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Abstract

We consider the slow movement of randomly biased random walk (Xn) on a supercriti-
cal Galton–Watson tree, and are interested in the sites on the tree that are most visited
by the biased random walk. Our main result implies tightness of the distributions
of the most visited sites under the annealed measure. This is in contrast with the
one-dimensional case, and provides, to the best of our knowledge, the first non-trivial
example of null recurrent random walk whose most visited sites are not transient,
a question originally raised by Erdős and Révész [11] for simple symmetric random
walk on the line.
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1 Introduction

We consider a (randomly) biased random walk (Xn) on a supercritical Galton–Watson
tree T, rooted at ∅. The random biases are represented by ω := (ω(x), x ∈ T\{∅}), a
family of random vectors; for each vertex x ∈ T, ω(x) := (ω(x, y), y ∈ T) is such that
ω(x, y) ≥ 0 for all y ∈ T and that

∑
y∈T ω(x, y) = 1. For any vertex x ∈ T\{∅}, let

←
x

be its parent. For the sake of presentation, we modify the values of ω(∅, x) for x with
←
x = ∅, and add a special vertex, denoted by

←
∅, which is considered as the parent of ∅,

such that ω(∅,
←
∅) +

∑
x:
←
x=∅ ω(∅, x) = 1. The vertex

←
∅ is, however, not regarded as a

vertex of T; so, for example,
∑
x∈T f(x) does not contain the term f(

←
∅).

Assume that for each pair of vertices x and y in T ∪ {
←
∅}, ω(x, y) > 0 if and only if

y ∼ x, where by x ∼ y we mean that x is either a child, or the parent, of y. Moreover, we

define ω(
←
∅,∅) := 1.
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The most visited sites of biased random walks on trees

Given ω, the biased walk (Xn, n ≥ 0) is a Markov chain taking values on T ∪ {
←
∅},

started at X0 = ∅, whose transition probabilities are

Pω{Xn+1 = y |Xn = x} = ω(x, y).

The probability Pω is often referred to as the quenched probability. We also consider
the annealed probability P( · ) :=

∫
Pω( · )P(dω), where P denotes the probability with

respect to the environment (ω,T).
There is an active literature on randomly biased walks on Galton-Watson trees; see,

for example, a large list of references in [17]. In this paper, we restrict our attention to a
regime of slow movement of the walk in the recurrent case.

Clearly, the movement of the biased random walk (Xn) is determined by the law of
the random environment ω. We assume that (ω(x, y), y ∼ x) for x ∈ T, are i.i.d. random
vectors. It is convenient to view (ω,T) as a marked tree (in the sense of Neveu [23]).

The influence of the random environment is quantified by means of the random
potential process (V (x), x ∈ T), defined by V (∅) := 0 and

V (x) := −
∑

y∈ ]]∅, x]]

log
ω(
←
y , y)

ω(
←
y ,
⇐
y )
, x ∈ T\{∅} , (1.1)

where
⇐
y is the parent of

←
y , and ]]∅, x]] := [[∅, x]]\{∅}, with [[∅, x]] denoting the set of

vertices (including x and ∅) on the unique shortest path connecting ∅ to x. There exists
an obvious bijection between the random environment ω and the random potential V .

For any x ∈ T, let |x| denote its generation. Throughout the paper, we assume

E
( ∑
x: |x|=1

e−V (x)
)

= 1, E
( ∑
x: |x|=1

V (x) e−V (x)
)

= 0 . (1.2)

We also assume that the following integrability condition is fulfilled: there exists δ > 0

such that

E
( ∑
x: |x|=1

e−(1+δ)V (x)
)

+ E
( ∑
x: |x|=1

eδV (x)
)

+ E
[( ∑

x: |x|=1

1
)1+δ ]

<∞ . (1.3)

The random potential (V (x), x ∈ T) is a branching random walk as in Biggins [6];
as such, (1.2) corresponds to the “boundary case" (Biggins and Kyprianou [9]). It is
known that, under some additional integrability assumptions that are weaker than (1.3),
the branching random walk in the boundary case possesses some deep universality
properties, see [25] for references.

Under (1.2) and (1.3), the biased walk (Xn) is null recurrent (Lyons and Pemantle [21],
Menshikov and Petritis [22], Faraud [12]), such that upon the system’s survival,

|Xn|
(log n)2

law−→ X∞ , (1.4)

1

(log n)3
max

0≤i≤n
|Xi| → c1 a.s., (1.5)

where X∞ is non-degenerate taking values in (0, ∞), and c1 denotes a positive constant:
both X∞ and c1 are explicitly known, see [18] and [13], respectively.

