
◦
J , the summation is only over di’s and fi’s verifying fi − di > (1− ε2)kλ,ε, and

(3.57) allows us to replace U(fi − di) by Dε. This is the crucial replacement. Dropping
the restriction in the summation yields

ẼJ
[
ŽJ
]
6 (2C2)`(Dε)

|
◦
J|

∑
d1,f1∈Bj1
d1 6 f1

. . .
∑

d`−1,f`−1∈Bj`−1

d`−1 6 f`−1

∑
d`∈Bj`=Bm

∏̀
i=1

K(di − fi−1). (3.63)

Note that the sum above is now close to the probability of a renewal event. One could
actually insert in (3.63) the terms P(fi − di ∈ τ), each time only at the cost of a factor
C4 > 0. Indeed, the Renewal Theorem tells that limn→∞P(n ∈ τ) = 1/µ > 0, so there
exists a constant C4 such that P(n ∈ τ) > 1/C4 for all n. We actually deal with this sum
more directly. Since the K(di − fi−1)’s are the only terms containing di and fi−1, one
can drop the restriction fi > di and get

ẼJ
[
ŽJ
]
6 (2C2)`(Dε)

|
◦
J|
∏̀
i=1

∑
fi−1∈Bji−1

di∈Bji

K(di − fi−1), (3.64)

where we used the notation Bj0 = {0}, so that f0 = 0.

(Step 3.3) Now, we estimate each sum, depending on whether ji − ji−1 = 1 or not.
• If ji − ji−1 = 1, then we can assume by translation invariance that ji−1 = 1 and

ji = 2. One uses that P(n ∈ τ) > 1/C4 for all n ∈ N, to get that

∑
f∈B1,d∈B2

K(d− f) 6 C4

∑
f∈B1,d∈B2

P(f ∈ τ)K(d− f)

6 C4P(τ ∩B1 6= ∅, τ ∩B2 6= ∅) 6 C4. (3.65)
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• If ji − ji−1 > 2, then di − fi−1 > (ji − ji−1 − 1)kλ,ε. By (1.1) there is a constant C5

such that

K(di− fi−1) 6
C5

(kλ,ε)1+α

ϕ((ji − ji−1 − 1)kλ,ε)

(ji − ji−1 − 1)1+α
6

21+αC5

(kλ,ε)1+α

ϕ((ji − ji−1 − 1)kλ,ε)

(ji − ji−1)1+α
, (3.66)

where the last inequality holds because n− 1 > n/2 for n > 2. Then, since there are at
most k2

λ,ε terms in the sum,∑
fi−1∈Bji−1

,di∈Bji

K(di − fi−1) 6
21+α

(ji − ji−1)1+α
(kλ,ε)

1−αϕ((ji − ji−1 − 1)kλ,ε). (3.67)

We need to deal with cases α = 1 and α > 1 in slightly diffferent ways.
(a) If α = 1, since µ = E[τ1] < +∞, necessarily limn→∞ ϕ(n) = 0, see [8, Proposition

1.5.9b]. Moreover, (ji − ji−1 − 1)kλ,ε > kλ,ε = tελ
−2. Therefore, there exists λ9 = λ9(ε)

such that for λ ∈ (0, λ9),

ϕ((ji − ji−1 − 1)kλ,ε) 6 2−(1+α)D2
ε , (3.68)

and one finds∑
fi−1∈Bji−1

,di∈Bji

K(di − fi−1) 6 D2
ε(ji − ji−1)−2 6

(Dε)
2

(ji − ji−1)1+α−ε2/2 . (3.69)

(b) If α > 1, we use that ϕ(n) 6 C6n
ε2/2, for some constant C6 = C6(ε), and get∑

fi−1∈Bji−1
,di∈Bji

K(di − fi−1) 6 21+αC5C6(kλ,ε)
1−α+ε2/2 1

(ji − ji−1)1+α−ε2/2 . (3.70)

Then, one can choose ε small enough so that 1−α+ ε2/2 < 0, and pick λ10 = λ10(ε) such
that for λ 6 λ10, 21+αC5C6(kλ,ε)

1−α+ε2/2 6 (Dε)
2.

In the end, for λ 6 min(λ8, λ9, λ10), one has∑
fi−1∈Bji−1

,di∈Bji

K(di − fi−1) 6
(Dε)

2

(ji − ji−1)1+α−ε2/2 . (3.71)

By inserting (3.65) and (3.69)-(3.71) in (3.64), one obtains, for λ 6 λ0(ε) := min(λ7, λ8, λ9, λ10)

ẼJ
[
ŽJ
]
6 (2C2C4)`(Dε)

|
◦
J|(Dε)

2|{i∈{1,...,`} ; ji−ji−1 > 2}|
∏̀
i=1

1

(ji − ji−1)1+α−ε2/2

6 (2C2C4Dε)
`
∏̀
i=1

1

(ji − ji−1)1+α−ε2/2 , (3.72)

where for the second inequality, we noticed that Dε < 1 and

`− |
◦
J | = |J \

◦
J | 6 2|{i ∈ {1, . . . , `} ; ji − ji−1 > 2}|. (3.73)

STEP 4: Conclusion of the proof. We can now combine (3.32) with (3.39) and
(3.72) to estimate E

[
(ŽJ)ζε

]
, and plug that estimate in (3.21) and (3.30). One ends up,

for λ 6 λ0(ε), with

E
[(
ZωN,λ,cελ

)ζε] 6 ∑
J⊂{1,...,m} ;m∈J

( |J|∏
i=1

Gε
(ji − ji−1)(1+α−ε2/2)ζε

)
, (3.74)
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where, recalling the definitions of Cε and Dε in (3.39) and (3.57), one has

Gε := 16(2C2C4Dε)
ζεCε

= 16(2C2C4)ζε exp
[
tεζε

{
(1 + ε2)

αΥ∞
2(1 + α)

− (1− ε2)
( αΥ∞

2(1 + α)
+ ε/2

)}]
6 32C2C4 exp

{
− tεζε

ε

2
(1 + o(1))

}
. (3.75)

Here, o(1) is a quantity which goes to zero as ε goes to zero (containing all the ε2 terms).
If ε is chosen small enough, then Gε 6 32C2C4e

−tεε/4(1+α). Therefore, we may choose tε
large enough to make Gε arbitrarily small, in particular such that

+∞∑
n=1

Gε
n1+α−ε2/2 < 1 . (3.76)

Define K̃(n) := Gε n
−(1+α−ε2/2) for n ∈ N, which we interpret as the inter-arrival

distribution of a transient renewal process, since
∑
n∈N K̃(n) < 1. Then, one recognizes

in the right hand side of (3.74) the probability for this renewal to visit m, hence smaller
than 1.

To summarize, we proved that if ε has been fixed small enough, and tε large enough,

then, for all λ 6 λ0(ε), lim infN→∞E
[(
Zω,cop
N,λ,cελ

)ζε] 6 1. This establishes (3.14) and
concludes the proof.

3.3 Proof of Theorem 1.8

Here, we assume that correlations (ρn)n > 1 are non-negative, and that α > 0. The
annealed critical point is then ha(λ) = Υ∞λ. The proof also follows a coarse-graining
scheme, as that of Toninelli [35]. We now sketch how to adapt the proof of [35] to the
correlated case, using ideas presented in Section 3.2.

Let us fix ζ ∈ ( 1
1+α , 1), and set h = hλ := θΥ∞λ for some θ = θ(α) ∈ (ζ, 1) chosen later

in the proof and depending only on α. We show that, if λ is small enough, then

lim inf
N→∞

E
[(
Zω,cop
N,λ,hλ

)ζ]
< +∞ , (3.77)

which enforces Theorem 1.8, by the fractional moment argument explained at the
beginning of Section 3.

We then set up a coarse-graining procedure, with a block length defined as

k = kλ :=

⌊
1

Υ2
∞λ

2(1− θ)

⌋
, (3.78)

and consider a system of length N := mkλ, in the same way as in Section 3.2. Step 1 is
identical and similarly leads to (3.30). Note that we use that θ > ζ > 1/(1 + α), with the
same computations as in (3.28), which is analogous to Equation (3.21) in [35]. In Step 2,
we apply a change of measure with tilting parameter δ = 1/

√
kλ. The cost of this change

of measure, according to (3.34) and (3.37), gives a constant C |J|7 (C7 substitutes Cε in
(3.39)), where C7 := exp

(
1
2

ζ
1−ζΥ−1

∞
)
.

We are therefore left with estimating the remaining terms (see (3.41)), for which we
can apply the decoupling inequality of Lemma 3.3. Then, using that hλ = θΥ∞λ, and∑n
i,j=1 ρij∆i∆j 6 nΥ∞ 6 nΥ∞, then for any n > 0, one has

ẼJ [zn0 ] =
1

2
+

1

2
exp{−2λn(λθΥ∞ + δ − λΥ∞)} 6 1. (3.79)
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One therefore ends up with

E
[(
Zω,cop
N,λ,hλ

)ζ]
6

∑
J⊂{1,...,m}

(8C7)|J|

[ ∑
d1,f1∈Bj1
d1 6 f1

. . .
∑

d`−1,f`−1∈Bj`−1

d`−1 6 f`−1

∑
d`∈Bj`=Bm

∏̀
i=1

K(di − fi−1)U(fi − di)

]ζ
, (3.80)

where U(·) is now defined by U(n) := ẼJ [Zω,cop
n,λ,hλ

] = E[Zω,cop

n,λ,hλ+1/
√
k
]. Note that (3.80) is

the analogous to Equations (3.27-3.28) in [35], and we are left with showing that U(n)

satisfies conditions (3.30)-(3.31) in [35].
Using again the non-negativity of correlations and the fact that hλ = θΥ∞λ, we get

U(n) 6 E
[
e

(2λ2Υ∞(1−θ)− 2λ√
kλ

)
∑n
i=1 ∆i

δn

]
= E

[
e−2λ2Υ∞(1−θ−

√
1−θ)

∑n
i=1 ∆i δn

]
6 E

[
e
− 1
kλ

1
Υ∞
√

1−θ
∑n
i=1 ∆i δn

]
, (3.81)

where for the second equality, we used the definition (3.78) of kλ, and for the last one,
we chose θ close enough to 1 so that 2

√
1− θ 6 1. This gives the exact same estimate

for U(·) as in Equation (3.48) of [35], with Υ∞
√

1− θ instead of
√

1− θ. Then, the proof
proceeds identically as in [35], since one can make 1

Υ∞
√

1−θ arbitrarily large by choosing
θ close to 1, which was the key to proving Proposition 3.3 and conditions (3.30)-(3.31)
in [35].

4 Adaptation to the pinning model

In this section we sketch how to adapt the techniques of Sections 2 and 3 to the
pinning model, and prove Theorem 1.13.