For any vertex x ∈ T, let us define

Ln(x) :=

n∑
i=1

1{Xi=x} , n ≥ 1 ,
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The most visited sites of biased random walks on trees

which is the (site) local time of the biased walk at x. Consider, for any n ≥ 1, the
non-empty random set

An :=
{
x ∈ T : Ln(x) = max

y∈T
Ln(y)

}
. (1.6)

In words, An is the set of the most visited sites (or: favourite sites) at time n. The study
of favourite sites was initiated by Erdős and Révész [11] for the symmetric Bernoulli
random walk on the line (see a list of ten open problems presented in Chapter 11 of
the book of Révész [24]). In particular, for the symmetric Bernoulli random walk on Z,
Erdős and Révész [11] conjectured: (a) tightness for the family of most visited sites,
and (b) the cardinality of the set of most visited sites being eventually bounded by 2.
Conjecture (b) was partially proved by Tóth [27], and is believed to be true by many. On
the other hand, Conjecture (a) was disproved by Bass and Griffin [5]: as a matter of
fact, inf{|x|, x ∈ An} → ∞ almost surely for the one-dimensional Bernoulli walk. Later,
we proved in [16] that it was also the case for Sinai’s one-dimensional random walk in
random environment. The present paper is devoted to studying both questions for biased
walks on trees; our answer is as follows.

Corollary 2.2. Assume (1.2) and (1.3). There exists a finite non-empty set Umin, defined
in (2.5) and depending only on the environment, such that

lim
n→∞

P(An ⊂ Umin |non-extinction) = 1 .

In particular, the family of most visited sites is tight under P.

So, concerning the tightness question for most visited sites, biased walks on trees
behave very differently from recurrent one-dimensional nearest-neighbour random walks
(whether the environment is random or deterministic). To the best of our knowledge,
this is the first non-trivial example of null recurrent Markov chain whose most visited
sites are tight.

In the next section, we give a precise statement of the main result of this paper,
Theorem 2.1.

2 Statement of results

Let us define a symmetrized version of the potential:

U(x) := V (x)− log(
1

ω(x,
←
x)

) , x ∈ T . (2.1)

Note that

e−U(x) =
1

ω(x,
←
x)

e−V (x) = e−V (x) +
∑

y∈T:
←
y=x

e−V (y), x ∈ T . (2.2)

It is known (Biggins [7], Lyons [20]) that under assumption (1.2),

inf
x: |x|=n

U(x)→∞, P∗-a.s., (2.3)

where here and in the sequel,

P∗( · ) := P( · |non-extinction),

P∗( · ) := P( · |non-extinction) .
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Define the derivative martingale

Dn :=
∑

x: |x|=n

V (x)e−V (x), n ≥ 0 . (2.4)

It is known (Biggins and Kyprianou [8], Aïdékon [1], Chen [10]) that (1.3) implies that
Dn converges P-a.s. to a limit, denoted by D∞, and that

D∞ > 0, P∗-a.s.

Define the set of the minimizers of U( · ):

Umin :=
{
x ∈ T : U(x) = min

y∈T
U(y)

}
. (2.5)

Since infx: |x|=n U(x)→∞ P∗-a.s. (see (2.3)), the set Umin is finite and non-empty.
The main result of the paper is as follows.

Theorem 2.1. Assume (1.2) and (1.3). For any ε > 0,1

sup
x∈T

Pω

{ ∣∣∣Ln(x)
n

logn

− σ2

4D∞
e−U(x)

∣∣∣ > ε
}
→ 0, in P∗-probability ,

where U( · ) is the symmetrized potential in (2.1), D∞ the P∗-almost sure positive limit
of the derivative martingale (Dn) in (2.4), and

σ2 := E
( ∑
y: |y|=1

V (y)2 e−V (y)
)
∈ (0, ∞) . (2.6)

Corollary 2.2. Assume (1.2) and (1.3). If An is the set of the most visited sites at time n
as in (1.6), then

P∗(An ⊂ Umin)→ 1 ,

where Umin is the set of the minimizers of U( · ) in (2.5).

Our results are not as strong as they might look like. For example, Theorem 2.1 does
not claim that Pω{supx∈T |

Ln(x)
n

logn
− σ2

4D∞
e−U(x)| > ε} → 0 in P∗-probability. It essentially

says, in view of Proposition 2.3 below, that for any fixed x ∈ T, Pω{|Ln(x)
n

logn
− σ2

4D∞
e−U(x)| >

ε} → 0 in P∗-probability. Corollary 2.2 is much weaker than what Tóth [27] proved for
the symmetric Bernoulli random walk on Z: for example, it does not claim that P∗-a.s.,
An ⊂ Umin for all sufficiently large n; we even do not know whether this is true.

For local time at fixed site of biased random walks on Galton–Watson trees in other
recurrent regimes, see the recent paper [15].

An important ingredient in the proof of Theorem 2.1 is the following estimate on the
local time of vertices that are away from the root:

Proposition 2.3. Assume (1.2) and (1.3). Then

lim
ε→0

lim sup
n→∞

P∗
{

max
x∈T:U(x)≥log( 8

ε2
)
Ln(x) ≥ ε n

log n

}
= 0 .

In the light of the fact that inf |x|=n U(x) → ∞ P∗-a.s. (see (2.3)), Proposition 2.3
allows us, in the proof of Theorem 2.1, to estimate the probability for fixed x.

Proposition 2.3 is proved in Section 3; Theorem 2.1 and Corollary 2.2 in Section 4.
Throughout the paper, for any pair of vertices x and y, we write x < y or y > x if y is

a (strict) descendant of x, and x ≤ y or y ≥ x if either y is either a (strict) descendant of
x, or x itself. For any x ∈ T, we use xi (for 0 ≤ i ≤ |x|) to denote the ancestor of x in the
i-th generation; in particular, x0 = ∅ and x|x| = x.