4.1 Upper bound in the pinning model

We first focus on proving

lim sup
β↓0

hpin
c (β)− hpin

a (β)

β2
6

Υ∞
2µ

α

1 + α
. (4.1)

As in Section 2, the result comes as a combination of the smoothing inequality in
Proposition 1.12 and a lower bound on the free energy, which in this case is given by:

Lemma 4.1. For any c ∈ R,

lim inf
β↓0

1

β2
Fpin(β, cβ2) >

1

µ

[
c+

1

2

(
Cpin
ρ −

Υ∞
µ

)]
, (4.2)

where Cpin
ρ has been defined in (1.30).

Combining Lemma 4.1 and Proposition 1.12, as done in (2.15)-(2.16) for the copolymer
model, gives the right bound, (4.1).

Proof of Lemma 4.1. Define for N ∈ N, h ∈ R and β > 0 the finite-volume free
energies:

F
pin
N (β, h) = E

[ 1

N
logZω,pin

N,β,h

]
, F

pin
a,N (β, h) =

1

N
logZpin,a

N,β,h, (4.3)

where

Zpin,a
N,β,h := E[Zω,pin

N,β,h] = E

[
exp

{
h

N∑
n=1

δn +
β2

2

N∑
n,m=1

ρnmδnδm

}
δN

]
. (4.4)

The proof relies on the following lemma, which is proven in Appendix C.
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Lemma 4.2. Let P⊗2 be the law of two independent copies of the renewal process,
denoted by τ and τ ′. For any N,M ∈ N,

Fpin(β, h) > F
pin
N (β, h) > F

pin
a,N (β, h)− e1/M

M

1

2N
logAN +

e1/M

M

1

2N
logBN (4.5)

with

AN := E⊗2

[
exp

{
(M + 1)β2

N∑
n,m=1

ρnmδnδ
′
m + h

N∑
n=1

(δn + δ′n)

+
β2

2

N∑
n,m=1

ρnm(δnδm + δ′nδ
′
m)

}]
, (4.6)

BN := E⊗2

[
exp

{
h

N∑
n=1

(δn + δ′n) +
β2

2

N∑
n,m=1

ρnm(δnδm + δ′nδ
′
m)

}
δNδ

′
N

]
. (4.7)

The first inequality in (4.5) comes from the super-additivity of E[logZωN,β,h], which

gives that Fpin(β, h) = supN∈N F
pin
N (β, h). The other inequality in (4.5) is dealt with

via interpolation techniques, developed in Appendix C. Using Lemma 4.2, the proof
of Lemma 4.1 consists in giving a second order estimate of (4.5), for β ↘ 0, and for
appropriate values of h and N . Namely, set h = cβ2 and N = Nβ := t/β2, where t > 0,
and apply Lemma 4.2 to get that

lim inf
β↘0

1

β2
Fpin(β, cβ2)

>
1

t
lim inf
β↓0

logZpin,a
Nβ ,β,cβ2 −

e1/M

M

1

2t
lim sup
β↓0

logANβ +
e1/M

M

1

2t
lim inf
β↓0

logBNβ . (4.8)

Using the convergence results in Lemma A.2, and the definition of Nβ = t/β2 and h = cβ2,
we get

lim
β↓0

logANβ =
t

µ

{
(M + 1)

Υ∞
µ

+ 2c+ Cpin
ρ

}
. (4.9)

Also, bounding the δn’s by 1, we get

lim inf
β↓0

logBNβ > lim inf
β↓0

{
logP(Nβ ∈ τ)2 − 2|c|β2Nβ − β2

Nβ∑
n,m=1

|ρnm|
}

= −2 logµ− 2|c|t− t
∑
n∈Z
|ρn|. (4.10)

Then, letting M go to infinity in (4.8), we obtain that for all t > 0,

lim inf
β↓0

1

β2
Fpin(β, cβ2) >

1

t
lim inf
β↓0

logZpin,a
Nβ ,β,cβ2 −

Υ∞
2µ2

. (4.11)

Using Jensen’s inequality, we may write

logZpin,a
Nβ ,β,cβ2 >

logP(Nβ ∈ τ) +
c t

Nβ

Nβ∑
n=1

E[δn | Nβ ∈ τ ] +
t

2Nβ

Nβ∑
n,m=1

ρnmE[δnδm | Nβ ∈ τ ], (4.12)
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and then use the following limits

lim
N→∞

1

N

N∑
n=1

E[δn | N ∈ τ ] =
1

µ
, lim

N→∞

1

N

N∑
n,m=1

ρnmE[δnδm | N ∈ τ ] =
Cpin
ρ

µ
. (4.13)

The first limit comes from writing E[δn | N ∈ τ ] = P(n ∈ τ)P(N − n ∈ τ)/P(N ∈ τ),
together with dominated convergence and Cesarò summation. A similar reasoning holds
for the second limit. Hence, (4.12) gives that lim infβ↓0 logZpin,a

Nβ ,β,cβ2 > − logµ + t
µ

(
c +

Cpin
ρ /2

)
, and Lemma 4.1 follows from (4.11) by letting t→∞.

4.2 Lower bound in the pinning model

We now turn to the proof of

lim inf
β↓0

hpin
c (β)− hpin

a (β)

β2
>

Υ∞
2µ

α

1 + α
. (4.14)

We use the same techniques as for the copolymer model: we control lim infN→∞E[(Zω,pin
N,β,h)ζ ]

by gluing finite-size estimates (found as in Section 3.1), with the help of a coarse-graining
procedure (as in Section 3.2). We only focus here on the modifications that are necessary
to adapt this scheme to the pinning model.