1By convergence in P∗-probability, we mean convergence in probability under P∗.
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3 Proof of Proposition 2.3

Before presenting the proof of Proposition 2.3, we outline the overall strategy. We
exploit the relation between the local time at x, and the hitting time Tx and the return
time T+

∅ (defined respectively in (3.4) and (3.5) below). Probabilities involving these
random times are known to have standard one-dimensional formulas ((3.6) and (3.7)).
Proposition 2.3 is then proved using large deviation properties away from the mean if
the potential U(x) is large. Since U(x) is indeed P∗-a.s. large uniformly in the tree depth
(as seen in (2.3)), we will be done.

We need some preliminaries. Let

Λ(x) :=
∑

y:
←
y=x

e−[V (y)−V (x)] , x ∈ T , (3.1)

In particular, Λ(∅) =
∑
x: |x|=1 e−V (x). By definition,

1 + Λ(x) =
1

ω(x,
←
x)

.

Let Si − Si−1, i ≥ 1, be i.i.d. random variables whose law is characterized by

E
[
h(S1)

]
= E

[ ∑
x∈T: |x|=1

e−V (x)h(V (x))
]
, (3.2)

for any Borel function h : R→ R+.
The following fact, quoted from [18], is a variant of the so-called “many-to-one

formula" for the branching random walk.

Fact 3.1. Assume (1.2) and (1.3). Let Λ(x) be as in (3.1). For any n ≥ 1 and any Borel
function g : Rn+1 → R+, we have

E
[ ∑
x∈T: |x|=n

g
(
V (x1), · · · , V (xn), Λ(x)

)]
= E

[
eSn G

(
S1, · · · , Sn

)]
,

where Si − Si−1, i ≥ 1, are i.i.d. whose common distribution is given in (3.2), and

G(a1, · · · , an) := E[g(a1, · · · , an,
∑

x∈T: |x|=1

e−V (x))] .

Define a reflecting barrier at (notation: ]]∅, x[[ := ]]∅, x]]\{x})

L (γ)
n :=

{
x :

∑
z∈ ]]∅, x]]

eV (z)−V (x) >
n

(log n)γ
,

∑
z∈ ]]∅, y]]

eV (z)−V (y) ≤ n

(log n)γ
, ∀y ∈ ]]∅, x[[

}
, (3.3)

where γ ∈ R is a fixed parameter. We write x < L
(γ)
n if

∑
z∈ ]]∅, y]] eV (z)−V (y) ≤ n

(logn)γ for

all y ∈ ]]∅, x[[ .

We recall two results from [18]. The first justifies the presence of the barrier L
(γ)
n

for the biased walk (Xn), and the second describes the local time at the root.

Fact 3.2 ([18]). Assume (1.2) and (1.3). If γ < 2, then

lim
n→∞

P
( n⋃
i=1

{Xi ∈ L (γ)
n }

)
= 0 .
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Fact 3.3 ([18]). Assume (1.2) and (1.3). For any ε > 0,

Pω

{ ∣∣∣Ln(∅)
n

logn

− σ2

4D∞
e−U(∅)

∣∣∣ > ε
}
→ 0, in P∗-probability .

We now proceed to the proof of Proposition 2.3. Define

Tx := inf{i ≥ 0 : Xi = x} , x ∈ T , (3.4)

T+
∅ := inf{i ≥ 1 : Xi = ∅} . (3.5)

In words, Tx is the first hitting time at x by the biased walk, whereas T+
∅ is the first

return time to the root ∅.
Let x ∈ T\{∅}. The probability Pω(Tx < T+

∅ ) only involves a one-dimensional
random walk in random environment (namely, the restriction at [[∅, x[[ of the biased walk
(Xi)), so a standard result for one-dimensional random walks in random environment
(Golosov [14]) tells us that

Pω(Tx < T+
∅ ) =

ω(∅, x1) eV (x1)∑
z∈ ]]∅, x]] eV (z)

=
ω(∅,

←
∅)∑

z∈ ]]∅, x]] eV (z)
, (3.6)

Px,ω{T∅ < T+
x } =

eU(x)∑
z∈ ]]∅, x]] eV (z)

, (3.7)

where x1 is the ancestor of x in the first generation.

Proof of Proposition 2.3. By Fact 3.2, for all γ1 < 2, we have P∗(∪mi=1{Xi ∈ L
(γ1)
m })→ 0,

m→∞. So it suffices to check that for some γ1 < 2,

lim
b→0

lim sup
m→∞

P∗
{

max
x<L

(γ1)
m :U(x)≥log( 8

b2
)

Lm(x) ≥ bm

logm

}
= 0 .

Since P∗(U(∅) ≥ log( 8
b2 ))→ 0 for b→ 0, it suffices to prove that for some γ1 < 2,

lim
b→0

lim sup
m→∞

P∗
{

max
x∈T\{∅}: x<L

(γ1)
m , U(x)≥log( 8

b2
)

Lm(x) ≥ bm

logm

}
= 0 . (3.8)

Let T (0)
∅ := 0 and inductively T (j)

∅ := inf{i > T
(j−1)
∅ : Xi = ∅}, for j ≥ 1. In words,

T
(j)
∅ is the j-th return time to ∅. We have, for n ≥ 2, c > 0, ε ∈ (0, 1), 1 < γ < 2 and
m(n) = bc n log nc,

P∗
{

max
x∈T\{∅}: x<L

(γ)

m(n)
, U(x)≥log( 8

ε )

Lm(n)(x) ≥ εn
}

≤ P∗{T (n)
∅ ≤ m(n)}+ P∗

{
max

x∈T\{∅}: x<L
(γ)

m(n)
, U(x)≥log( 8

ε )

L
T

(n)
∅

(x) ≥ εn
}
.

By Fact 3.3,
T

(n)
∅

n logn →
4D∞
σ2 eU(∅) in P∗-probability, so the portmanteau theorem implies

that lim supn→∞P
∗{T (n)

∅ ≤ m(n)} ≤ P∗{ 4D∞
σ2 eU(∅) ≤ c}. Assume, for the time being, that

we are able to prove that for some γ < 2, any c > 0 and any 0 < ε < 1,

P∗
{

max
x∈T\{∅}: x<L

(γ)

m(n)
, U(x)≥log( 8

ε )

L
T

(n)
∅

(x) ≥ εn
}
→ 0, n→∞ . (3.9)

Then we will have

lim sup
n→∞

P∗
{

max
x∈T\{∅}: x<L

(γ)

m(n)
, U(x)≥log( 8

ε )

Lm(n)(x) ≥ εn
}
≤ P∗

{4D∞
σ2

eU(∅) ≤ c
}
.
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Since n ≤ 2
c
m(n+1)
logm(n) (for all sufficiently large n), this will yield

lim sup
n→∞

P∗
{

max
x∈T\{∅}: x<L

(γ)

m(n)
, U(x)≥log( 8

ε )

Lm(n)(x) ≥ 2ε

c

m(n+ 1)

logm(n)

}
≤ P∗

{4D∞
σ2

eU(∅) ≤ c
}
.

Let m ∈ [m(n), m(n+ 1)] ∩Z. Then Lm(n)(x) ≤ Lm(x) (for all x ∈ T); on the other hand,

if x < L
(γ1)
m , then x < L

(γ)
m(n) for all γ1 ∈ (γ, 2) and all sufficiently large n. Consequently,

we will have, for all c > 0 and ε ∈ (0, 1),

lim sup
m→∞

P∗
{

max
x∈T\{∅}: x<L

(γ1)
m , U(x)≥log( 8

ε )

Lm(x) ≥ 2ε

c

m

logm

}
≤ P∗

{4D∞
σ2

eU(∅) ≤ c
}
.

Taking c := 2ε1/2 will then yield (3.8) (writing b := ε1/2 there) and thus Proposition 2.3.

The rest of the section is devoted to the proof of (3.9). By (1.5), 1
(logn)3 max0≤i≤n |Xi|

converges P∗-a.s. to a positive constant, and since
T

(n)
∅

n logn converges in P∗-probability to

a positive limit, we deduce that 1
(logn)3 max

0≤i≤T (n)
∅
|Xi| converges in P∗-probability to

a positive limit. So the proof of (3.9) is reduced to showing the following estimate: for
some 1 < γ < 2, any c > 0 and any 0 < ε < 1,

P∗
{

max
x<L

(γ)

m(n)
: U(x)≥log( 8

ε ), 1≤|x|≤(logn)4
L
T

(n)
∅

(x) ≥ εn
}
→ 0, n→∞ .

For k ≥ 1, we have

Pω

{
max

x<L
(γ)

m(n)
: U(x)≥log( 8

ε ), 1≤|x|≤(logn)4
L
T

(n)
∅

(x) ≥ k
}

≤
∑

x<L
(γ)

m(n)
: U(x)≥log( 8

ε ), 1≤|x|≤(logn)4

Pω{LT (n)
∅

(x) ≥ k} .

The law of L
T

(n)
∅

(x) under Pω is the law of
∑n
i=1 ξi, where (ξi, i ≥ 1) is an i.i.d. sequence

with Pω(ξ1 = 0) = 1− a and Pω(ξ1 ≥ k) = a pk−1, ∀k ≥ 1, where

1− p := Px,ω{T∅ < T+
x } =

eU(x)∑
z∈ ]]∅, x]] eV (z)

, (3.10)

a := Pω{Tx < T+
∅ } =

ω(∅,
←
∅)∑

z∈ ]]∅, x]] eV (z)
. (3.11)

[We have used (3.6) and (3.7).]

The tail estimate of L
T

(n)
∅

(x) under Pω is summarized in the following elementary

lemma, whose proof is in the Appendix.

Lemma 3.4. Let 0 < a < 1 and 0 < p < 1. Let (ξi, i ≥ 1) be an i.i.d. sequence of random
variables with P(ξ1 = 0) = 1− a and P(ξ1 ≥ k) = a pk−1, ∀k ≥ 1.