4.2.1 Finite-size annealed estimate

Let us estimate the fractional moment on one block whose length is of order 1/β2,
analogous to Section 3.1. Recall the expression of the annealed partition function as
given in (4.4).

Lemma 4.3 (Analogue of Lemma 3.1). Let u ∈ R, t > 0 and set

hβ =
(
−

Cpin
ρ

2
+ u
)
β2, kβ = t/β2. (4.15)

Then, for ζ ∈ (0, 1),

lim sup
β↘0

E

[(
Zω,pin
kβ ,β,hβ

)ζ]
6 exp

{ ζ
µ

(
u−Υ∞

1− ζ
2µ

)
t
}
. (4.16)

The proof follows exactly the same lines as for Lemma 3.1, except that we use Lemma
A.2 instead of Lemma A.1 (in particular in (3.11)). Details are left to the reader.

Recall Proposition 1.11. According to Lemma 4.3, the fractional moment of the

partition function should therefore stay bounded when h 6 β2
(
− Cpin

ρ

2 + Υ∞(1−ζ)
2µ

)
. Since

we need ζ > 1
1+α to make the full coarse-graining procedure work (see Section 3.2), we

get (4.14).

4.2.2 Coarse-graining procedure.

We only stress the main modifications of the steps in Section 3.2 that are needed to
adapt the proof to the pinning model.

STEP 0. We set

c0 := −
Cpin
ρ

2
+

Υ∞
2µ

α

1 + α
, cε = c0 − ε, ε > 0. (4.17)

We need to show that there exists λ = λ0(ε) and ζε ∈ (0, 1) such that for λ ∈ (0, λ0),

lim inf
N→∞

E[(Zω,pin
N,β,cεβ2)ζε ] < +∞. (4.18)
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Similarly to (3.15), we write h = hε(β) = cεβ
2, and set ζε = 1

1+α + ε2, kβ,ε = tε/β
2, where

tε is chosen large enough at the end of the proof.

STEP 1. The coarse-graining decomposition in (3.19) is still valid, with (3.20) and (3.17)
replaced by

a 6 b, zba = zb = eβωb+h, Za,b = Zθ
aω,pin
b−a,β,kβ,ε . (4.19)

The steps (3.22–3.30) are no longer necessary, and one is left with estimating E[(ẐJ)ζε ].

STEP 2. We use the same type of change of measure procedure. Here, the law P̃J has a
tilting parameter

δ = aεβ, where aε = −(1− ζε)Υ∞/µ. (4.20)

Equation (3.39) stills holds, with

Cε = exp
(
ζε(1 + ε2)

tε
µ2

Υ∞
2

α

1 + α

)
. (4.21)

The quantity to estimate is now, analogous to (3.41),

ẼJ

[ ∏̀
i=1

Zdi,fiz
di
]
6 2`

∏̀
i=1

ẼJ [Zdi,fi ]ẼJ [zdi ] (4.22)

where the inequality holds for β small enough. Here we use the decoupling inequalities
(see Lemma B.1, and Remark B.2). Since ẼJ [zdi ] 6 2 if β is small enough, we focus on
ẼJ [Zdi,fi ]. One has

ẼJ [Z0,n] = E
[

exp
(

(cε + aε)β
2

n∑
i=1

δi +
β2

2

n∑
i,j=1

ρijδiδj

)
δn

]
, n ∈ {1, . . . , kβ,ε}. (4.23)

Using the convergence in Lemma A.2 together with the definition of kβ,ε = tε/β
2, one

can find β1 = β1(ε) such that for β 6 β1, one gets that for any n ∈ {(1− ε2)kβ,ε, . . . , kβ,ε},

ẼJ [Z0,n] 6 exp
{(
cε + aε

)
(1− ε2)

tε
µ

+
tε
µ

Cpin
ρ

2

}
6 exp

{
− tε
µ

(Υ∞
2µ

α

1 + α
+
ε

2

)}
, (4.24)

where for the second inequality, we used the definitions of cε and aε, and chose ε small.
Provided that β is small enough, one also has a uniform bound ẼJ [Z0,n] 6 C1 for

n ∈ {1, . . . , kβ,ε}, where the constant C1 does not depend on ε, as in STEP 2. (2.b.ii) (the
analogue of (3.52)-(3.53) hold here thanks to Lemma A.2).

In the end, we obtain the analogue of (3.56) and (3.57), where the constant Dε

becomes

Dε = exp
(
− tε
µ

(Υ∞
2µ

α

1 + α
+
ε

2

))
. (4.25)

STEP 3 is identical to the copolymer case, and one ends up in STEP 4 with the analogue
of (3.74), with

Gε = C8(Dε)
ζεCε = C8 exp

{
− tε
µ
ζε

(Υ∞
2µ

α

1 + α
+
ε

2

)
+ ζε(1 + ε2)

tε
µ2

Υ∞
2

α

1 + α

}
6 C8 exp

(
− tε
µ
ζε
ε

4

)
, (4.26)

where (i) C8 is a constant which does not depend on ε and (ii) we took ε small enough so
that all the terms on order ε2 become negligible. Then one can make Gε arbitrarily small
by choosing tε large, so that (3.76) holds. This concludes the proof.

EJP 20 (2015), paper 71.
Page 26/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3514
http://ejp.ejpecp.org/


Critical curve for correlated pinning and copolymer models

A Convergence results

Lemma A.1 (Convergence in the copolymer model). If µ = E[τ1] < +∞, then P-a.s.,

lim
N→∞

1

N

N∑
n=1

∆n =
1

2
, (A.1)

lim
N→∞

1

N

N∑
n,m=1

ρnm∆n∆m = lim
N→∞

1

N

N∑
n,m=1

ρnmE[∆n∆m] =
1

4
Υ∞ +

1

4
Ccop
ρ , (A.2)

where Ccop
ρ is defined in (1.21).