Let 0 < ε < 1. If 1− p > 8
ε a, then

P
{ n∑
i=1

ξi ≥ dεne
}
≤ 6na e−

(1−p)εn
8 .
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We continue with the proof of (3.9). If U(x) ≥ log( 8
ε ), then 1 − p > 8

ε a, so we are
entitled to apply Lemma 3.4 to arrive at:

Pω

{
max

x<L
(γ)

m(n)
: U(x)≥log( 8

ε ), 1≤|x|≤(logn)4
L
T

(n)
∅

(x) ≥ dεne
}

≤ 6n
∑

x<L
(γ)

m(n)
: 1≤|x|≤(logn)4

ω(∅,
←
∅)∑

z∈ ]]∅, x]] eV (z)
exp

(
− εn

8

eU(x)∑
z∈ ]]∅, x]] eV (z)

)
.

We have ω(∅,
←
∅) ≤ 1. It remains to check the following convergence in P∗-probability

(for n→∞): ∑
x<L

(γ)

m(n)
: 1≤|x|≤(logn)4

n∑
z∈ ]]∅, x]] eV (z)

exp
(
− ε

8

n eU(x)∑
z∈ ]]∅, x]] eV (z)

)
→ 0 . (3.12)

Recall the definition of L
(γ)
m(n): x < L

(γ)
m(n) implies eV (x)∑

z∈ ]]∅, x]] eV (z) ≥ (logm(n))γ

m(n) , which is

≥ (logn)γ−1

cn for all sufficiently large n (say n ≥ n0). Also, we recall that eU(x) = eV (x)

1+Λ(x) ,

with Λ(x) :=
∑
y:
←
y=x

e−[V (y)−V (x)] as in (3.1).

For the sum
∑
x<L

(γ)

m(n)

on the left-hand side of (3.12), we distinguish two possible

situations depending on the value of Λ(x). Let 0 < % < 1. Applying the elementary

inequality λe−λ ≤ c2 e−λ/2 (for λ ≥ 0) to λ := ε
8

n eU(x)∑
z∈ ]]∅, x]] eV (z) , we see that for n ≥ n0,

∑
x<L

(γ)

m(n)

1{1+Λ(x)≤( n eV (x)∑
z∈ ]]∅, x]] e

V (z)
)%}

n∑
z∈ ]]∅, x]] eV (z)

exp
(
− ε

8

n eU(x)∑
z∈ ]]∅, x]] eV (z)

)

≤ c2
∑

x<L
(γ)

m(n)

1{1+Λ(x)≤( n eV (x)∑
z∈ ]]∅, x]] e

V (z)
)%}

8

ε
e−U(x) exp

(
− ε

16(1 + Λ(x))

n eV (x)∑
z∈ ]]∅, x]] eV (z)

)

≤ 8c2
ε

∑
x<L

(γ)

m(n)

e−U(x) exp
(
− ε

16
(

n eV (x)∑
z∈ ]]∅, x]] eV (z)

)1−%
)
.

Since n eV (x)∑
z∈ ]]∅, x]] eV (z) ≥ 1

c (log n)γ−1 (for x < L
(γ)
m(n) and n ≥ n0), this yields, for n ≥ n0,

∑
x<L

(γ)

m(n)

1
{1+Λ(x)≤( n eV (x)∑

z∈ ]]∅, x]] e
V (z)

)%}
n∑

z∈ ]]∅, x]] eV (z)
exp

(
− ε

8

n eU(x)∑
z∈ ]]∅, x]] eV (z)

)

≤ 8c2
ε

exp
(
− ε

16c1−%
(log n)(γ−1)(1−%)

) ∑
x<L

(γ)

m(n)

e−U(x) ,

which converges to 0 in P∗-probability (recalling that for any γ ∈ R, 1
logn

∑
x∈T: x<L

(γ)
n

e−U(x)

converges in P∗-probability to a finite limit; see [18]). So it remains to prove that there
exists % ∈ (0, 1) such that (removing the big exponential term which is bounded by 1)∑

x<L
(γ)

m(n)
: 1≤|x|≤(logn)4

1{1+Λ(x)>( n eV (x)∑
z∈ ]]∅, x]] e

V (z)
)%}

n∑
z∈ ]]∅, x]] eV (z)

→ 0 ,

in P∗-probability (for n → ∞). Since limr→∞ inf |x|=r V (x) → ∞ P∗-a.s. (see (2.3)), it
suffices to prove the existence of % ∈ (0, 1) and γ ∈ (1, 2) such that for all α > 0 and
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n→∞, ∑
x<L

(γ)

m(n)
: 1≤|x|≤(logn)4

1{1+Λ(x)>( n eV (x)∑
z∈ ]]∅, x]] e

V (z)
)%}

n∑
z∈ ]]∅, x]] eV (z)

1{V (x)≥−α} → 0 , (3.13)

in P∗-probability, where V (x) := minz∈ ]]∅, x]] V (z).

To prove this, we first recall that x < L
(γ)
m(n) implies that for all y ∈ ]]∅, x]], we have∑

z∈ ]]∅, y]] eV (z)

eV (y) ≤ cn
(logn)γ−1 (for n ≥ n0) which is bounded by n for all sufficiently large n

(say n ≥ n1); a fortiori V (y)− V (y) ≤ log n (with V (y) := maxz∈ ]]∅, y]] V (y)). By Fact 3.1,
we obtain, for n ≥ n0 ∨ n1,

E
[ ∑
x<L

(γ)

m(n)
, 1≤|x|≤(logn)4

1{1+Λ(x)>( n eV (x)∑
z∈ ]]∅, x]] e

V (z)
)%}

n∑
z∈ ]]∅, x]] eV (z)

1{V (x)≥−α}

]

≤
b(logn)4c∑
k=1

E
[ ∑
x: |x|=k

1{V (y)−V (y)≤logn, ∀y∈ ]]∅, x]]} ×

1{1+Λ(x)>( n eV (x)∑
z∈ ]]∅, x]] e

V (z)
)%}

n∑
z∈ ]]∅, x]] eV (z)

1{V (x)≥−α}

]

=

b(logn)4c∑
k=1

E
[
eSk 1{S#

k ≤logn} F
(

(
n eSk∑k
i=1 eSi

)%
) n∑k

i=1 eSi
1{Sk≥−α}

]
,

where F (λ) := P(1+
∑
x: |x|=1 e−V (x) > λ) for λ > 0, Sk := max1≤i≤k Si, Sk := min1≤i≤k Si,

and S#
k := max1≤i≤k(Si − Si) for any k ≥ 1.

An application of the Hölder inequality, using assumption (1.3), yields the existence
of δ1 > 0 such that

E
[( ∑

x: |x|=1

e−V (x)
)1+δ1]

<∞ . (3.14)

As such, c3 := E[(1 +
∑
x: |x|=1 e−V (x))1+δ1 ] < ∞, so F (λ) ≤ c3 λ

−1−δ1 for all λ > 0.
Consequently,

E
[ ∑
x<L

(γ)

m(n)
, 1≤|x|≤(logn)4

1
{1+Λ(x)>( n eV (x)∑

z∈ ]]∅, x]] e
V (z)

)%}
n∑

z∈ ]]∅, x]] eV (z)
1{V (x)≥−α}

]

≤ c3
b(logn)4c∑
k=1

E
[(∑k

i=1 eSi

n eSk

)%(1+δ1)−1

1{S#
k ≤logn} 1{Sk≥−α}

]
. (3.15)

Lemma 3.5. Let δ be the constant in assumption (1.3). For all α > 0 and δ2 ∈ (0, δ ∧ 1
16 ),

lim
n→∞

b(logn)4c∑
k=1

E
[(∑k

i=1 eSi

n eSk

)δ2
1{S#

k ≤logn} 1{Sk≥−α}

]
= 0 .

Since it is possible to choose 0 < % < 1 such that %(1 + δ1)− 1 lies in (0, δ ∧ 1
16 ), we

can apply Lemma 3.5 to see that (3.15) implies (3.13), and thus yields Proposition 2.3.
It remains to prove Lemma 3.5.

Proof of Lemma 3.5. Since
∑k
i=1 eSi ≤ k eSk , it suffices to check that

(log n)4δ2

nδ2

b(logn)4c∑
k=1

E
[
eδ2(Sk−Sk) 1{S#

k ≤logn} 1{Sk≥−α}

]
→ 0 .
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Recall the law of S1 from (3.2). By assumption (1.3) and Hölder’s inequality, we have

E(eaS1) <∞, ∀a ∈ (−δ, 1 + δ),

where δ > 0 is the constant in (1.3). In particular, E(ea|S1|) <∞ for all 0 ≤ a < δ. Since

0 < δ2 < δ, we have E(eδ2(Sk−Sk)) ≤ ec4 k for some constant c4 > 0 and all k ≥ 1. So
(logn)4δ2

nδ2

∑b(logn)1/2c
k=1 E[eδ2(Sk−Sk)]→ 0. It remains to prove that

(log n)4δ2

nδ2

b(logn)4c∑
k=b(logn)1/2c

E
[
eδ2(Sk−Sk) 1{S#

k ≤logn} 1{Sk≥−α}

]
→ 0 .

We make a change of indices k = b(log n)1/2c+`. Let S̃` := S`+b(logn)1/2c−Sb(logn)1/2c, ` ≥
0. Then (S̃`, ` ≥ 0) is a random walk having the law of (S`, ` ≥ 0), and is independent of
(Si, 1 ≤ i ≤ b(log n)1/2c). For ` ≥ 0, S`+b(logn)1/2c−S`+b(logn)1/2c = max(x, max0≤j≤` S̃j)−
S̃` ≥ max0≤j≤` S̃j − S̃`, where x := Sb(logn)1/2c − Sb(logn)1/2c. So for k ≥ b(log n)1/2c
and ` := k − b(log n)1/2c, on the event that {Sk ≥ −α}, either max0≤j≤` S̃j ≤ x, then

Sk−Sk = x− S̃` = Sb(logn)1/2c−Sk ≤ Sb(logn)1/2c+α, or max0≤j≤` S̃j > x, then Sk−Sk =

max0≤j≤` S̃j − S̃`. It follows that

E
[
eδ2(Sk−Sk) 1{S#

k ≤logn} 1{Sb(logn)1/2c≥−α}

]
≤ E(e

δ2(α+Sb(logn)1/2c)) + P(Sb(logn)1/2c ≥ −α)×E
[
eδ2(S`−S`) 1{S#

` ≤logn}

]
.