Lemma A.2 (Convergence in the pinning model). Let P⊗2 refer to the law of two inde-
pendent copies of the renewal process, denoted by τ and τ ′. If µ = E[τ1] < +∞, then
P⊗2-a.s,

lim
N→∞

1

N

N∑
n=1

δn =
1

µ
, (A.3)

lim
N→∞

1

N

N∑
n,m=1

ρnmδnδm = lim
N→∞

1

N

N∑
n,m=1

ρnmE[δnδm] =
Cpin
ρ

µ
, (A.4)

lim
N→∞

1

N

N∑
n,m=1

ρnmδnδ
′
m = lim

N→∞

1

N

N∑
n,m=1

ρnmE⊗2[δnδ
′
m] =

Υ∞
µ2

, (A.5)

where Cpin
ρ has been defined in (1.30).

Proof of Lemmas A.1 and A.2. We borrow here an idea that can be used to prove the
Renewal Theorem, see [4]. We recall the definition of the backward recurrence time
process (Ak)k∈N0

. It is a Markov chain which indicates the time elapsed since the last
renewal: Ak = k − τNk , where Nk = |τ ∩ {1, . . . , k}|. We can decorate the Markov chain
(Ak)k∈N0

by adding the “sign” ∆k, defining Ãk := (Ak,∆k) which is also a Markov chain.
Since K(n) > 0 for all large n ∈ N (see (1.1)) and K(∞) = 0, (Ãk)k > 0 is recurrent,
irreducible, and aperiodic, and with the additional assumption that µ = E[τ1] <∞, the
stationary probability measure π is explicit: π(a,∆) = 1

2µP(τ1 > a).

Let us now define a generalization of this process, which memorizes the last q states,
for some given integer q (arbitrarily large): let Wk := (Ãk, Ãk−1, . . . , Ãk−q), where by

convention we set Ãk = (0, 0) for k < 0. Then, (Wk)k∈N0 is also a positive recurrent
irreducible aperiodic Markov chain, with an explicit stationary probability measure
denoted by Π. If we write W = ((a0,∆0), . . . , (aq,∆q)) and denote by j1 < j2 < · · · < jm
the (ordered) indices such that ajk = 0 (the renewal points), then

Π
(
W
)

= π(a0,∆0)

m−1∏
k=1

1

2
K(jk+1 − jk)

∏
j /∈{j1,...,jm}

1{aj+1=aj−1}1{∆j+1=∆j}. (A.6)

By using the ergodic theorem for Markov chains, we get that for any bounded function
G : N2q → R, 1

N

∑N
k=1G(Wk) converges P-a.s. to EΠ[G(W )] as N → ∞. Applying this

result to the test functions G(W ) = 1{a0=0} and G(W ) = ∆0, one gets (A.1) and (A.3)
respectively. To prove (A.4), we write

1

N

N∑
n,m=1

ρnmδnδm =
1

N

N∑
n=1

δn +
2

N

N∑
n=1

δn

q∑
j=1

ρjδn+j +RN , (A.7)
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where the error term RN satisfies |RN | 6 2
∑
j > q |ρj |+

q
N

∑
j > 1 |ρj |. Taking the limit

N →∞, and then letting q →∞, we obtain (A.4), since

EΠ

[
1{a0=0}

q∑
j=1

ρj1{aj=0}

]
=

1

µ

q∑
j=1

ρjP(j ∈ τ). (A.8)

We proceed in the same way to obtain (A.2). Compute first

EΠ

[
∆0

q∑
j=1

ρj∆j

]
=

1

4

q∑
j=1

ρj +
1

4

q∑
n=1

( n∑
j=1

ρj

) 1

µ
P(τ1 > n+ 1)

+
1

4

( q∑
j=1

ρj
) ∑
k > q+1

1

µ
P(τ1 > k + 1). (A.9)

Then, one can write 1
N

∑N
n,m=1 ρnm∆n∆m = 1

N

∑N
n=1 ∆n+ 2

N

∑N
n=1 ∆n

∑q
j=1 ρj∆n+j+R̃N ,

where, similarly to the above, one has limq→∞ limN→∞ R̃N = 0.
Therefore, we have P-a.s.

lim
N→∞

1

N

N∑
n,m=1

ρnm∆n∆m =
1

2
+ 2 lim

q→∞
EΠ

[
∆0

q∑
j=1

ρj∆j

]
=

1

4
+

1

4
Υ∞ +

1

2µ

∑
n∈N

P(τ1 > n+ 1)
( n∑
j=1

ρj

)
. (A.10)

This actually gives exactly (A.2), because

Ccop
ρ =

1

µ
E

[ τ1∑
i,j=1

ρij

]
= 1 +

2

µ
E

[ τ1∑
i=1

i−1∑
k=1

ρk

]

= 1 +
2

µ

∑
n∈N

P(τ1 = n)

n∑
i=1

i−1∑
k=1

ρk = 1 +
2

µ

∑
n∈N

P(τ1 > n+ 1)

n∑
k=1

ρk, (A.11)

where the last inequality is obtained via an Abel summation by parts.
The convergence in (A.5) is obtained by the same lines of reasoning, using two

independent copies of the backward recurrence time process. Details are left to the
reader.

Remark A.3. We want to stress that if µ = +∞, then the following convergence holds:

lim
N→∞

1

N

N∑
n,m=1

ρnmE[∆n∆m] =
1

2
Υ∞, (A.12)

suggesting the interpretation Ccop
ρ = Υ∞ in that case. The limit in (A.12) can be proved

by observing that E[∆n∆m] = 1
2 −

1
4P(τ ∩ [n,m) 6= ∅). A union bound gives that, for any

fixed p > 1, P(τ ∩ [n, n+ p) 6= ∅) 6
∑n+p
k=nP(k ∈ τ)

n→∞→ 0, because µ = +∞ implies that
P(k ∈ τ) converges to 0. Since

∑
k∈Z |ρk| < +∞, we get by dominated convergence that

lim
n→∞

+∞∑
m=n

ρnmP(τ ∩ [n,m) 6= ∅) = lim
n→∞

∑
k∈N

ρkP(τ ∩ [n, n+ k) 6= ∅) = 0. (A.13)

Using Cesarò summation together with the symmetry in n,m, one gets (A.12).
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B Decoupling inequalities

We first state a general decoupling inequality, that we prove using standard in-
terpolation techniques, and then explain how to apply it to obtain Lemmas 3.2 and
3.3.

Let us first recall the Gaussian integration-by-part formula. If ω = (ωn)n∈Z is a
stationary Gaussian sequence with correlation matrix Υ = (ρij)i,j∈Z, and f a sufficiently
smooth function, then

∀k ∈ Z, E[ωkf(ω)] =
∑
n∈Z

ρknE[∂ωnf(ω)]. (B.1)

Lemma B.1 (General Decoupling Inequality). Let P be the law of a centered Gaus-
sian sequence ω = (ωn)n∈Z, with a correlation matrix Υ = (ρij)i,j∈Z. If I and J are two
disjoint subsets of Z, we define

C(I,J ) =
∑

i∈I, j∈J
| ρij | . (B.2)

Let f : RI 7→ R and g : RJ 7→ R be two functions which are C2 and such that, for some
constant c ∈ (0,∞),

∀i ∈ I, j ∈ J , | ∂ωif | 6 c f, | ∂ωjg | 6 c g ;

∀i, i′ ∈ I, j, j′ ∈ J , | ∂2
ωi,ωi′

f | 6 c2 f, | ∂2
ωj ,ωj′

g | 6 c2 g .
(B.3)

Denoting by ωI the vector (ωn)n∈I , for any subset I of Z, we have

E[f(ωI)g(ωJ )] 6 ec
2C(I,J )E[f(ωI)]E[g(ωJ )]. (B.4)

Proof By using two independent copies of ω, one can build a centered Gaussian sequence
ω̃, independent of ω, with the following covariance structure:

∀i, j ∈ I ∪ J , E[ω̃iω̃j ] = ρij(1{i,j∈I} + 1{i,j∈J}). (B.5)

For convenience we still use the symbol P for the law of (ω, ω̃). We interpolate between
ω and ω̃ by defining

∀n ∈ Z, ∀t ∈ [0, 1], ωn(t) =
√
t ω̃n +

√
1− t ωn, and ϕ(t) = E[f(ωI(t))g(ωJ (t))].

(B.6)
Note that ϕ(0) = E[f(ωI)g(ωJ )] and ϕ(1) = E[f(ωI)]E[g(ωJ )], so what we want to prove
is

ϕ(0) 6 Cϕ(1), where C = ec
2C(I,J ). (B.7)

By Gronwall’s lemma, it is enough to prove the following inequality:

∀t ∈ (0, 1), ϕ′(t) > − Cϕ(t). (B.8)

Let us first compute ϕ′(t):

ϕ′(t) = E[∂tf(ωI(t)) g(ωJ (t))] + E[f(ωI(t)) ∂tg(ωJ (t))]

=
∑
i∈I

E[∂tωi(t) ∂ωif(ωI(t)) g(ωJ (t))] +
∑
j∈J

E[∂tωj(t) f(ωI(t)) ∂ωjg(ωJ (t))], (B.9)

and since

∀n ∈ Z, ∂tωn(t) =
1

2
√
t
ω̃n −

1

2
√

1− t
ωn, (B.10)
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we obtain

ϕ′(t) =
1

2

∑
i∈I

E
[( ω̃i√

t
− ωi√

1− t

)
∂ωif(ωI(t)) g(ωJ (t))

]
+

1

2

∑
j∈J

E
[( ω̃j√

t
− ωj√

1− t

)
f(ωI(t)) ∂ωjg(ωJ (t))

]
. (B.11)

Using (B.1) and (B.5), we obtain for i ∈ I,

E[ω̃i ∂ωif(ωI(t)) g(ωJ (t))] =
√
t
∑
j∈I

ρijE[∂2
ωi,ωjf(ωI(t)) g(ωJ (t))], , (B.12)

E[ωi ∂ωif(ωI(t)) g(ωJ (t))] =
√

1− t
∑
j∈I

ρijE[∂2
ωi,ωjf(ωI(t)) g(ωJ (t))]

+
√

1− t
∑
j∈J

ρijE[∂ωif(ωI(t)) ∂ωjg(ωJ (t))], (B.13)

and for j ∈ J ,

E[ω̃jf(ωI(t)) ∂ωjg(ωJ (t))] =
√
t
∑
i∈J

ρijE[f(ωI(t)) ∂2
ωi,ωjg(ωJ (t))], (B.14)

E[ωj f(ωI(t)) ∂ωjg(ωJ (t))] =
√

1− t
∑
i∈J

ρijE[f(ωI(t)) ∂2
ωi,ωjg(ωJ (t))]

+
√

1− t
∑
i∈I

ρijE[∂ωif(ωI(t)) ∂ωjg(ωJ (t))]. (B.15)

Adding everything up, we get

ϕ′(t) = −
∑

i∈I, j∈J
ρijE[∂ωif(ωI(t))∂ωjg(ωJ (t))], (B.16)

from which we deduce (B.8), thanks to (B.3).