Since E(e
δ2Sb(logn)1/2c) ≤ ec4 (logn)1/2 , we have (logn)4δ2

nδ2

∑b(logn)4c
k=b(logn)1/2cE(e

δ2(α+Sb(logn)1/2c))→
0. On the other hand, P(Sb(logn)1/2c ≥ −α) ≤ c5 (log n)−1/4 for some constant c5 > 0 and
all n ≥ 2 (see Kozlov [19]); it suffices to prove that

(log n)4δ2−(1/4)

nδ2

∞∑
`=0

E
[
eδ2(S`−S`) 1{S#

` ≤logn}

]
→ 0 .

This will be a straightforward consequence of the following estimate (applied to λ := log n

and b := δ2; it is here we use the condition δ2 <
1
16 ): for any 0 < b < δ,

lim sup
λ→∞

E
( τλ−1∑
`=0

e−b[λ−(S`−S`)]
)
<∞ , (3.16)

where τλ := inf{i ≥ 1 : Si − Si > λ}.
To prove (3.16), we define the (strictly) ascending ladder times (Hi, i ≥ 0): H0 := 0

and for any i ≥ 1,

Hi := inf{` > Hi−1 : S` > max
0≤j≤Hi−1

Sj}.

Therefore,

E
( τλ−1∑
`=0

eb(S`−S`)
)

=

∞∑
i=1

E
( Hi−1∑
`=Hi−1

eb(SHi−1
−S`)1{S#

` ≤λ}

)
.

We apply the strong Markov property, first at time Hi−1 to see that

E
( Hi−1∑
`=Hi−1

eb(SHi−1
−S`)1{S#

` ≤λ}

)
≤ P

(
S#
Hi−1

≤ λ
)
E
(H1−1∑

`=0

e−bS`1{S#
` ≤λ}

)
,
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and then successively at times H1, H2, · · · , Hi−1 to see that P(S#
Hi−1

≤ λ) ≤ P(S#
H1
≤

λ)i−1. As such,

E
( τλ−1∑
`=0

eb(S`−S`)
)
≤
∞∑
i=1

P
(
S#
H1
≤ λ

)i−1

E
(H1−1∑

`=0

e−bS`1{S#
` ≤λ}

)
.

We define σ−λ := inf{n ≥ 0 : Sn < −λ}. Then 1−P(S#
H1
≤ λ) = P(σ−λ < H1) ≥ c6

1+λ for
some constant c6 > 0 and all sufficiently large λ, say λ ≥ λ0 (for the last elementary
inequality, see for example, Lemma A.1 in [17]). Thus we get that

E
( τλ−1∑
`=0

eb(S`−S`)
)
≤ 1 + λ

c6
E
(H1−1∑

`=0

e−bS`1{S#
` ≤λ}

)
.

Finally, for all small b > 0, there exists some positive constant c7 = c7(b) > 0 such that

E
(H1−1∑

`=0

e−bS`1{S#
` ≤λ}

)
= E

(H1−1∑
`=0

e−bS`1{σ−λ>`}

)
≤ c7

λ
ebλ,

by applying [2] (Lemma 6, formula (4.17)) to (−Si, i ≥ 1). This yields (3.16), and
completes the proof of Lemma 3.5 and Proposition 2.3. 2

4 Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. Recall that limk→∞ infx: |x|=k U(x) → ∞ P∗-a.s. (see (2.3)). In
view of Proposition 2.3, we only need to prove that for any fixed x ∈ T and ε > 0, when
n→∞,

Pω

{ ∣∣∣Ln(x)
n

logn

− σ2

4D∞
e−U(x)

∣∣∣ > ε
}
→ 0, in P∗-probability .

According to Fact 3.3, this is equivalent to convergence in P∗-probability Pω{ | Ln(x)
Ln(∅) −

e−[U(x)−U(∅)]| > ε} → 0 (for n→∞), and thus to the following statement: for any x ∈ T
and m→∞,

Pω

{ ∣∣∣LT (m)
∅

(x)

m
− e−[U(x)−U(∅)]

∣∣∣ > ε
}
→ 0, in P∗-probability ,

where T (m)
∅ is as before, the m-th return time of the biased walk (Xi) to the root ∅. This,

however, holds trivially as L
T

(m)
∅

(x)−L
T

(m−1)
∅

(x), m ≥ 1, are i.i.d. random variables under

Pω with Eω[L
T

(1)
∅

(x)] = a
1−p = e−[U(x)−U(∅)] (see the notation at (3.10)–(3.11) as well as

the discussion preceding the equations). Theorem 2.1 is proved. 2

Proof of Corollary 2.2. Let ε > 0 and 0 < a < 1
2 . Let

En(ε, a) :=
{
ω : sup

x∈T
Pω

(∣∣∣Ln(x)
n

logn

− σ2

4D∞
e−U(x)

∣∣∣ > ε
)
< a

}
.