Proof of Lemmas 3.2 and 3.3. We apply iteratively Lemma B.1 to specific functions
of ω. Observe that, in any decoupling lemma that we are using (Lemmas 3.2 and 3.3),
the functions to which we apply Lemma B.1 are of the form Z(ω)γ , where 0 < γ 6 1 and
Z(ω) is a finite positive linear combination of finite products of functions of the form

ZIr (ω) = E
[
e−2λ

∑
n∈Ir (ωn+h)σn

]
, (B.17)

for disjoint intervals Ir, and where σn is a random variable taking values in {0, 1}. Note
that the choice σn = δn gives the partition function of the pinning model (up to a change
of parameters); σn = ∆n the partition function of the copolymer model; and finally
P(σn = 1, ∀n ∈ Ik) = P(σn = 0, ∀n ∈ Ik) = 1/2 leads to the partition function restricted
to one large excursion of size |Ir|, as in (3.17).

It is then easy to check that for all i, i′ ∈ Ir, | ∂ωiZIr (ω) | 6 2λZIr (ω), and |
∂2
ωi,ωi′

ZIr (ω)| 6 4λ2ZIr (ω). Therefore, for i, i′ ∈
⋃
r Ir,

|∂ωiZ(ω)γ|= γ |[∂ωiZ(ω)]Z(ω)γ−1| 6 2λZ(ω)γ , and |∂2
ωi,ωi′

Z(ω)γ| 6 4λ2Z(ω)γ ,

(B.18)
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which proves that (B.3) is fulfilled in our context, with a constant c = 2λ.
Now, we can use Lemma B.1, and only the different constants C(I,J ) involved

remain to be estimated. Note that C(I,J ) 6
∑
i∈I
∑
j /∈I |ρij |, so that the definition of J

does not matter. To obtain Lemma 3.2, we apply Lemma B.1 only once, with I =
⋃`
i=1Bji

(as defined in Section 3.2): one gets C(I,J ) 6 `Vkλ,ε , where Vk := 2
∑k
i=1

∑
j>k |ρij |. To

obtain Lemma 3.3, we apply Lemma B.1 repeatedly (3`− 1 times), with each time some
constant C(I,J ) where I is an interval of length s 6 kλ,ε, so that C(I,J ) 6 Vs. For both
lemmas, we are therefore only left to show that if λ is small enough, then 4λ2Vs 6 log 2,
for all s ∈ {1, . . . , kλ,ε}.

Indeed, Vs = ε(s) s, where ε(s) goes to 0 as s goes to infinity, because of the
summability of the correlations. One controls 4λ2V (s) = 4tεε(s)s/kλ,ε. Let us write
s0 := (4tε maxs∈N{ε(s)})−1 log 2: if s 6 s0 kλ,ε, then 4λ2V (s) 6 log 2 ; if s ∈ (s0 kλ,ε, kλ,ε),
then 4λ2V (s) 6 4tεε(s), which can be made arbitrarily small by taking s > s0kλ,ε large,
in other words by taking λ small.

Remark B.2. For the sake of conciseness, we do not detail the case of the pinning model,
and leave it to the reader to check that analogues of Lemmas 3.2-3.3 hold, with an almost
identical proof. Let us point out that the case of the pinning model is even simpler since
the polymer does not collect any charge during the large excursions that occur between
the visits of coarse-grained blocks.

C Proof of Lemma 4.2

The interpolation techniques we use here are inspired by [33], but many adaptations
are however needed to deal with the correlated case. One writes

F
pin
N (β, h) =

F
pin
a,N (β, h) + E

1

N
logEN,β,h

[
exp

{
β

N∑
n=1

ωnδn −
β2

2

N∑
n,m=1

ρnmδnδm

}]
, (C.1)

where

EN,β,h[·] =
E
[
· exp

{
h
∑N
n=1 δn + 1

2β
2
∑N
n,m=1 ρnmδnδm

}
δN

]
E
[
exp

{
h
∑N
n=1 δn + 1

2β
2
∑N
n,m=1 ρnmδnδm

}
δN

] . (C.2)

Let us denote by τ ′ an independent copy of τ . We define for t ∈ [0, 1], which plays the role
of an interpolation parameter, and for κ ∈ R, which can be seen as a coupling constant:

H⊗2
N (β, t, κ, ω) :=

√
tβ

N∑
n=1

ωn(δn + δ′n)− tβ2

2

N∑
n,m=1

ρnm(δnδm + δ′nδ
′
m)

+ κβ2
N∑

n,m=1

ρnmδnδ
′
m, (C.3)

and for β > 0,

ψ(N,hβ; t, κ) := E
1

2N
logE⊗2

N,β,h

[
exp{H⊗2

N (β, t, κ, ω)}
]
. (C.4)

Since

ψ(N,h, β; t, κ = 0) =

E
1

N
logEN,β,h

[
exp

{√
tβ

N∑
n=1

ωnδn −
tβ2

2

N∑
n,m=1

ρnmδnδm

}]
, (C.5)
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we have

Fpin(β, h) > F
pin
N (β, h) = F

pin
a,N (β, h) + ψ(N,h, β; t = 1, κ = 0). (C.6)

To control ψ(N,h, β; t = 1, κ = 0), we use

∂

∂t
ψ(N,h, β; t, κ) 6

∂

∂κ
ψ(N,h, β; t, κ), (C.7)

− ∂

∂t
ψ(N,h, β; t, κ = 0) =

∂

∂κ
ψ(N,h, β; t, κ = 0). (C.8)

The proofs of (C.6) and (C.7) are postponed to the end of this section.