By Theorem 2.1, P∗(En(ε, a))→ 1, n→∞.
Let xn ∈ An, and let xmin ∈ Umin. For all ω ∈ En(ε, a), we have

Pω

(∣∣∣Ln(y)
n

logn

− σ2

4D∞
e−U(y)

∣∣∣ ≤ ε) ≥ 1− a ,
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for y = xn and for y = xmin; hence, for all ω ∈ En(ε, a),

Pω

(Ln(xn)
n

logn

≤ σ2

4D∞
e−U(xn) + ε,

Ln(xmin)
n

logn

≥ σ2

4D∞
e−U(xmin) − ε

)
≥ 1− 2a .

By definition, Ln(xn) = supx∈T Ln(x) ≥ Ln(xmin). Therefore, for all ω,

Pω

( σ2

4D∞
e−U(xn) ≥ σ2

4D∞
e−U(xmin) − 2ε

)
≥ (1− 2a)1En(ε, a)(ω) .

Taking expectation with respect to P∗ on both sides gives that

P∗
( σ2

4D∞
e−U(xn) ≥ sup

x∈T

σ2

4D∞
e−U(x) − 2ε

)
≥ (1− 2a)P∗(En(ε, a)) ,

which converges to 1−2awhen n→∞. Since a > 0 can be as small as possible, this yields
σ2

4D∞
e−U(xn) → supx∈T

σ2

4D∞
e−U(x) in probability under P∗, i.e., U(xn) → infx∈T U(x) in

probability under P∗.
Since Umin, the set of the minimizers of U( · ), is P∗-a.s. finite, we have infx∈Umin U(x) <

infx∈T\Umin
U(x) P∗-a.s., which yields P∗(xn ∈ Umin)→ 1, n→∞. 2

A Appendix: Proof of Lemma 3.4

Let s ∈ [1, 1
p ). Then E(sξ1) = 1− a+ a(1−p)s

1−ps . So

P
{ n∑
i=1

ξi ≥ k
}
≤ 1

sk
E
[
s
∑n
i=1 ξi 1{

∑n
i=1 ξi>0}

]
=

[E(sξ1)]n − [P{ξ1 = 0}]n

sk
.

Observe that

[E(sξ1)]n − [P{ξ1 = 0}]n =
(

1− a+
a(1− p)s

1− ps

)n
− (1− a)n

≤ n
a(1− p)s

1− ps

(
1− a+

a(1− p)s
1− ps

)n−1

,

where, in the last line, we used xn − yn ≤ n(x− y)xn−1 (for 0 ≤ y ≤ x). Hence

P
{ n∑
i=1

ξi ≥ k
}
≤ s−k na(1− p)s

1− ps

(
1− a+

a(1− p)s
1− ps

)n−1

. (A.1)

First case: 1
3 ≤ p < 1. We take s := 1+p

2p ∈ [1, 1
p ), so that (1−p)s

1−ps = 1+p
p ; hence by (A.1),

P
{ n∑
i=1

ξi ≥ k
}
≤

(1 + p

2p

)−k
n
a(1 + p)

p

(
1 +

a

p

)n−1

= na
1 + p

p

(
1 +

1− p
2p

)−k (
1 +

a

p

)n−1

≤ 2na

p

(
1 +

1− p
2p

)−k (
1 +

a

p

)n
.

Since (1 + u)−1 ≤ e−u/2 (for 0 ≤ u ≤ 1) and 1 + v ≤ ev (for v ≥ 0), applied to u := 1−p
2p ≤ 1

and v := a
p , we obtain, in case 1

3 ≤ p < 1,

P
{ n∑
i=1

ξi ≥ k
}
≤ 6na exp

(
− (1− p)k

4p
+
na

p

)
.

EJP 20 (2015), paper 62.
Page 12/14

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4051
http://ejp.ejpecp.org/


The most visited sites of biased random walks on trees

Second and last case: 0 < p ≤ 1
3 . We choose s := 2 < 1

p , so (1−p)s
1−ps ≤ 4; by (A.1), we

obtain:

P
{ n∑
i=1

ξi ≥ k
}
≤ 4na 2−k(1 + 3a)n−1 ≤ 4na 2−k(1 + 3a)n .

In view of the inequality 1 + v ≤ ev (for v ≥ 0; applied to v := 3a), we obtain, in case
0 < p ≤ 1

3 ,

P
{ n∑
i=1

ξi ≥ k
}
≤ 4na 2−k e3an .

So in both situations, as long as 1− p > 8
ε a, we have, for k := dεne, − (1−p)k

4p + na
p ≤

−n( (1−p)ε
4p − a

p ) ≤ − (1−p)ε n
8p ≤ − (1−p)εn

8 , and 2−ke3an ≤ e−n(ε log 2−3a) ≤ e−n(ε log 2− 3ε
8 ),

which is bounded by e−
εn
8 (because log 2 ≥ 1

2 ), and a fortiori by e−
(1−p)εn

8 . Lemma 3.4 is
proved. 2
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