Then, since for all N,h, β, t, the map κ→ ψ(N,h;β, t, κ) is convex and non-decreasing
on R+ (as it is clear by computing the first and second order derivatives with respect to
κ, see (C.18)), one gets for all M > 0 and t ∈ [0, 1],

∂

∂κ
ψ(N,h, β; t, κ = 0) 6

ψ(N,h, β; t, 1 +M − t)− ψ(N,h, β; t, 0)

1 +M − t

6
ψ(N,h, β; 0, 1 +M)− ψ(N,h, β; t, 0)

1 +M − t

6
ψ(N,h, β; 0, 1 +M)− ψ(N,h, β; t, 0)

M
, (C.9)

where for the second inequality, we used that for x > 0, ψ(N,h, β;x, κ) 6 ψ(N,h, β; 0, κ+

x), which is a consequence of (C.7). Therefore, setting

f(t) := −ψ(N,h;β, t, κ = 0), c(M) := ψ(N,h;β, t = 0, κ = M + 1), (C.10)

and using (C.8) and (C.9), we get ∂
∂tf(t) = ∂

∂κψ(N,h;β, t, κ = 0) 6 c(M)
M + f(t)

M , so that
the derivative of f(t)e−t/M is uniformly bounded by c(M)/M . Since f(0) = 0, we get by
integrating between t = 0 and t = 1 that f(1) 6 c(M)

M e1/M , that is

ψ(N,h, β; t = 1, κ = 0) > − e1/M

M
ψ(N,h;β, t = 0, 1 +M). (C.11)

The combination of (C.6) and (C.11) gives Lemma 4.2, because ψ(N,h;β, t = 0, 1 +M) =
1

2N log
A′N
BN , where

A′N := E⊗2

[
e2(M+1)β2 ∑N

n,m=1 ρnmδnδ
′
m+h

∑N
n=1(δn+δ′n)+ 1

2β
2 ∑N

n,m=1 ρnm(δnδm+δ′nδ
′
m)δNδ

′
N

]
(C.12)

BN := E⊗2

[
eh

∑N
n=1(δn+δ′n)+ 1

2β
2 ∑N

n,m=1 ρnm(δnδm+δ′nδ
′
m)δNδ

′
N

]
. (C.13)

Proof of Equations (C.7) and (C.8) We are now left with computing ∂
∂tψ(N,h;β, t, κ)

and ∂
∂κψ(N,h;β, t, κ). Recall the definition (C.2) and (C.3), to get

∂

∂t
ψ(N,h, β; t, κ) =

β

4
√
tN

N∑
n=1

E

[
E⊗2
N,β,h[ωn(δn + δ′n) exp{H⊗2

N (β, t, κ, ω)}]
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]

]

− β2

4N

N∑
n,m=1

ρnmE

[
E⊗2
N,β,h[(δnδm + δ′nδ

′
m) exp{H⊗2

N (β, t, κ, ω)}]
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]

]
. (C.14)
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By the Gaussian integration by part formula, we have

E

[
ωn exp{H⊗2

N (β, t, κ, ω)}
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]

]
=

N∑
m=1

ρnmE

[
∂

∂ωm

(
exp{H⊗2

N (β, t, κ, ω)}
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]

)]

=
√
tβ

N∑
m=1

ρnmE

[√
tβ(δm + δ′m) exp{H⊗2

N (β, t, κ, ω)}
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]

−
√
tβ exp{H⊗2

N (β, t, κ, ω)}E⊗2
N,β,h[(δm + δ′m) exp{H⊗2

N (β, t, κ, ω)}]
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]2

]
. (C.15)

Therefore, using the notation

〈·〉 = 〈·〉β,t,κN,h,ω :=
E⊗2
N,β,h[ · exp{H⊗2

N (β, t, κ, ω)}]
E⊗2
N,β,h[exp{H⊗2

N (β, t, κ, ω)}]
, (C.16)

we end up with

∂

∂t
ψ(N,h, β; t, κ) =

β2

4N

N∑
n,m=1

ρnmE[〈(δn + δ′n)(δm + δ′m)〉 − 〈δn + δ′n〉〈δm + δ′m〉]

− β2

4N

N∑
n,m=1

ρnmE[〈δnδm〉+ 〈δ′nδ′m〉]

=
β2

2N

N∑
n,m=1

ρnmE[〈δnδ′m〉]−
β2

N

N∑
n,m=1

ρnmE[〈δn〉〈δm〉], (C.17)

where we used that 〈δn〉 = 〈δ′n〉 (by symmetry in δ and δ′) to simplify the last sum.
Similarly (and more easily, no Gaussian integration by part being needed), one gets

∂

∂κ
ψ(N,h, β; t, κ) =

β2

2N

N∑
n,m=1

ρnmE[〈δn〉〈δm〉]. (C.18)

From (C.17)-(C.18), one gets (C.7) since
∑N
n,m=1 ρnm〈δn〉〈δm〉 > 0 (Υ is positive semi-

definite). To obtain (C.8), one simply realizes that when κ = 0, 〈δnδ′m〉 = 〈δn〉〈δ′m〉 =

〈δn〉〈δm〉.
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